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TECHNICAL NOTE

Convergence of the Steepest Descent Method
for Minimizing Quasiconvex Functions'?

K. C. Kiwier? ano K. MurTy?

Communicated by O. L. Mangasarian

Abstract. To minimize a continuously differentiable quasiconvex func-
tion f: R"—>R, Armijo’s steepest descent method generates a sequence
= xF—nVf(x*), where 7,>0. We establish strong convergence
properties of this classic method: either x*—X, s.t. Vf(x)=0; or
arg min f= &, | x*| -0, and £ (x*)] inf f. We also discuss extensions to
other line searches.

Key Words. Steepest descent methods, convex programming, Armijo’s
line search.

1. Introduction

To minimize a continuously differentiable quasiconvex function
f: R">R, Cauchy’s steepest descent method (Ref. 1) with Armijo’s stepsizes
(Ref. 2) generates a sequence {x*} via

X =x-ng, f=VI(H),  k=0,1,..., ey
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where
tr=arg max{t: f(X*—1g") < f(:X) —atllg")? t=27,i=0,1,.. .}, )]
with a €(0, 1). We prove in Section 2 the following strong convergence result.

_Theorem 1.1. Global Convergence. [Either X oxeX:={x: Vf(x)=0},
or X:=arg min f= &, |[x*| — o0, and f(x*)}inf /.

A closely related resuit appeared in Ref. 3 after an earlier version of
this note was accepted. The present version provides a considerably simpler
convergence proof that permits generalization to the quasiconvex case. Other
related results for nondifferentiable optimization methods are given in Ref. 4
and Ref. 5, Remark 3.2. These relations and extensions are discussed in
Section 3.

2. Glohbal Convergence of Steepest Descent

We make the following standing assumption that generalizes Armijo’s
condition (2).

Assumption 2.1. Let ¢: R:—R; be a function such that:

(A1) 3Jae(0,1), 7,>0, Vte(0, 7,]: ¢(¢) <at,

(A2) 3B>0, 15¢(0, o], Vte(0, 15) N R: ¢ (1) = B,

(A3) Yk, f(xX*"N< f(x)~ ¢ (1)]g"]* and 0<g <74 in (1),

(A4 3Fy>1,7,>0,Yk: =1, Or
[37xelte, yad: f (= 1) 2f ()~ ¢ (1) |€°11%].

Note that (2) corresponds to
¢(H=at, B=a, y=2, T,=Tp=T1,=1.
As in Ref. 4, we start by considering the condition
FOH=f(®), for some fixed % and all k, 3)
which holds if X # ¢ or % is a cluster point of {x*}.

Lemma 2.1. If (3) holds, then

> &I <~ F@DVB. @
k=0

Moreover, x*—Xx for some X.
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Proof. By (A2)-(A3),

Brlg I’ < g 1> < F(F) (T

adding these inequalities yields (4). Next, since {g¥, #—x*> <0 by (3) and
quasiconvexity of f [Ref. 6, Theorem 9.1.4], and since x* —x**"'=1,g*, we
deduce that

8= = = X 2G5 = D P
<|IZ=x*2+ 2 1841
so that
I2=x'IP<2=x1*+ ¥ £lg’II° < oo,
j=k

if I>k. Hence, {x*} is bounded and has a cluster point %, so we may set
X=x above to deduce from (4) for any €>0 the existence of k¥ such that
|%—x"I*<e/2 and

Y Llg I <e/2;

=k

thus, [|£—x' |2 <€ for all />, ie., X*—%. 0

Lemma 2.2. If % is a cluster point of {x*}, then X€X, i.e., Vf(X)=0.
Proof. Suppose that x* % %, but g:=Vf (%) #0. Then, # % 0 from [cf.
(A2)-(A3)]
0< BRI I < f(H) —f(x*7) 50,
with g% g0 and f(x*)] f(%) by continuity. Thus, for all large k€K,
SOF—0g) ~ ()2 - (0l 17 2 — adi gl (5)

by (A4) and (A1), where the left side equals —7, (g¥, Vf(»* — 1.g")) for some
1,€[0, ] by the mean-value theorem, and by (A4), 0<7, <y, % 0. Hence,
dividing (5) by #; and letting k % oo yields —||g||*=—a/||g||? a contradiction
with a <1 [cf. (AD)]. O

We can now prove Theorem 1.1 under Assumption 2.1 that generalizes

).
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Proof of Theorem 1.1. If (3) holds, e.g., X # (J or {x*} has a cluster
point, then the preceding results yield x*—xeX. If ||x*|| 4 oo, then {x*} has
a cluster point. If limy_, £ (x*) >inf £, then (3) holds. O

3. Discussion of Other Line Searches

First, suppost that a€(3, 1) and fis convex. Then, the proof of Lemma
2.2 simplifies, since

g X =22 f ()~ fR) 2 f ()~ () = andg I,
1% =512 — 1% = x> < ~ 2a5llg" ) + &I
=-Qa-1|x*—=x"*<0.

This observation is used in Ref. 7 to prove that x*—»%eX if X# & and Vf
is Lipschitz continuous; thus, our result improves that of Ref. 7.

Second, it is easy to verify Theorem 1.1 for any line search for which
Lemma 2.3 holds and for all &,

FOEY <Ry —andlgh)?
and
1:€(0, tmax], for some fixed £, > 0.

Such stepsizes may be found by many procedures [Refs. 8-12]. Note that
exact line searches are not admissible, but one may use, as in Ref. 12, Section
10.7.2,

tevarg min{ f (x* ~ 1g°): f(x* — 1g") S £ () — @t |17, 0 <t <trman}.

Third, under (A1)-(A2) to satisfy (A3)-(A4), one may let (cf. the proof
of Lemma 2.3)

t=arg max{z: f(xX ~ 1g") < f(x*) ~ 9 (1) I"I1%,
t=2""min[z,, 14],i=0,1,...}. 6

We note that (6) with ¢ (f)=af* was used in Ref. 13. Again, the Armijo-
type search (6) may be relaxed as in the preceding paragraph. In particular,
one may use

et =arg min{ f(x* — tg") + af*|g"|*: >0},

Iff is pseudoconvex, then X =X [Ref. 6, Theorem 9.3.3]; so if X# & and
t=1I, for all k, then x*—>X%eX; thus, we recover the result of Ref. 14.
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Fourth, one may verify Assumption 2.1 for the algorithms of Ref. 3;
in their notation, let ¢(¢)= B¢ with f=L8,/2(1—§,) for Algorithm A,
¢ =y for Algorithm B. Theorem 1.1 is stronger than Theorem 3 of Ref. 3,
and our proof is simpler.

We note that quasiconvexity of f is necessary for Lemma 2.2, and
consequently Theorem 1.1. For example, let

n=2, f(x)=e"—x3, x"=(0, 0)".
Each of the above methods generates

x=(xk, 0)7, with x¥ | —oo and f(x*) | 0, while inf /=~ 0.
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