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In a dynamic pricing problem where the demand function is not known a priori, price experimentation can

be used as a demand learning tool. Existing literature usually assumes no constraint on price changes, but in

practice sellers often face business constraints that prevent them from conducting extensive experimentation.

We consider a dynamic pricing model where the demand function is unknown but belongs to a known finite

set. The seller is allowed to make at most m price changes during T periods. The objective is to minimize

the worst case regret, i.e. the expected total revenue loss compared to a clairvoyant who knows the demand

distribution in advance. We demonstrate a pricing policy that incurs a regret of O(log(m) T ), or m iterations

of the logarithm. We further show that this regret is the smallest possible up to a constant factor. Our analysis

provides important structural insights into optimal pricing strategies. Finally, we describe an implementation

at Groupon, a large e-commerce marketplace for daily deals. The field study shows significant impact on

revenue and market share.

Key words : revenue management, dynamic pricing, learning-earning trade-off, price experimentation

1. Introduction

Groupon is a large e-commerce marketplace where customers can purchase discount deals from

local merchants such as restaurants, spas and house cleaning services. The revenue from selling

deals is split between local merchants and Groupon. Every day, thousands of new deals are launched

on Groupon’s website globally. Groupon is faced with high level of demand uncertainty mainly

because newly launched deals have no previous sales data that can be used for demand forecasting.
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This challenge presents an opportunity for Groupon to learn about customer demand using real

time sales data after deals have been launched so as to obtain more accurate demand estimation.

In general, when the underlying relationship between demand and price is unknown a priori,

price experimentation can be used for demand learning. In this paper, we consider a dynamic

pricing model where the exact demand function is unknown but belongs to a finite set of possible

demand functions, or demand hypotheses. The seller faces an exploration-exploitation tradeoff

between actively adjusting price to gather demand information and optimizing price for revenue

maximization.

Dynamic pricing under a finite set of demand hypotheses has been previously considered by

Rothschild (1974) and Harrison et al. (2012). But unlike the current paper, both of these papers

focus on customized pricing, where price is changed for every arriving customer. For example,

the motivation of Harrison et al. (2012) is the pricing of financial services such as consumer and

auto loans, where sellers can quote a different interest rate for each customer. However, for many

e-commerce sellers like Groupon, charging a different price for each arriving customer is impossible

either because of implementation constraints, negative customer response, or for fear of confusing

their customers.

For example, Groupon expressed a preference to use as few price changes as possible for each

deal. Motivated by this practical business constraint on price experimentation, the model in this

paper includes an explicit constraint on the number of price changes during the sales horizon.

We quantify the impact of this constraint on the seller’s revenue using regret, defined as the gap

between the revenue of a clairvoyant who has full information on the demand function and the

revenue achieved by a seller facing unknown demand.

Our main finding is a characterization of regret as a function of the number of price changes.

When there are T periods in the sales horizon, we propose a pricing policy with at most m price

changes, whose regret is bounded by O(log(m) T ), or m iterations of the logarithm. Furthermore,

we prove that the regret of any non-anticipating pricing policy, a policy where current price does
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not depend on future demands, is lower bounded by Ω(log(m) T ). Thus, the regret bound achieved

by the proposed pricing policy is tight up to a constant factor.

A natural question is how frequently one needs to change price to achieve a constant regret.

Harrison et al. (2012) shows that a semi-myopic policy can achieve a constant regret, but the policy

requires changing price for every time period. To answer this question, we show that a modified

version of our algorithm with no more than O(log∗ T ) price changes, where log∗ T is the smallest

number m such that log(m) T ≤ 1, achieves a constant regret. Interestingly, while the value log∗ T

is unbounded when T increases, the growth rate is extremely slow. For example, if the number of

time periods T is less than 3,000,000, we have log∗ T ≤ 3.

This characterization of the regret bound has two important implications. First, imposing a price

change constraint always incurs a cost on revenue, since the seller cannot achieve a constant regret

using any finite number of price changes. Second, the incremental effect of price changes decreases

quickly. The first price change reduces regret from O(T ) to O(logT ); each additional price change

thereafter compounds a logarithm to the order of regret. As a result, the first few price changes

generate most of the benefit of dynamic pricing.

Motivated by these results, we implemented a pricing strategy at Groupon where each deal can

have at most one price change. The results from a field experiment show significant improvement

in revenue.

The remainder of this paper is organized as follows. In Section 2, we review related literature.

In Section 3, we define the mathematical model of the learning and pricing problem. The main

theoretical results on the regret bound as a function of the number of price changes are presented

in Section 4. Section 5 reports the implementation results at Groupon. Finally, we summarize in

Section 6 with some concluding remarks.

2. Related Literature

Joint learning-and-pricing problems have received extensive research attention over the last decade.

Recent surveys by Aviv and Vulcano (2012) and den Boer (2015) provide a comprehensive overview
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of this area. Some papers that consider price experimentation for learning demand curves include

Besbes and Zeevi (2009), Boyacı and Özer (2010), Wang et al. (2014) and Besbes and Zeevi (2015).

