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Abstract. The impact of climate change on water resources
is usually assessed at the local scale. However, regional cli-
mate models (RCMs) are known to exhibit systematic bi-
ases in precipitation. Hence, RCM simulations need to be
post-processed in order to produce reliable estimates of lo-
cal scale climate. Popular post-processing approaches are
based on statistical transformations, which attempt to ad-
just the distribution of modelled data such that it closely
resembles the observed climatology. However, the diver-
sity of suggested methods renders the selection of optimal
techniques difficult and therefore there is a need for clar-
ification. In this paper, statistical transformations for post-
processing RCM output are reviewed and classified into (1)
distribution derived transformations, (2) parametric trans-
formations and (3) nonparametric transformations, each dif-
fering with respect to their underlying assumptions. A real
world application, using observations of 82 precipitation sta-
tions in Norway, showed that nonparametric transformations
have the highest skill in systematically reducing biases in
RCM precipitation.

1 Introduction

It is well established that precipitation simulations from re-
gional climate models (RCMs) are biased (e.g. due to lim-
ited process understanding or insufficient spatial resolution
(Rauscher et al., 2010)) and hence need to be post processed
(i.e. statistically adjusted, bias corrected) before being used
for climate impact assessment (e.gChristensen et al., 2008;
Maraun et al., 2010; Teutschbein and Seibert, 2010; Win-
kler et al., 2011a,b). In recent years a multitude of studies

has investigated different post processing techniques, aim-
ing at providing reliable estimators of observed precipita-
tion climatologies given RCM output (e.g.Ines and Hansen,
2006; Engen-Skaugen, 2007; Schmidli et al., 2007; Dosio
and Paruolo, 2011; Themeßl et al., 2011; Turco et al., 2011;
Chen et al., 2011b; Teutschbein and Seibert, 2012). Among
the most popular approaches are statistical transformations
that aim to adjust (selected aspects of) the distribution of
RCM (e.g.Ashfaq et al., 2010; Dosio and Paruolo, 2011;
Rojas et al., 2011; Themeßl et al., 2011; Sunyer et al., 2012)
and global circulation model (GCM) (e.g.Wood et al., 2004;
Ines and Hansen, 2006; Boé et al., 2007; Li et al., 2010; Pi-
ani et al., 2010a,b; Johnson and Sharma, 2011) precipitation
such that its new distribution resembles observations. How-
ever, there is no general agreement on the optimal technique
to solve this task and the approaches employed differ at times
substantially. Therefore, there is an urgent need for clarify-
ing the relation among different approaches as well as for an
objective assessment of their performance.

2 Statistical transformations

Statistical transformations attempt to find a functionh that
maps a modelled variablePm such that its new distribu-
tion equals the distribution of the observed variablePo. In
the context of this paper,Po and Pm denote observed and
modelled precipitation, respectively. FollowingPiani et al.
(2010b), this transformation can in general be formulated as

Po = h(Pm) . (1)

Statistical transformations are an application of the probabil-
ity integral transform (Angus, 1994) and if the distribution
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Fig. 1. Left: quantile–quantile plot of observed (Po) and modelled
(Pm) precipitation in Geiranger, Norway, as well as a transforma-
tion (Po = h(Pm)) that is used to map the modelled onto observed
quantiles. Right: empirical CDF of observed, modelled and trans-
formed (h(Pm)) precipitation.

of the variable of interest is known, the transformation is
defined as

Po = F−1
o (Fm (Pm)) , (2)

whereFm is the CDF ofPm andF−1
o is the inverse CDF (or

quantile function) corresponding toPo.
Figure1 illustrates statistical transformations for post pro-

cessing RCM output using observed and modelled daily pre-
cipitation rates from Geiranger, in the fjords of western Nor-
way. Modelled precipitation was extracted from a HIRHAM
RCM simulation with 25 km resolution (Førland et al., 2009,
2011) forced with the ERA40 reanalysis (Uppala et al., 2005)
on a model domain covering Norway and the Nordic Arctic.
The left panel shows the quantile–quantile plot of observed
and modelled precipitation as well as the best fit of an ar-
bitrary functionh that is used to approximate the transfor-
mation. The right panel shows the corresponding empirical
CDF of observed and modelled values as well as the trans-
formed modelled values. The practical challenge is to find a
suitable approximation forh and different approaches have
been suggested in the literature.

