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Abstract. A fresh look is taken at the problem of bias in information-based attribute selection measures,
used in the induction of decision trees. The approach uses statistical simulation techniques to demonstrate
that the usual measures such as information gain, gain ratio, and a new measure recently proposed by Lopez
de Mantaras (1991) are all biased in favour of attributes with large numbers of values. It is concluded that
approaches which utilise the chi-square distribution are preferable because they compensate automatically for
differences between attributes in the number of levels they take.
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1. Introduction

The task of inducing a decision tree is typically handled by a recursive partitioning
algorithm which, at each non-terminal node in the tree, branches on that attribute which
discriminates best between the cases filtered down to that node.

Traditionally, the measure called 'information gain' by Quinlan (1986), has been using
for the purpose of deciding which of the available attributes should be branched on.
However, in recent years, researchers such as Kononenko et al. (1984) have become
aware that this measure is liable to favour unfairly attributes with large numbers of
values at the expense of those with few.

As a preferred alternative, Quinlan (1986) suggested the use of another information-
based measure which he termed the 'gain ratio'. This was derived from information gain
by dividing by attribute information. This acted as a sort of normalising factor by virtue
of the fact that attribute information tends to increase as the number of possible values
increases. At the time, it was thought that this would eliminate the bias. However, it
was acknowledged that attributes with very low information values (i.e. low attribute
information) then appeared to gain an unfair advantage.

More recently still, Lopez de Mantaras (1991) proposed another information-based
criterion which, it was claimed, was free of this latter problem also. The purpose of this
paper is to take a fresh look at the problem of bias in measures which should preferably
be bias-free in deciding between contending attributes with different numbers of values.
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2. Definitions of the measures

Although the various measures have been defined elsewhere, it is felt that a simpler
approach to the definitions than is given in other papers would be beneficial.

Suppose that we are dealing with a problem with k classes and that an attribute, A, with
m distinct values is under consideration at a particular node. The following contingency
table (Table 1) represents the cross-classification of classes and attribute values:

Table 1. A general contingency table.
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where Ci (i = 1, k) and aj (j = l,m) represent class and attribute values respectively;
nij (i = 1, k; j = l,m) represent the frequency counts of cases with attribute value aj

and class Ci; and:

Various probabilities can be defined, as follows:

Given an event with l possible outcomes, each of probability pi (i = 1, 2, . . . , l), the
information associated with this event is (Edwards, 1964):
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Applying this to the contingency table above, we can define the information associated
with each possible cell, class and attribute, respectively, as:

From these quantities, transmitted information may be defined as:

The concept of transmitted information is very useful. In the current context, it means
the information about class membership which is conveyed by attribute value,

Each of the information-theoretic measures can now be expressed in terms of the quan-
tities defined in Equations 1 to 4. Firstly, it should be noted that Quinlan's 'information
gain' measure is identical to transmitted information, HT- The 'gain ratio', GR, is
simply transmitted information 'normalised' by attribute information:

Perhaps it should be mentioned that Quinlan (1986) favours an application of the gain
ratio which, in his words:

... selects, from among those attributes with an average-or-better gain, the at-
tribute that maximises the above ratio.

The distance measure proposed by Lopez de Mantaras (1991), dN, is:

This needs to be minimised over attributes, rather than maximised like the other measures,
so it seems preferable to discuss the complement of this measure, 1 -dN , which is simply
transmitted information 'normalised' by cell information.
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Another measure of interest is the G statistic, described by Mingers (1987, 1989), as:

Unfortunately, Mingers is in error.2 The problem arises from the fact that Kullback (1959,
pp. 158-159) was working with logarithms to base e, whereas all the other information-
based measures use logarithms of base 2, in order that all the quantities concerned are
expressed in bits. Therefore, the correct definition should be:

We also need to define a statistical measure, x2, from the same table:

where Oij is the observed number of cases with value Qj in class Q, i.e. Oij = nij, and
Eij is the expected number of cases which should be in cell (Ci, aj) in the contingency
table, if the null hypothesis (of no association between attribute and class) is true:

Both the G statistic and x2 are well approximated by the chi-square distribution with v
degrees of freedom, where:

However, it should be remembered that this will not be true for the G statistic if loga-
rithms of the wrong base are used. It should also be mentioned that both approximations
become poor with small expected frequencies. This fact is well documented in the case
of x2. For example, Siegel (1956) recommends that the x2 test should not be used if
more than 20% of the expected frequencies are less than 5, or any are less than 1. If this
warning is not heeded then, in this type of situation, the probability derived from the
chi-square distribution will be smaller than the true probability of getting a value of x2as
large as that obtained. This means that the x2 test becomes over-optimistic in detecting
informative attributes under these circumstances.

