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COMPLEMENTARY PROGRAMMING

Toshihide Ibaraki
Kyoto University, Kyoto, Japan
(Received August 25, 1969)

A mathematical programming problem FP: minimize z=dTz+eTu+fTv
subject to Az+Bu+Cv2g, z, u, v20, uTv=0, is called a complementary
programming (CP) problem. The condition uTv=0 distinguishes CP
problems from ordinary LP problems. A variety of nonlinear program-
ming problems can be formulated in this form, including absolute-value
programming problems, 0-1 mixed-integer-programming problems, quad-
ratic-programming problems, and so forth. This paper proposes a branch-
and-bound algorithm for CP problems and reports some computational
results.

HIS PAPER considers a complementary programming (CP) problem defined
by

P: minimize z=dTz+eTu+fTv subject to Az+Bu+Cv2g, z, u, v20, uTv=0,

where: z, u, v are, respectively, n-, m-, m-vectors of variables; d, e, f are n-, m-?
m-vectors of constants; A, B, C are p Xn, p Xm, p Xm matrices of constants; and
¢ is an m-vector of constants. All vectors are assumed to be column vectors, unless
transposed (denoted by a superscript T').

The condition uTv =0 distinguishes CP problems from ordinary LP problems,
since at least one of u; and ¢; for each j is forced to 0.

A special form of P disregarding the objective function u — My =g, uTv =0,
where M is a p Xp matrix, has received a certain amount of attention.-® The
problem P, however, can include a much wider class of problems as discussed in
the next section.

APPLICATIONS

Two TypicaL examples of CP problems will be presented. It is noted here that,
in addition to them, other important programming problems, such as quadratic
programming problems and LP problems with either-or conditions, can also be
formuiated as CP problems.

1. A 0-1 mized-integer-programming problem. A 0-1 mixed-integer-program-
ming problem is written as follows:

minimize dTz+eTyu, subject to Az+Bu=2g, 20, u;=00r1l, j=1,2, ---, m.

By introducing a slack variable v; for each j, the 0-1 condition can be written
uj+vj=1,up;=0,7=1,2, --.,m. Thus this problem is equivalent to the follow-
ing CP problem:
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minimize d7r+eTu subject to Az+Bu2g, x, u, v20, uTv=0, ut+ov= .
1
2. An absolute-value programming problem. Consider an absolute-value pro-
gramming problem:

minimize dTr+4eT|z|, subject to Az+B|z|2g,

where le =(|zllr Ixilr Tty "tll)- By pUtting Ij=u;—v; j=1, 2! Tr, M, We can
represent |z;| by |z,/ =u;+vj, u;=0. Thus, this problem is equivalent to the
following CP problem:

minimize dT(u—v)+eT (u+v), subject to A (u—v)+Bu+v)2 g, u, v 20, uTv=0.

SOME DEFINITIONS

THE LATER sections give a branch-and-bound algorithm for solving the C'P problem
P. Here we state several definitions necessary for describing it.

For problem P, a point (z, u, v) that satisfies the constraints Az +Bu +Cr 20,
z, u, v20, uTv =0 is a feasible solution. A feasible solution that minimizes z is
an optimal solution.

A partial solution S is an assignment of 0's to a subset of variables u and t in
which both u; and v; never appear simultaneously. We adopt the notational
convention that j denotes u;=0 and —j denotes v;=0. For example, S ={—1,
1, —2} implies that ¢,=0, u; =0, and v2=0. Any variables u; and v, such that
neither j nor —j is included in S are free. If a partial solution T such that TOS
has no free variable, T is a completion of S.

With each partial solution S, the partial problem P(S) is associated, where
P(8S) is defined by

P(8): minimize z=dTz+eTu+fTv, subject to

Az+Bu+Cv2g, 1, u, v20, uTv=0, u,=0 if jeS, v,=0 if —JjeS.

The value of P(S), i.e., the value of z for the optimal solution to P(S), is denoted
by z°(S).
The LP problem obtained by deleting the condition uTv =0 from P is denoted

by P. Similarly, P(S) is P(S) with the condition uTv =0 deleted. 2(S) stand:
for the value of P(S).