2.1 Distribution derived transformations

Statistical transformations can be achieved by using theoret-
ical distributions to solve Eq. (2). This approach has seen
wide application for adjusting modelled precipitation (e.g.
Ines and Hansen, 2006; Li et al., 2010; Piani et al., 2010a;
Teutschbein and Seibert, 2012). Most of these studies assume
thatF is a mixture of the Bernoulli and the Gamma distribu-
tion, where the Bernoulli distribution is used to model the
probability of precipitation occurrence and the Gamma dis-
tribution used to model precipitation intensities (e.g.Thom,
1968; Mooley, 1973; Cannon, 2008). In this study, fur-
ther mixtures, e.g. the Bernoulli-Weibull, the Bernoulli-Log-
normal and the Bernoulli-Exponential distributions (Cannon,
2012), are also assessed. The parameters of the distributions

are estimated by maximum likelihood methods for bothPo
andPm independently.

2.2 Parametric transformations

The quantile–quantile relation (Fig.1) can be modelled di-
rectly using parametric transformations. Here, the suitability
of the following parametric transformations was explored:

P̂o = bPm (3)

P̂o = a + bPm (4)

P̂o = bP c
m (5)

P̂o = b (Pm − x)c (6)

P̂o = (a + bPm)
(
1 − e−(Pm−x)/τ

)
(7)

where,P̂o indicates the best estimate ofPo anda, b, c, x and
τ are free parameters that are subject to calibration. The sim-
ple scaling (Eq.3) is regularly used to adjust precipitation
from RCM (seeMaraun et al., 2010, and references therein)
and closely related to local intensity scaling (Schmidli et al.,
2006; Widmann et al., 2003). The transformations Eq. (4) to
Eq. (7) were all used byPiani et al.(2010b) and some of
them have been further explored in follow up studies (Do-
sio and Paruolo, 2011; Rojas et al., 2011). Following Pi-
ani et al.(2010b), all parametric transformations were fitted
to the fraction of the CDF corresponding to observed wet
days (Po > 0) by minimising the residual sum of squares.
Modelled values corresponding to the dry part of the ob-
served empirical CDF were set to zero. Note, that the res-
olution of the precipitation observations used in this study
(see Sect.3) is 0.1 mm day−1 which implies a threshold of
≤ 0.1 mm day−1.

2.3 Nonparametric transformations

2.3.1 Empirical quantiles (QUANT)

A common approach is to solve Eq. (2) using the empiri-
cal CDF of observed and modelled values instead of assum-
ing parametric distributions (e.g.Panofsky and Brier, 1968;
Wood et al., 2004; Reichle and Koster, 2004; Boé et al.,
2007; Themeßl et al., 2011, 2012). Following the procedure
of Boé et al.(2007), the empirical CDFs are approximated
using tables of empirical percentiles. Values in between the
percentiles are approximated using linear interpolation. If
new model values (e.g. from climate projections) are larger
than the training values used to estimate the empirical CDF,
the correction found for the highest quantile of the training
period is used (Boé et al., 2007; Themeßl et al., 2012).

2.3.2 Smoothing splines (SSPLIN)

The transformation (Eq.1) can also be modelled using non-
parametric regression. We suggest to use cubic smoothing
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splines (e.g.Hastie et al., 2001), although other nonparamet-
ric methods may be equally efficient. Like for the parametric
transformations (Sect.2.2), the smoothing spline is only fit to
the fraction of the CDF corresponding to observed wet days
and modelled values below this are set to zero. The smooth-
ing parameter of the spline is identified by means of gener-
alised cross-validation.

3 Data and implementation

The suitability of the different statistical transformations to
correct model precipitation from the HIRHAM RCM forced
with the ERA40 reanalysis was tested using observed daily
precipitation rates of 82 stations in Norway, all covering the
1960–2000 time interval. The methods were implemented in
the R language (R Development Core Team, 2011) and bun-
dled in the packageqmap, which is available on the Compre-
hensive R Archive Network (http://www.cran.r-project.org/).

