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Technical Notes

An Exact Algorithm for the Time-Constrained
Traveling Salesman Problem

EDWARD K. BAKER
University of Miami, Coral Gables, Florida
{Received July 1981; accepted July 1982)

The time-constrained traveling salesman problem is a variation of the familiar
traveling salesman problem that includes time window constraints on the time
a particular city, or cities, may be visited. This note presents a concise formu-
lation of the time-constrained traveling salesman problem. The model assumes
that the distances of the problem are symmetrical and that the triangle inequality
holds. Additionally, the model allows the salesman to wait at a city, if necessary,
for a ime window to open. The dual of the formulation 1s shown to be a
disjunctive graph model, which 1s well known from scheduling theory. A longest
path algorithm is used to obtain bounding information for subproblems in a
branch and bound solution procedure. Computational results are presented for
several small to moderate size problems.

HE Time-Constrained Traveling Salesman Problem (TCTSP) is a

special case of the traveling salesman problem (TSP). As in the
TSP, the TCTSP assumes that there are n cities of interest. A salesman
based at city 1 must visit each of the remaining n — 1 cities exactly once
before returning to city 1. Additionally, however, the TCTSP requires
that the visit to each city be made within specified time windows. That
is, if ¢, is the time that the salesman visits city i, then [; < ¢, < w,, where
I, and u, are lower and upper bounds of a specified time window. Several
sets of distinct time windows, or no time windows, may be specified for
each city. The TCTSP is to find the sequence of cities, or tour, that
visits each city within an open time window and minimizes the total
length of the tour.

The incorporation of time window constraints within the traveling
salesman model may be found in recent work on dial-a-ride-problems.
Sexton [1979] proposes a complete integer programming model for this
many-origin-to-many-destination vehicle routing problem. As may be
expected, the resultant model is very large even for small problems.
Solutions to the model are obtained, however, using a heuristic procedure
based upon Benders’ decomposition. Psaraftis [1980] obtains exact so-

Subject classification: 491 exact solution time-constrained traveling salesman problem, 837 time-con-
strained route selection.
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lutions to a small dial-a-ride problem by using a dynamic programming
approach. Christofides et al. [1981] address the TCTSP directly using a
dynamic programming state space relaxation procedure to compute
bounding information within a branch and bound algorithm.

The dual of the TCTSP formulation proposed in this paper yields a
disjunctive graph model (Roy and Sussman [1964]), which is well known
from scheduling theory. This model uses a directed graph to represent
precedence constraints between tasks to be scheduled. A longest path
algorithm is then used to identify the critical path of activities. A survey
of enumerative methods for the general job shop scheduling problem
based on the disjunctive graph model is given by Lenstra [1977]. Hard-
grave and Nemhauser [1962] explored the relationship between the
longest path problem and the T'SP. (Some additional observations are
made by Pandit [1964].) The bounding procedure used in the proposed
branch and bound algorithm is similar to those discussed by Greenberg
[1968] and Schrage [1970] for resource constrained scheduling problems.
The branching strategy in the current implementation of the algorithm
employs the penalty method (discussed in Lenstra) for resolving “essen-
tial conflicts” in the ordering of disjunctive tasks.

1. A MODEL FOR THE TIME-CONSTRAINED TSP

Given n cities, the model proposed here defines a single, nonnegative
variable, t,, to be the time that the salesman visits city i. Since the
salesman must return to city 1 at the end of the tour, the formulation
includes an additional variable, ¢.,:, to determine the time at which the
tour is completed. The model assumes that a complete, symmetric,
nonnegative distance matrix, ||d, [, is known and that time is a scalar
transformation of distance so that time and distance may be used
interchangeably. Additionally, it assumes that the triangle inequality
holds for the distance measure. The proposed model for the TCTSP may
then be stated as

minimize t,., — 4 (1)
subject to
L—t =zdy =23 .--,n (2)
It. — ¢t =d, i=3,4,---,m2=<j<i (3)
toe1 — &, = dyg i=23,..-,n 4)
t,=0 i=1,2 .--.,n+1 (5)
L<t=<u 1=2,3,---,n (6)

Copyright © 2001 All Rights Reserved
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where

t; = the time that the salesman visits city i.
| X| = the absolute value of X.
d, = the shortest time required to travel from city i to city j.
[, = the lower bound on the time window for the salesman to visit
city i. By assumption all /, = 0.
u, = the upper bound on the time window for the salesman to visit
city 1, u, = I, for all i.

The proposed model for the TCTSP contains a model for the TSP. To
establish the validity of the model, consider the following theorem.

THEOREM 1. Given a set of n cities and a complete, symmetric, nonnega-
tive distance matrix, ||d, |, an optimal solution to the model defined by
(1)—(5) corresponds to an optimal traveling salesman tour.

Proof. A feasible solution to the constraints (2)-(5) is a set of values
ti, to, -+, tnse1 where £, = 0 for all i. Renumber the cities such that ¢, <
to < t3 < --- < tp4+,. Constraints (2) and (4) guarantee that the smallest
and largest ¢, values will correspond to the departure from and return to
city 1, respectively. For any consecutive intermediate cities { < j, the
constraints (3) force t, — t, = d,. Hence, each city is assigned a unique
arrival time such that the sequence of arrival times corresponds to an
executable salesman’s tour.