3. The problem of bias

The whole problem of bias arising from differences in the number of levels of attributes
has not been adequately addressed in the area of machine learning. Until now, arguments
for or against the existence of this type of bias have been based on a particular type of
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argument which relies on randomly partitioning an attribute A to produce a derived
attribute A' which has a larger number of values.

This line of argument was initiated by Quinlan (1986, 1988) who showed that:

This means that, in general, the derived attribute will transmit more information about
class membership than the original one. However, as the additional partitioning required
to derive A' from A was random, A' cannot be reasonably be preferred to A as a
candidate for branching. Thus, the information measure, HT, is not comparable between
attributes which have different numbers of values.

More recently, Lopez de Mantaras (1991) proved that:

This result is then taken to imply that this distance measure does not favour attributes
with large numbers of values. In fact, this type of proof is inappropriate. What is needed
is a statistical approach which takes into account the distributional properties of the
measures. More precisely, for any attribute selection measure, /, to be fair requires that,
under the null hypothesis of no association between class and attribute:

where x' and x represent general attribute variables with the same number of attribute
values as A' and A respectively. This means that, under the null hypothesis, the prob-
abilities of getting values for / greater than or equal to those actually obtained must
be equal for A and A'. Anything other than equality in this equation would mean that
attributes with larger numbers of values would be favoured at the expense of those with
fewer, or vice versa.

The reason that a statistical approach is preferable is concerned with the risk of in-
cluding in the tree attributes which do not provide genuine discrimination between the
classes. Previous work by Liu and White (1994) has shown the importance of the
attribute selection measure discriminating between attributes which are genuinely infor-
mative concerning class membership and those that are not. If the attribute selection
measure is biased towards variables with large numbers of values, then noise variables
with large numbers of values could be in contention for selection with genuinely in-
formative attributes with fewer values. In general, this would lead to poorer predictive
performance from the induced tree. For optimal predictive performance, the attribute se-
lection process should avoid the selection of noise variables, because of their degrading
effect on performance. Similar remarks can be made concerning the suboptimality of se-
lecting attributes with large numbers of values which discriminate only weakly between
the classes, when more powerful discriminators are available among those attributes with
fewer distinct values.
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4. Demonstration of bias by simulation

4.1. Introduction

The issue raised in the previous section is really a matter of the distribution of the test
statistic differing according to the number of levels of the attribute under consideration.
The proposal here, is to use Monte Carlo simulation techniques to explore these dif-
ferences and thereby expose the bias (if any) in the use of various information-based
measures. The point is that each of the information-based measures is affected by the
number of cells in the class x attribute contingency table. Consequently, changing either
the number of attribute values or the number of classes would be expected to affect the
magnitude of the measure. Of course, for any given application, the number of classes is
fixed. However, we would expect the effect of number of attribute values to be present
whatever the number of classes. On the other hand, the probability-based measures are
appropriately parameterised for the number of cells in the contingency table and hence
would not be affected by either of these factors.

The intention here is to use simulation techniques to derive approximations to the
theoretical central distributions for the various information-based test statistics, in order
that the estimated parameters derived from these distributions may be compared for
attributes with different numbers of values, m. The central distribution of a test statistic
is the distribution of that statistic when no effect is operating in the population from
which the samples are drawn. In the current context, this means that we are concerned
with the distribution of a particular test statistic when there is no actual association
between class and attribute in the population from which the samples are drawn. For a
given measure, if the distributions differ significantly according to m, then bias is present
in that measure.

The demonstration described below was designed to illustrate the presence of such a
bias and also to show the effects of class probability and number of classes on this bias.

4.2. Method

The basis of the demonstration involved simulating attributes with different numbers of
values, drawn from populations that had no association with class.

Three different conditions were employed, as follows:

1. two equiprobable classes

2. two classes with an odds ratio of 4:1

3. five equiprobable classes

A sample size of 600 cases was used, with the number of cases fixed as belonging
to each of the classes, according to the condition just described. Class membership
was cross-tabulated against three attributes, having respectively two, five and ten values.
For each attribute, the values were generated independently for each class, from the
appropriate discrete uniform distribution.
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Table 2. Means for the various measures, for each condition.