4 Quantifying performance

To assess the performance of the different methods, a set of
scores is needed that quantifies the similarity of the observed
and the (corrected) modelled empirical CDF. Previously used
scores include overall measures, such as the root mean square
error (Piani et al., 2010b) or the Kolmogorov-Smirnov two
sample statistic (Dosio and Paruolo, 2011). Other suggested
scores assess specific moments of the distribution includ-
ing the mean (Engen-Skaugen, 2007; Li et al., 2010; Do-
sio and Paruolo, 2011; Themeßl et al., 2011; Turco et al.,
2011; Teutschbein and Seibert, 2012), the standard deviation
(Engen-Skaugen, 2007; Li et al., 2010; Themeßl et al., 2011;
Teutschbein and Seibert, 2012) and the skewness (Li et al.,
2010). A variety of further scores are based on the compar-
ison of the frequency of days with precipitation (Schmidli
et al., 2006, 2007; Themeßl et al., 2011) and the magni-
tude of selected (mostly high) percentiles (Schmidli et al.,
2006, 2007; Li et al., 2010; Themeßl et al., 2011; Teutschbein
and Seibert, 2012). All these scores are either presented as
maps or as spatial averages, which facilitate a quantitative
comparison of methods.

4.1 Skill scores

One limitation of the scores above is that they can often not
be summarised into one overall measure, e.g. due to differ-
ent physical units or lack of normalisation. This renders a
global evaluation, combining the advantages and drawbacks
of different methods, difficult. Therefore, this study suggests
a novel set of scores that aims at a global evaluation, while
keeping track of many relevant properties of the distribution.
Overall performance is measured using the mean absolute er-
ror (MAE) between the observed and the corrected empirical
CDF. To assess the performance for more specific properties,

for example related to the fraction of dry days, average in-
tensities or precipitation extremes, further scores are needed.
Here these properties are assessed using MAE0.1, MAE0.2,
. . ., MAE1.0, the mean absolute errors computed for equally
spaced probability intervals of the observed empirical CDF.
The subscript indicates the upper bounds of 0.1 wide prob-
ability intervals. MAE0.1, for example, evaluates differences
in the dry part of the distribution, indicating discrepancies
in the number of wet days. Similarly, MAE1.0 indicates dif-
ferences in the magnitude of the most extreme events. Note
also that MAE can be computed as the mean of MAE0.1,
MAE0.2, . . ., MAE1.0, which illustrates the consistency of
these measures.

Statistical transformations, as any statistical technique,
quietly assume that the modelled relation holds if confronted
with new data. In the context of climate impact assessment
this assumption is critical as it has to be expected that cli-
mate variables exceed the observed range in future periods.
Further, highly adaptable methods, such as the nonparamet-
ric techniques used in this study, are prone to over fitting the
data. Both issues require that model error is quantified using
data that have not been used for calibration. A standard tech-
nique for this task is cross-validation (CV) (e.g.Hastie et al.,
2001) which has been previously applied for evaluating sta-
tistical downscaling techniques (e.g.Themeßl et al., 2011,
2012). Here a 10-fold CV was employed to produce unbi-
ased estimates of MAE and MAE0.1, MAE0.2, . . ., MAE1.0.
First the data are split into 10 subsamples of continuous time
intervals. The model is then calibrated using the data with
one of the subsamples being removed. MAE and MAE0.1,
MAE0.2, . . ., MAE1.0 are then estimated using the subsample
that was not used for calibration. This procedure is repeated
for each subsample and results in 10 estimates of model er-
ror. The mean of these 10 error estimates, the so called mean
cross-validation error, is reported. In the remainder of this ar-
ticle MAE and MAE0.1, MAE0.2, . . ., MAE1.0 always refers
to the mean cross-validation error to ease formulation.