Without loss of generality, t; may be assumed to be zero. Then ¢; may
be interpreted as the cumulative time, or distance, from the start of a
tour to city i. The minimization of t,,, — t;, therefore, requires the
determination of the path of shortest total length that begins and ends
at city 1 and visits each intermediate city exactly once.

The addition of the time window constraints (6) to the TSP model
(1)-(5) completes the specification of the TCTSP formulation. Although
the model assumes a single upper and lower bound for each time window,
it is easily extended to include sets of distinct time windows for each
city, one of which must be satisfied. Note that the model allows the
salesman to wait at city i to ensure [, < ¢,.

The proposed model is very concise. It contains n + 1 variables, 2n —
2 linear constraints, ((n — 1)*(n — 2))/2 absolute value constraints, and
n — 1 time window constraints. The solution to the model, however, is
complicated by the presence of the absolute value constraints. These
constraints introduce both a nondifferentiability and a nonconvexity.
Solutions may be obtained, however, through the use of a branch and
bound procedure.
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2. A BRANCH AND BOUND PROCEDURE

Discrete cases of the proposed TCTSP model are determined by the
two possible cases of the |t, — t,| = d, absolute value constraints. These
constraints act as the disjunctive constraints of the graph scheduling
model. Given a choice of one of the cases for each disjunctive constraint
in the current enumeration, the resulting TCTSP model is a linear
program. The solution to each subproblem, therefore, may be obtained
by solving the associated linear program.

We initiate the branch and bound solution procedure by relaxing the
absolute value constraints (3) and the time window constraints (6) of the
proposed TCTSP model. The resulting relaxed problem, P, is

(P) minimize t.41 — b
subject to: t, — t; = da 1=2,3,---,n
ther — 6 = da 1=2,3, ---,n
L, =0 i=12 ---,n+ L

The solution to problem P, and subsequent problems in the tree, may
be obtained by noting that the dual of problem P is a longest path
problem in a directed network with n + 1 nodes. The dual problem, D,
may be stated as:

(D) maximize Yo (€1 X1 + &1 X 1n2)
subject to:
Yl -X =-1
X — Xm0 <0 ji=1,2 ---,n—-1
" X <1
X, Xpuno1 20 Jj=1,2,--.,n—1

As the cases of the absolute value constraints are added to the model,
additional linear constraints are added to problem P. These constraints,
in the primal problem, create additional columns in the dual. These
columns in the dual add additional directed arcs to the dual network.

As arcs are added to the node structure of the dual network, it is
important for the solution process that two assumptions are met. First,
the distances in the original problem, and hence the dual network, must
satisfy the triangle inequality, i.e., di + dy; = d,,. This will guarantee that
if there is a Hamiltonian path in the dual network, then its length will
be the length of the longest path in the network. Second, a maximum
cardinality path labeling convention must be adopted. This assumption

Copyright © 2001 All Rights Reserved
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is required to resolve ties in the triangle inequality which may allow
paths equal in length to the longest path to contain less than n arcs.

To this point in the description of the branch and bound procedure,
the time window constraints (6) of the proposed model have not been
considered. These constraints, however, are easy to incorporate within
the dual labeling algorithm. In the dual labeling procedure, each node in
the dual network is permanently labeled when the value of the longest
path from node 1 to that node becomes known. This label, or node
potential, is exactly the value of the associated primal variable ¢; for node
i. Hence, the primal time window constraints (6) can be enforced directly
within the dual solution procedure used to obtain the solution to the
TSP model described in (1)—(5).

The implementation of this procedure is straightforward. Given time
window constraint /, < t, < u, for node i, if the dual labeling algorithm
determines ¢; such that ¢, > u;, then the current problem in the enumer-
ation is infeasible. If the dual algorithm determines ¢, such that ¢; < [,
then ¢, is set equal to [, and the labeling continues. In this case, the
salesman is required to wait at city i. In the event of multiple time
windows for city i, the salesman would wait the shortest time until a
window opened. If all windows have been closed, this case has no feasible
solution.

3. COMPUTATIONAL RESULTS

The proposed branch and bound algorithm has been coded in FOR-
TRAN on a UNIVAC 1100/81A computing system. List processing
techniques were used in both the enumerative branching mechanism and
in the longest path bounding algorithm. Branching was accomplished by
choosing disjunctive constraints according to the penalty method dis-
cussed by Lenstra in an effort to settle essential scheduling conflicts
early in the enumeration process. Longest paths were calculated using a
labeling procedure (see Jensen and Barnes [1980] for example).

Computational results for the proposed branch and bound algorithm
were obtained from variations of a tanker scheduling problem (see Table
I for port-to-port distance matrix) and vehicle scheduling problems found
in the literature. The source of the vehicle scheduling test problems was
Appendix 9.1 of the Eilon et al. [1971] text, Distribution Management.
We constructed time windows for the test problems by using a nearest
neighbor heuristic to identify a feasible traveling salesman’s tour. The
time windows were then placed about each nearest neighbor visitation
time such that no time windows overlapped. Each of the test cases was
then solved for 5 problem instances with 100, 90, 75, and 50% of the time
windows randomly chosen to be in effect. Table II presents the results
of these tests.