These problems typically focus on the tradeoffs between learning and earning, which is closely

related to the multi-armed bandit literature (e.g. Kleinberg and Leighton 2003, Mersereau et al.

2009, Rusmevichientong and Tsitsiklis 2010).

Recently, a stream of papers focuses on semi-myopic pricing policies using various learning

methods. Examples include maximum likelihood estimation (Broder and Rusmevichientong 2012),

Bayesian methods (Harrison et al. 2012), maximum quasi-likelihood estimation (den Boer and

Zwart 2014, den Boer 2014) and iterative least-squares estimation (Keskin and Zeevi 2014).

Unlike the current paper, all the literature mentioned above does not assume any constraint

on price experimentation. In the dynamic pricing literature with complete demand information,

several papers consider limitation on price changes, e.g. Feng and Gallego (1995), Bitran and

Mondschein (1997), Netessine (2006) and Chen et al. (2015). Caro and Gallien (2012) reports that

the fashion retailer Zara uses a clearance pricing policy with a pre-determined price set, which

essentially allows for only a limited number of mark-down prices. Finally, Zbaracki et al. (2004)

provide empirical results on the cost of price changes.

To the best of our knowledge, the only work that considers price-changing constraints in an

unknown demand setting is Broder (2011). The author assumes that the demand function belongs

to a known family, e.g. linear, but has unknown parameters. He shows that in order to achieve

the optimal regret, a pricing policy needs at least Θ(logT ) price changes. However, the result only

applies to a restricted class of policies where the seller cannot use any knowledge of T .

Our model is different than the model by Broder (2011) in the following aspects. First, we assume

finite demand hypotheses, while Broder (2011) assumes a parametric family of demand functions.

This is a fundamental difference because the optimal regret in Broder’s case is Θ(
√
T ), while in

our case the regret can be bounded by a constant. Second, we do not assume a restricted class

of policies as in Broder (2011), and our results hold for any pricing policies. Last but not least,
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unlike Broder (2011) where the number of price changes is an output from the model, we design

a pricing algorithm that accepts the number of price changes as an input and achieves the best

possible regret bound, under that constraint.

3. Problem Formulation

We consider a seller offering a single product with unlimited supply for T periods. The set of

allowable prices is denoted by P. In the tth period (t= 1, . . . , T ), the seller offers a unit price Pt ∈P,

and observes a random customer demand Xt, i.e. the number of units purchased by customers.

Given Pt = p, the distribution of Xt is solely determined by price p and is independent of previous

sales history X1, . . . ,Xt−1. We use D(p)∼Xt to denote a random variable distributed as Xt given

Pt = p. The corresponding mean demand function d :P →R+ is defined as d(p) =E[D(p)].

The distribution of D(p) is unknown to the seller. However, the seller knows that the distribution

belongs to a finite set of demand models, or demand distributions as a function of p. The demand

models are indexed by i= 1, . . . ,K. Let Pi(·) and Ei(·) be the probability measure and expectation

under demand model i. In particular, the mean demand function d(p) belongs to a finite set of

K demand functions, denoted by Φ = {d1(p), . . . , dK(p)}, where di(p) =Ei[D(p)]. For each demand

function di ∈ Φ, (i= 1, . . . ,K), the expected revenue per period is ri(p) = pdi(p). We also denote

the optimal revenue for demand function di by r∗i = maxp∈P ri(p) and an optimal price by p∗i ∈

arg maxp∈P ri(p). The seller does not necessarily know the distribution of demand model i apart

from the mean di(p).

For all p ∈ P and i = 1, . . . ,K, the probability distribution of D(p) is assumed to be light-

tailed with parameters (σ, b), where σ, b > 0. That is, we have Ei[eλ(D(p)−di(p))] ≤ exp(λ2σ2/2) for

all |λ|< 1/b. Note that the class of light-tailed distributions includes sub-Gaussian distributions.

Some common light-tailed distributions include normal, Poisson and Gamma distributions, as well

as all distributions with bounded support, such as binomial and uniform distributions.

3.1. Pricing Policies

We say π is a non-anticipating pricing policy if the price Pt offered at period t is determined by the

realized demand (X1, . . . ,Xt−1) and previous prices (P1, . . . , Pt−1), but does not depend on future
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demand. For i= 1, . . . ,K, let Pπi (·) and Eπi (·) be the probability measure and expectation induced

by policy π if the underlying demand model is i. In this case, the seller’s expected revenue in T

periods under policy π is given by

Rπ
i (T ) =Eπi

[
T∑
t=1

PtXt

]
=Eπi

[
T∑
t=1

PtEπi [Xt | Pt]

]
=Eπi

[
T∑
t=1

ri(Pt)

]
. (1)

As discussed in the introduction, the seller faces a constraint on the number of price changes in

many pricing applications. Specifically, we assume that the seller can make at most m changes to

the price over the course of the sales event, where m is a fixed integer. So a feasible policy π should

satisfy the following condition:

Pπi

(
T∑
t=2

I(Pt 6= Pt−1)≤m

)
= 1, ∀i= 1, . . . ,K,

where I(·) is the indicator function. We refer to a policy with at most m price changes as an

m-change policy.

