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240 Technical Notes

minimizes the total expected cost. For the test sequence (jy, - - -, J»), this expected
cost is given by

F(G, -+, in)=C;i+Ci(1=R; )+C, 1~ Rj)) A—Rjp)+- - +C; i (1-R;,)
= Z:r Cimgm(jl; Tty jm)’
where we define g1(ji) =1 and g:(jy, - - -, j) =[]imi (1 —R;) for 1<isn. Condi-
tions (A) and (B) are easily verified and, in particular, we have G(y;) =R, and
Gi(zy, - -+, 2i1) =][o=z* (1—Rx). Therefore, the least-cost testing sequence is

provided by performing the tests in the order ji*,js*, ---,j,*, where C2/Rp< !
Cs/Rjy<---<Cy/Rj:. :
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BOUNDS ON THE GAIN OF A MARKOV DECISION PROCESS :{

N. A. J. Hastings
University of Birmingham, Birmingham, England
(Received January 8, 1970) F

An algorithm for the steady-state solution of Markov decision problems
has been proposed by Howarp and modified by Hastings. This note
shows, for the case of single-chain Markov decision processes, how bounds
on the optimal gain can be obtained at each cycle of the foregoing algo-
rithms. The results extend to Markov renewal programming. Related
results are the bounds proposed by Oponi1 for use with WHITE’s value-
iteration method of optimization.

N ALGORITHM for the steady-state solution of Markov decision problems
has been proposed by Howarp# and modified by Hastings.!2 31 This note
shows, for the case of single-chain processes, how bounds on the optimal gain can be
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obtained at each cycle of the foregoing algorithms. The results extend to Markov
renewal programming. Related results are the bounds proposed by Oponi'® for
use with the value-iteration method of optimization described by BeLuman!V and
Waire. ]

DISCRETE PROCESSES

THE PROPOSED bounds and their derivation are most readily developed for Howard's
algorithm and a discrete Markov process. Extensions to Hastings’s algorithm and
to continuous (Markov-renewal) processes then follow.

Consider a system that has a finite number of discrete states, t=1,2, ---, N,
and undergoes a completely ergodic, single-chain Markov decision process in discrete
time. At each state, a number of alternative actions k are available. Policy A
(vector) consists of a particular set of actions one for each state. Application of
policy A gives the system a steady-state gain g4 per stage and gives each state a
relative value v;4. Under action k at state ¢ there is a mean immediate return ¢;*
and the probability of transition from state 1 to state j is p¥;.

Both algorithms consist of repeated cycles of value-determination operation and
policy-improvement routine. In the value-determination operation, the gain and
state values under a current policy A are found. In the policy-improvement
routine, an improved policy B is found. For Howard’s algorithm, improved poli-
cies are found by maximizing the test quantity

max; [gi4+ 320770 piw, 4] W)
For any two policies X, Y, let
i =q Y~ X+ 25 ple Y- TR phe,
Then y# 2 is the improvement in the test quantity at stage 7 during the policy-im-
provement routine. Let policy M be an optimal policy, and let IT;¥ be the steady-

state probability for state ¢+ under policy M.
The bounds on the optimal gain are

g4+min, [y!°]S g7 < g¥ < gA+maxi[yl”]. @

The derivation of this result is as follows. Following Howard (reference 4, page
42) we can show that, for any two policies, and in particular for an optimal policy M
and the current policy A,

gM—ga= 3T Iyt @®)

Thus, the difference in the gainsis equal to a weighted average of the y} ™ terms and
is not greater than the largest, gM—g4 <max;[y?™]. But from (1) for all ¢,
y{Zzy?t¥, and hence the upper bound follows.

The optimal gain g is greater than or equal to g# by definition. The superior-
ity of g® to the left-hand expression in (2) is established from the equation

gF—gA=2IoY mmyl”.

Hastings’s algorithm is similar to Howard’s, except that, during the policy-im-
provement routine, improved state values are introduced. Given a current policy
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A, an improved policy B is found using the test quantity shown on the right-hand
side of equation (4). This equation also defines the improved value v4”:

v"+g4=max, [g:+ L=t pivf+ L2V phiviAl. @
For any two policies X, ¥, define v¥¥ by
of+gT=q: T+ Xin pll T+ LIS pliX,
and let 277 =v7¥ —p;X. The bounds are
gA+ming [ 17 plizf"1sgP S g¥ g4+ max. x (LT plief ¥ 1S g4+ maxi(7).

The derivation is similar to that for Howard’s algorithm. The result corresponding
to (4) is given by Hastings (reference 2, equation 18), and is, in the current notation,

i=N -, M AM
gM—ga=Y TV LY = vz,
Since the policy-improvement routine maximizes z; and not Zj:f’ PijZj, we have

therelationz] ® 22}, but not 2i=¥ p¥zf 2= TiZ¥ p¥z4¥, and so the lesser upper
bound includes & maximization over all policies X.