Copyright © 2001 All Rights Reserved
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The presence of distinct time windows in a vehicle scheduling problem
allows some simple reductions to be performed that may reduce the
complexity of the solution process. Two types of reduction procedures
were used to preprocess the vehicle scheduling test problems. First,
whenever [, + d;, > u, for any node pair (i, j), node j precedes node . This
node precedence allows the arc connecting the two nodes in question to
be fixed in the dual network and eliminated from the list of reversible
arcs requiring branching. Second, each node without a time window is
examined for possible fit between each pair of nodes for which the time
windows were enforced. If the fit is found to be infeasible, arcs may be
fixed in the dual network and eliminated from the reversible arc list.

Columns (4), (5), and (6) of Table II report the computational experi-

TABLE 1
PORT-TO-PORT DISTANCE MATRIX
To
From
1 2 3 4 5 6 7 8 9
1 0 815 1170 822 562 630 1083 1318 569
2 815 0 665 580 603 983 1244 1711 1122
3 1170 665 0 496 723 976 1001 1768 1326
4 822 580 496 0 293 526 870 1338 894
5 562 603 723 293 0 266 660 1116 632
6 630 983 976 526 266 0 561 1092 652
7 1083 1244 1001 870 660 561 0 829 780
8 1318 1711 1768 1338 1116 1092 829 0 835
9 569 1122 1326 894 632 662 780 835 0
Number Port Number Port

1 Maracaibo, Venezuela 6 Haiti

2 Costa Rica 7 Bahamas

3 Guatemala 8 Bermuda

4 Cayman Island 9 Puerto Rico

5 Jamaica

ence with the reduction procedures. Column (4) presents the average
UNIVAC 1100/81A CPU time of the 5 problem instances considered for
each test case. This processing time represents the combination of the
time window precedence reduction, implemented as an O(n2) procedure,
and the node insertion reduction which is implemented as an O(n®)
procedure. Columns (5) and (6) report resulting numbers of fixed and
reversible arcs. The number of fixed arcs reported includes the 2n — 2
arcs that connect nodes 2 through n to nodes 1 and n + 1 in the dual
network.

Columns (7) and (8) of Table II present the computational performance
of the branch and bound algorithm on the test problems. Again the
figures represent average number of vertices examined and average CPU

Copyright © 2001 All Rights Reserved
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seconds over the 5 instances considered for each case. In the last case
reported, the algorithm was unable to identify an optimal solution in a
preset maximum of 10,000 vertices examined. The average processor time
required to examine 10,000 vertices in this 51-node problem was slightly
greater than 80 seconds.

4. CONCLUSIONS AND POSSIBLE EXTENSIONS

This paper presents a concise formulation of the time-constrained

TABLE 1I
COMPUTATIONAL RESULTS OF BRANCH AND BOUND ALGORITHM FOR TCTSP
1) (2) (3) 4) (5) (6) (7) (8)
Time  Reduction AverageArcs  Aversoe Solution

Problem Nodes Windows Average - Reversi- Verticesto  Average
in Effect CPU Sec Fixed " Optimum  CPU Sec

Tanker 9 8 0.0476 23 0 1 0.0232
9 7 0.0384 23 2 4 0.0254
9 6 0.0406 23 5 16 0.0355
9 4 0.0431 23 15 62 0.0733
A9.2 13 12 0.1152 35 0 1 0.0348
13 11 0.0872 35 2 4 0.0385
13 9 0.0811 35 10 22 0.0549
13 6 0.0749 34 29 131 0.1452
A93 22 21 0.8296 62 0 1 0.0730
22 19 0.6690 62 5 22 0.1067
22 16 0.5056 62 21 486 0.6808
22 11 0.2990 60 72 1754 3.5472
A9b 30 29 4.1528 86 0 1 0.1180
30 26 3.1858 86 10 161 0.3855
30 22 2.1551 85 40 574 2.5546
30 15 1.0049 83 132 4601 15.1749
A98 51 50 60.4594 149 0 1 0.2414
51 45 45.8672 153 106 217 1.0812
51 38 30.2430 149 194 3735 22.7844
51 25 10.0924 149 379 >10,000 >80.0

traveling salesman problem. The solution to this model is obtained by a
branch and bound procedure that utilizes a longest path algorithm to
obtain bounding information. The method used here is similar to the use
of the disjunctive graph model in job-shop scheduling. The proposed
algorithm was shown to be effective on several small to moderate size
vehicle scheduling problems where a large percentage of the demand
points possessed time windows. The algorithm, at this point, does not
offer improvements over existing algorithms for the general TSP.

The proposed model offers potential for application in a computer
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assisted routing and scheduling system. In such an operational environ-
ment, the presence of user interaction and physical limitations on the
delivery system may provide substantial reductions in the number of
disjunctive arcs in the arc list. Additionally, refinements in the pre-
processor algorithm and the development of more efficient branching
strategies could increase the computational efficiency of the algorithm.
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