THE BRANCH-AND-BOUND ALGORITHM FOR THE CP PROBLEM

THE BRANCH-AND-BOUND algorithm proposed here consists of a sequence of sys-
tematic decompositions of partial problems into smaller ones, followed by attempts
to solve them. At the outset, only one problem P(¢) (=P) is generated. As the
computation proceeds, partial problems P(S) are successively decomposed into
P(8, j) and P(S, —j) by fixing appropriate variables u; and v j to 0, respectively.
From time to time, feasible solutions to P may be obtained as optimal solutions
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; to some partial problems generated by them. The best (minimum objective value)
" among them is maintained as the incumben!. The objective value of the incumbent

is denoted by z*.
If it is proved that a partial problem P(S) is no longer useful to geierate an

< optimal solution to P, P(8) is said to be terminated. Any P(S) neither terminated
- qor decomposed into smaller ones is active. When there exists no active j.urtial
" problem, the computation terminates, possessing an optimal solution to P as the
- jncumbent.

The whole procedure may be summarized as follows:
Step 1. Start with one active partial problem P(¢).
Step 2. Select an active partial problem P(S). If none exists, terminate the

computation.
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Step 8. (i) If an optimal solution to P(S) is obtained, terminate P(S), and
go to Step 4.

() If it is proved that P(S) has no feasible completion or that P(S) cannot
vield any feasible solution better than the incumbent, terminate P(S) and return
to Step 2.

(i) 1If it is proved that u; =0 must hold if feasible completions of P(S) better
than the incumbent are to be obtained, then return to Step 2 after generating the
active partial problem P(S, j) and terminating P(S, —j). Similarly for the ¢;=0
case.

(iv) If none of (3), (i), and (i) is satisfied, go to Step 5.

Step 4. Keep the optimal solution to P(S) as the new incumbent if it is better
than the old incumbent. Terminate all the active partial problems for which it
iz proved that they have no feasible completions better than the new incumbent.
Return to Step 2.

Step 5. Select a pair of free variables v ; and v; (branching variables). Generate
two active partial problems P(S, ;) and P(S, —j) from P(S). Return to Step 2.

This is a straightforward adaptation of the general branch-and-bound princi-
ple®# to the CP problem. The details of each step (Steps 2-5), however, need
to be specified for the algorithm to be implemented. They will be discussed in
the following sections.

SELECTION OF AN ACTIVE PARTIAL PROBLEM

As THE sELEcTION rule for an active partial problem in Step 2, the rule that selects
the active partial problem most recently generated (sometimes called the linear
searchlll) is employed. Among a variety of selection schemes,!® this is chosen
because less storage space is required.

PENALTY FOR EACH FREE VARIABLE

THis sEcTION defines the penalty for each free variable, based on the manipulation
of a simplex tableau for the LP problem P(S). This penalty, combined with the
optimal solution to P(S), is quite useful in implementing Steps 3-5 in the branch-
and-bound algorithm.
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Assume that P(S) is solved and that z and u;(x;>0) are expanded as follow;
in terms of nonbasic variables t,, ts, - - -, {n(N =n+2m) in the final tableau:

z2=ap+ Zt}f aole, u;=ayit+ Zt}f arly, (@re>0).
Let us define the penalty for u; by

( _)_fuo, if @20, k=1,2, ---, N,
PHUIT) —aran/an(20), otherwise,
where

ags/a,s =Maxe |aon/ar]ex<0].

This p(u;) is a lower bound of the increase of z when u; is fixed to 0, since this is
the increase in z after the first pivot operation for driving u; out of basis (note that,
after the first pivot operation, u; is expressed as u; =0+u;) while keeping the dual
feasibility. Thus, the following relation results:

E(S, J)_Z_ ':’(S.)+p(u,-).

p(v;) is defined similarly. (This argument is similar to Driebeek’sP! for 0-1
problems.)