MARKOV RENEWAL PROGRAMMING

TraE EXTENSION of discrete Markov decision problems to the continuous case is
described by Jewell. ¢l

Consider a process similar to that already described but occurring in continuous
time. Let g4 denote the gain per unit time for policy A; let T;*, T;4 denote the
mean duration of visits to state 7 under action k and policy A, respectively; let II;4
denote the steady-state probability that the system is in state ¢. The interpreta-
tions of the symbols for the stage returns, transition probabilities, and state values
are the same as before.

Policy optimization can be achieved by Howard’s algorithm using either of two
types of test quantities, and by Hastings’s algorithm using a modification of one of
these test quantities. For Howard’s algorithm, the test quantities, given a current
policy A, are,

max; [(g+ 2o plivi4—vid)/T 4, (5)
max; [g.f— g AT+ 12T pliw;A). ()]
For any two policies X, Y, let
¥ =T —gXT Y+ 3T pliv,X—viX.
If test quantity (5) is used, the bounds are
g4-+min; [y%/T:2)<g? Sg¥ < g4+max; [yi%/T:B]. ™
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The derivation of this result is exactly parallel to the derivation of (2) and starts

from the continuous-time equation corresponding to (3), which is
gM—ga= 3T WMy /T™).

If the test quantity (6) is used, the lower bounds are unchanged from (7), but .

the upper bound is weaker; it is
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g™ <gA+maxs x [yi¥/T:xX)]. @®)

Maximization over all policies X must be retained in (8) because the policy-improve-
ment routine now maximizes y; and not y,/T';.

Hastings’s algorithm has been developed only for a modification of the second
test quantity (6) to the form,

B = o,
oi” =max; [gt—g 4T+ 1101 phiof "+ LI phvial.
For any two policies X, Y, let
o =g =g il Tl o o —uix,

The bounds on g™ are
gA+min; [X4nY plef /T #1sgP<gM<gA+maxix [0 pizd /T Xl

The derivation of these bounds uses similar arguments to those already developed
for other cases.

With regard to Odoni’s valuable paper, some further points are noteworthy.

First, it is implicit, but should perhaps be stated, that, in the value-iteration
method, the steady-state gain g4 under the current policy A found at stage n is
bounded by Odoni’s bounds:

min; [z:(n)}]SgA<max; [z;(n)].

This follows by inserting v(n+1) =v(n) +xz(n) into Odoni’s equation v(n+1) =g4+
p4v(n) and taking scalar products with II4, Hence, if the bounds are close, the
current policy can be used as a good suboptimal policy.

Second, the value-iteration method may actually converge, and convergence
occurs when all the z;(n) are equal. The speed of convergence is increased if the
boundary values »;(0) are chosen to be as close as possible to the steady-state rela-
tive values v;® under an optimal policy. The v;¥ are, of course, unknown, but it is
not unusual in practice to find that the optimal relative values of the states can be
guessed to a reasonable degree of accuracy.
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ON THE ASYMPTOTIC CONVERGENCE RATE OF COST
DIFFERENCES FOR MARKOVIAN DECISION PROCESSES

Thomas E. Morton
Carnegie-Mellon University, Pittsburgh, Pennsylvania
(Received January 2, 1970)

The modified method of successive approximations for solving Markovian
decision problems as formulated by WHiTE, ScHWEITZER, MACQUEEN, and
OpoNI, concentrates attention on cost differences either between successive
stages in the same state, or relative to a base state in the same stage, rather
than on the total cost function. The former bound the (discounted) gain of
the optimal policy, while the latter relative-cost function determines the
policy to be chosen at each stage. While these authors have demonstrated
that these modified constructs converge to the gain and the optimal rela-
tive-cost function under rather general circumstances (undiscounted,
single-chain, aperiodic processes), little is known about the rates of con-
vergence. [Note that convergence of the relative-cost function guarantees
optimality of a currently repeating policy, as noted by Howarp.] A great
deal of insight into this mathematically difficult question may be gained by
working out the actual asymptotic convergence rates of these constructs for
the special case of a single fixed policy. This is an easy exercise via How-
ward’s methods, but very suggestive, since the policy will be asymptotically
constant for a well-behaved problem. (In particular, if there is a unique
optimal policy it will eventually repeat.) Convergence for both constructs
for the fixed-policy case is very powerful even for discount rates greater than
1.0, depending principally on the dominant eigenvalue of the transition
matrix. This note discusses the intuitive implications of this fact for the
relative efficiencies of modified value iteration, policy iteration, policy
iteration via successive approximations, or possible hybrids.

WHITE“‘ FIRST modified the method of successive approximations for solv-
ing Markov decision problems to focus attention on the convergence of
costs relative to the cost of a base state rather than on convergence of the total
cost function. For the undiscounted case, he proved rather elegantly that the
modified cost function converged at least geometrically ~(1—+)*'¥, where n is the
iteration, and there is postulated to be a state that one must return to every &
iterations with probability at least v, irrespective of the sequence of policies chosen.
He realized that the true convergence rate might be much faster, and that the latter
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