4.2 Ranking of methods

In order to obtain a global comparison of the efficiency of the
different methods their performance was ranked, closely fol-
lowing the procedure suggested byReichler and Kim(2008).
In a first step, relative errors are computed for each method
by dividing the spatial averages of MAE and MAE0.1,
MAE0.2, . . ., MAE1.0 by the corresponding scores of the un-
corrected model output. In other words, the relative errors
are defined as the individual points in Fig.3 divided by the
solid line. The relative errors range from an optimal value of
zero to infinity. A value smaller than one indicates that the
method causes an improvement; larger values indicate wors-
ening. The relative errors where finally averaged for each
method and ordered from the lowest (best method) to the
highest value (worst method).
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Fig. 2. Mean absolute error (MAE) between the observed and modelled empirical CDF for different statistical transformations, estimated
using 10-fold cross-validation for the 1960–2000 time interval. “none” indicates uncorrected modelled values. Distribution derived transfor-
mations are based on the Bernoulli-Exponential (BernExp), the Bernoulli-Log-normal (BernLogNorm), the Bernoulli-Gamma (BernGamma)
and the Bernoulli-Weibull (BernWeibull) distributions. Equations: parametric transformations. QUANT: statistical transformations based on
empirical quantiles. SSPLINE: statistical transformation using a smoothing spline.
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5 Performance

The MAE for all stations and all methods under consider-
ation is shown in Fig.2. For the uncorrected model output
MAE has pronounced geographic variations. The largest er-
rors are found along the west coast, where the model cannot
resolve the orographic effect on precipitation with sufficient
detail. Most methods reduce the error and even out some
of its spatial variability. An exception is the transformation
based on the Bernoulli-Log-normal distribution, which does
not lead to any visible improvements. The largest improve-
ments are achieved by parametric and nonparametric trans-
formations, especially along the west coast.

The MAE and MAE0.1, MAE0.2, . . ., MAE1.0 averaged
over all stations are shown in Fig.3. Most methods reduce
both the total MAE as well as the MAE for the percentile in-
tervals. The absolute improvements are in most cases largest
for the upper part of the CDF (p ≥ 0.5). Note however, that
two of the distribution derived transformations (Bernoulli-
Exponential and Bernoulli-Log-normal) increase the error
for the most extreme values. In the lower part of the CDF,
the absolute improvements are generally smaller, owing to
the small (often zero) precipitation rates.

Figure4 shows the ranking of the methods, based on the
mean of the relative error (black dots). The hollow sym-
bols show the relative errors for the total MAE and MAE0.1,
MAE0.2, . . ., MAE1.0. The two nonparametric methods
SSPLINE and QUANT have on average the best skill in re-
ducing systematic errors, also for very high (extreme) per-
centiles, being in line with other studies (Themeßl et al.,

2011; Teutschbein and Seibert, 2012). The success of the
nonparametric transformations is likely related to their flexi-
bility as they do not rely on any predetermined function. This
flexibility allows good fits to any quantile–quantile relation.
As for all highly adaptable methods with many degrees of
freedom, over fitting may be a concern. Recall, however, that
all scores are estimated using cross-validation, and that the
estimated model error is independent from the data used for
calibration. This suggests that over fitting is no major prob-
lem if there are sufficient data. Nevertheless, over fitting may
be an issue if the nonparametric transformations are cali-
brated using small data samples, i.e. time series that cover
only a short period. Similarly it cannot be ruled out that the
methods perform badly if the projected climatic conditions
differ substantially from the calibration period.

The large spread in performance of parametric transforma-
tions is likely related to the flexibility of the different func-
tions. Parametric transformations with three or more free pa-
rameters (Eqs.6 and7) are almost as efficient as their non-
parametric counterparts. Transformations with less flexibil-
ity, in particular the simple scaling function (Eq.3), do have
worse performance.

The distribution derived transformations rank on average
lowest. The best ranking distribution derived transformation
is based on the Bernoulli-Weibull distribution. The transfor-
mation derived from the Bernoulli-Log-normal distribution
has the lowest performance of all considered methods. Note
also that all distribution derived transformations have par-
ticularly low performance with respect to the extreme part
of the distribution. The low performance of distribution de-
rived transformation may seem somewhat surprising, given
the theoretical elegance of this approach. This is likely re-
lated to the fact that the parameters of the distributions are
identified forPo andPm separately, which enables good ap-
proximations of the distributions ofPo andPm but does not
necessarily optimise the statistical transformation as defined
in Eq. (1).