Attribute Selection Measure
Condition

m=2
1 m=5

m=10
m=2

2 m=5
m=10
m=2

3 m=5
m=10

HT

0.0012
0.0048
0.0107
0.0012
0.0049
0.0109
0.0049
0.0196
0.0441

GR

0.0012
0.0021
0.0032
0.0012
0.0021
0.0033
0.0049

0.0084
0.0133

1 - d N

0.0006
0.0015
0.0025
0.0007
0.0016
0.0027
0.0015
0.0042
0.0079

P(X')
0.5005
0.5006
0.4869
0.4989
0.5026
0.4960
0.5052
0.5058
0.4980

p(G)
0.5023
0.5019
0.4910
0.5002
0.5049
0.5029
0.5064
0.5132
0.5189

1000 Monte Carlo trials were employed. On each trial, each of the information-based
measures, HT , GR and 1 — dN were calculated for each attribute. In addition, x2 and G
were also calculated and the probabilities for getting values as extreme as those obtained
(denoted by p(x2) and p(G), respectively) were derived from the cumulative chi-square
distribution with (k — l)(m — 1) degrees of freedom.

4,3. Results and discussion

Means for each of the five measures, for each value of m are displayed in Table 2. The
following points should be noted:

1. The results show clearly that, for each condition, the mean value for each of the
first three measures increases as m is increased. Conversely, the means for the two
probability-based measures show no tendency to vary systematically with m. The
significance of these findings was checked by performing F tests for the application
of each measure to each condition. The results of these were so clear that it was
felt unnecessary to quote each one separately. Briefly, for the three information-
based measures, the F ratios for the three conditions ranged from 443 to 6727, with
2,2997 degrees of freedom. Even the smallest of these was significant beyond the
0.001 level. By contrast, the corresponding F ratios for the two probability-based
measures ranged from 0.07 to 0.75, giving p values all greater than 0.4.

2. The results also show clearly that, for any particular value of m, the means for
the first three measures do not really differ between the first two conditions but
are substantially higher in the third condition. By contrast, the means for the two
probability-based measures do not really differ between any of the conditions.

The reasons underlying these findings are as follows. Both x2 and HT (and the other
information-based measures derived from it) are quantities whose distributions are pa-
rameterised by the number of degrees of freedom of the contingency tables from which
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they have been derived. For a contingency table with A: rows and m columns, the number
of degrees of freedom is given by (k — l)(m - 1). The practical consequence of this
fact is that measures derived from tables with different numbers of cells are not directly
comparable, because they have different probability distributions. This is why the means
for the first three measures in Table 2 increase as m is increased. It also explains why
the means for these measures are higher for the third condition than for the other two,
i.e., because the number of classes has been increased. On the other hand, changing
the class probabilities while keeping the number of classes constant does not produce
changes in these measures because this operation does not change the number of cells
in the contingency table.

By contrast, the two probability-based measures do not suffer from these problems
because the manner in which they are calculated takes into account the number of degrees
of freedom. This means that probabilities derived in this way from tables with different
numbers of cells are directly comparable.

For comparison purposes, a brief test was also made of the behaviour of Quinlan's
variant of the gain ratio on the first experimental condition, i.e. with two equiprobable
classes. (As Quinlan did not define what he meant by 'average', this was calculated
using the median value for HT as the first stage in the computation). The results showed
the same tendency as the other information-based measures, with means of 0.00206,
0.00314 and 0.00439 for 2, 5 and 10 attribute values, respectively.

5. Conclusions

The simulation demonstration, just described, shows convincingly that HT, GR and
1 - dN each favour attributes with larger numbers of values. The results suggest that
HT (transmitted information) is the worst of the three measures in this respect and also
that GR is the least biased. Furthermore, the results also show that the magnitude of
this bias is not affected by class probability but is strongly dependent on the number of
classes, increasing as k is increased.

The nature of the problem is this. The central distribution for HT is really dependent
on m and so is that of the 'normalised' measures derived from it. These distributions are
also dependent on k. In fact, each of the information-based measures is dependent on
the number of cells in the contingency table. Of course, for attribute selection purposes
in real inductive applications, the dependence on k is not important because the number
of classes is fixed for the application concerned. However, the dependence on m remains
and failure to take this fact into account in the proper way means that bias is operating
in situations where various attributes differ in the number of values that they take.

The simple demonstration provided in this paper also shows a way out of the problem.
Either x2 probabilities should be used or, if information-theoretic measures are preferred,
then the G statistic (as defined in Equation 8), could be used instead. In either case, the
statistic is distributed approximately as the chi-square distribution with (m — l)(k — 1)
degrees of freedom. As the results show, comparing the resulting probabilities offers a
simple and fair way of evaluating the relative importance of discrete attributes having
different numbers of levels. The problem of small expected frequencies that was men-
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tioned earlier can be handled in one of two ways. In the case of problems with just two
classes, Fisher's exact probability test (Siegel, 1956) can be used in place of the x2test.
For more than two classes, a similar approach could be developed.

Notes

1. A.P. White is also an Associate Memober of the School of Mathematics and Statistics at the University of
Birmingham.

2. In fact, the arithmetic examples in Mingers (1987) are correct because he uses natural logarithms for his
computation of information gain.
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