IMPLEMENTATION OF STEP 3 AND STEP 4

FroM THE FacT that P(S) is less constrained than P(S), i.e., 2°(S) 22(S), and the
properties of penalties discussed in the previous section, it is now clear that the
following properties can be used in implementing Step 3 and Step 4 of the branch-
and-bound algorithm:

1. If an optimal solution to P(S) satisfies the condition uTv =0, then it is also
optimal for P(S). [Step 3(i).]

2. If P(S) is infeasible, so is P(S). [Step 3(ii).]

3. If 2(S) 2z* (the value of the incumbent), then P(S) has no feasible comple-
tion better than the incumbent. [Step 3(ii) and Step 4.)

4. If 2(S) +p(u;) =2*, then partial problem P(S, j) can be terminated. Simi-
larly, if 2(S) +p(v;) 22* P(S, —j) can be terminated. [Step 3(iii).]

SELECTION OF BRANCHING VARIABLES

To mMpLEMENT Step 5 of the algorithm, the following method, based on penalties,
1s used.
Let u, and v, satisfy

|p(us) =P (0)| =MaX;:tree, u 0. >0 [P () =P (2i)];

then the branching variables are u, and v,, With this 8, P(S, s) is selected first in
Step 2 if p(u;) Sp(v;); otherwise, P(S, —8) is first.

This rule is emploved because u, and v, defined as above tend to maximize the
difference |z(S, j) —2(S, —j)| among all free variables u; and v;. It is commonly
noticed in the branch-and-bound method that this sort of approach is effective
in reducing the number of partial problems generated in the computation.
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Other results®
Problem n | m 2" t, p® | ©@ |Time®
m Time Machine
(secs)
R and D problem®) olro| 20 |20 31| 1.41
“ o|20| 40 | 30| 59| 7.47 2.4 7044
“ o| 28] s6 38 | 143 | 37-12 14-4 7044
Switching network design® | 17 | 4| 25 |28 | 10| 1.67
Fixedcharge problem® 7 { 3| 2 vi 9 6| o.09 1.818 2044
“ 8| 3 2 7 9 5| o0.08 3.0 7044
“ 1o| 6] 6 18 22 7] o.78 3.6 7044
Graph problem(9 olro| 20 | 30| 20| 1.41 3-38M) CDC3600
TABLE II

THE EFrreECT OF THE RATIO OF COMPLEMENTARY VARIABLES

Problem!? n m p® @ szég: dsu(l,,
® 18 2 30 3.5 0.90
2 16 4 30 5.5 1.00
3 14 6 30 12.0 1.60
4 12 8 30 18.5 1.90
5 10 10 30 20.5 2.26
6 8 12 30 24.5 2.35
7 6 14 30 40.5§ 3.73
8 4 16 30 48.0 4.41
9 2 18 30 73.0 6.99
10 o 20 30 96.0 8.06

Notes for Tables I and 11

@) 4 4 2m is the total number of variables.

® p is the number of constraints excluding #Tv = o.

© Iterations: the number of partial problems actually tested.

@ Computation time in seconds. The machine is FAcoM 230/60.

(9 These computational results are obtained as o-1 all integer problems.

() Taken from PETERSEN.I!!

@) Taken from MUROGA AND IBARAKI;[! the design of the parity function of two varia-
bles with threshold gates.

® Taken from HaLpi. (8]

() Taken from TRAUTH AND WOOLSEY;(!? the combinational problem for a graph with
5 nodes.

) The original problem is the R and D selection problem(!!] with 20 o-1 variables and
1o constraints. It is transformed into CP problems after randomly choosing m out of 20
as o-1 variables and leaving the rest as continuous variables.

(® The result in each row is the average of two problems.
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COMPUTATIONAL RESULTS

THE ALGORITHM i8 coded in FORTRAN, using the properties given in the precediy,
four sections, and run on the racom 230/60 of Kyoto University. The machiy
corresponds very roughly to the 1M 360/65 or the univac 1108.

The computational results are shown in Tables I and II. Table I shows tp,
results for the CP problems converted from 0-1 (mixed) integer problems (take,
from the literature) following method 1 of the second section. Thus each probler,
has a larger number of constraints than the original.

Table II shows the effect of the number of variables restricted to be u;=(,
The computation time appears to increase exponentially as the number of variable:
restricted to be u;v; =0 grows.

Other computational results and a listing of the FORTRAN program are available
through the author.
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