6 Possible limitations of statistical transformations for
post-processing RCM putput

Prior to application of statistical transformations and related
post processing methods it is important to recall that these
techniques are designed with a limited scope: to adjust the
simulated climate variable such that its distribution (or some
aspects of it) matches the distribution of observed values. If
applied in climate impact assessment it is then subsequently
assumed that the difference between model output and ob-
servations is stationary, i.e. that the same corrections are ap-
plicable in future climates. The validity of this assumption
cannot be fully assessed, as the variable of interest may ex-
ceed the observed range in a changing climate. However, the
results of performance assessments using cross-validation,
in this and in other studies (Themeßl et al., 2012, 2011),
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Fig. 4. Performance ranking of statistical transformations used for post-processing RCM output. Relative error (hollow symbols) is defined
as the MAE of each method divided by the MAE of the uncorrected model output. The mean relative error (black dots) is used to rank the
different methods.

indicate the stability of the methods. Further, numerical ex-
periments on the global scale have shown that uncertainty re-
lated to the choice of calibration period is small compared to
uncertainties related to choice of climate model and emission
scenario (Chen et al., 2011a).

A related concern is the impact of post processing tech-
niques on the climate change signal. Empirical investigations
indicate that the impact of statistical transformations on the
projected changes in mean conditions is comparably small
but may systematically alter changes in nonlinearly derived
measures, including characteristics of extreme events (The-
meßl et al., 2011). Similarly statistical transformations and
other bias correction techniques may have side effects on
further statistical properties even if they are not explicitly de-
signed to change these. Examples include changes in the am-
plitude of low frequency variability (Haerter et al., 2011) or
the modification of measures characterising temporal persis-
tence (Johnson and Sharma, 2012, 2011). However, whether
these side effects are considered to be beneficial (correction
of higher order properties), adverse (introduction of artifacts)
or neutral (e.g. if only mean values are of interest) depends
on particular applications and has to be evaluated on a case
to case basis.

7 Conclusions

The three approaches using statistical transformation to post-
process RCM output that were assessed in this paper differ
substantially with respect to their underlying assumptions,
despite the fact that they are all designed to transform RCM
output such that its empirical distribution matches the distri-
bution of observed values. A real-world evaluation of a wide
range of statistical transformations showed that most of them
are capable to remove biases in RCM precipitation. Despite
this overall success, it was also demonstrated that the per-
formance of the methods differ substantially. Therefore, we

stress that these techniques should not be applied without
checking their suitability for the data under consideration.
The methods with the best skill in reducing biases from RCM
precipitation through the entire range of the distribution are
all classified as nonparametric transformations. These have
the additional advantage that they can be applied without spe-
cific assumptions about the distribution of the data and are
thus recommended for most applications of statistical bias
correction.

Appendix A

Note on terminology

Throughout the preparation of this article issues concern-
ing the terminology have been raised. Among the terms
used for the presented techniques are “quantile mapping”,
“quantile matching”, “cumulative distribution function (cdf)
matching”, “quantile–quantile transformation”, “histogram
equalisation or matching”, “probability mapping”, distribu-
tion mapping (see e.g.Maraun et al., 2010; Teutschbein and
Seibert, 2012). In most instances these terms are used to
refer to distribution derived transformations (Sect.2.1) and
nonparametric transformations (Sect.2.3). However, some of
these terms (“quantile mapping”, “histogram equalisation or
matching”) have also been used to refer to parametric trans-
formations as defined in Sect.2.2(Piani et al., 2010b), caus-
ing some ambiguity regarding the proper nomenclature. Fur-
ther, “statistical bias correction” (Piani et al., 2010a,b), “di-
rect error correction methods” (Themeßl et al., 2011) and
“model output statistics (MOS)” (Maraun et al., 2010) have
been used to refer to the methods under investigation. Un-
fortunately, this large variety in terminology can lead to mis-
apprehensions regarding the actually used methods. There-
fore, the more technical term “statistical transformation” was
used in this study to emphasise the common objective of
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the presented techniques without interfering with previously
used terminology.

Acknowledgements.This research was co-funded by the MIST
project, a collaboration between the hydro-power company
Statkraft and the Norwegian Meteorological Institute.

Edited by: J. Seibert

References

Angus, J. E.: The Probability Integral Transform and Related Re-
sults, SIAM Review, 36, 652–654, 1994.

Ashfaq, M., Bowling, L. C., Cherkauer, K., Pal, J. S., and Diffen-
baugh, N. S.: Influence of climate model biases and daily-scale
temperature and precipitation events on hydrological impacts as-
sessment: A case study of the United States, J. Geophys. Res.,
115, D14116,doi:10.1029/2009JD012965, 2010.
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