The performance of pricing policies is measured against the optimal policy in the full information

case. If the true demand is di, then a clairvoyant with full knowledge of the demand function would

offer price p∗i and obtain expected revenue r∗i for every period. The regret with respect to demand

di is defined as the gap between the expected revenue achieved by the clairvoyant and the one

achieved by policy π, namely

Regretπi (T ) = Tr∗i −Rπ
i (T ) =Eπi

[
T∑
t=1

(r∗i − ri(Pt))

]
. (2)

Finally, we define the (minimax) regret for the demand set, Φ = {d1, . . . , dK}, as

RegretπΦ(T ) = max
i=1,...,K

Regretπi (T ).

When there is no ambiguity of which policy we are referring to, we suppress the superscript “π”

in the notation for clarity, so E1 :=Eπ1 , P1 := Pπ1 .
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3.2. Notations

We use log(m) T to represent m iterations of the logarithm, log(log(. . . log(T ))), where m is the

number of price changes. For convenience, we let log(x) = 0 for all 0≤ x< 1, so the value of log(m) T

is defined for all T ≥ 1. Similarly, we define e(0) := 1 and e(`) := exp(e(`−1)) for `≥ 1. As mentioned

in the introduction, log∗ T denotes the smallest nonnegative integer m such that log(m) T ≤ 1. For

any real number x, dxe denotes the minimum integer greater than or equal to x, and for any

finite set S, |S| is the cardinality of S. We sometimes use the abbreviations a ∨ b = max{a, b},

a∧ b= min{a, b}.

4. Main Results: Upper and Lower Bounds on Regret

In this section we prove the main results of the paper: an upper bound and a lower bound on regret

as a function of the number of price changes. We first design a non-anticipating pricing policy that

changes price m times and achieves a regret of O(log(m) T ). Then, we show that the regret of any

non-anticipating policy with at most m price changes is at least Ω(log(m) T ). Thus, our proposed

pricing policy achieves the optimal regret bounds up to a constant factor.

4.1. Upper Bound

We propose a policy mPC (which stands for “m-price change”) that achieves a regret of O(log(m) T )

with at most m price changes. An important feature of policy mPC is that it applies a discriminative

price for every period. A price p is discriminative if the values d1(p), · · · , dK(p) are mutually distinct.

We make the following assumption on the set of demand functions Φ:

Assumption 1. For all di ∈Φ = {d1, · · · , dK}, there exists a corresponding revenue-optimal price

p∗i ∈ argmaxp∈Pri(p) such that p∗i is a discriminative price for Φ, that is, d1(p∗i ), · · · , dK(p∗i ) are

distinct. Moreover, such price p∗i can be efficiently computed.

Assumption 1 ensures that the seller is able to learn the underlying demand curve while maxi-

mizing its revenue for any given demand function di ∈Φ. In fact, as we demonstrate in Section 4.4,
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Algorithm 1 m-change policy mPC

1: INPUT:

• A set of demand functions Φ = {d1, · · · , dK}.

• A discriminative price P ∗0 .

2: (Learning) Set τ0 = 0.

3: for `= 0, · · · ,m− 1 do

4: if log(m−`) T = 0 then

5: Set τl+1 = 0 and P ∗`+1 = P ∗` .

6: else

7: From period τ` + 1 to τ`+1 := τ` +
⌈
MΦ(P ∗` ) log(m−`) T

⌉
, set the offered price as P ∗` .

8: At the end of period τ`+1, compute the sample mean X̄` from period τ` + 1 to τ`+1:

X̄` :=

∑τ`+1
j=τ`+1Xj

τ`+1− τ`
, where Xj = Number of items sold in period j.

9: Choose an index i` ∈ {1, · · · ,K} which solves

min
i∈{1,··· ,K}

∣∣X̄`− di(P ∗` )
∣∣ .

10: Set the next offered price as P ∗`+1 = p∗i` , where p∗i` is the optimal price for demand di` .

11: end if

12: end for

13: (Earning) From period τm + 1 to period τm+1 = T , set the selling price as Pm.

this condition turns out to be both sufficient and necessary for achieving regret bound better than

o(logT ).

Algorithm 1 describes our mPC policy. The policy partitions the finite time horizon 1, · · · , T into

m+ 1 phases. For each 0 ≤ ` ≤m, a single price P ∗` is offered through Phase `, which starts at

period τ` + 1 and ends at τ`+1. Phase 0 to Phase m− 1 are called the learning phases, and Phase

m is referred to as the earning phase. Except for a constant factor MΦ(P ∗` ), which is to be defined
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later, the lengths of phases are exponentially increasing, which ensures an optimal balance between

exploration and exploitation.

At the end of learning phase `, policy mPC computes the sample mean X̄` of the sales under price

P ∗` (in line 8 of the algorithm). Since price P ∗` is discriminative, the seller gains new information

about the underlying demand in this learning phase. She then updates her belief on the true

demand distribution to be di`+1
(in line 9), and sets the offered price P ∗`+1 to be p∗i`+1

in the next

phase. In going through all the learning phases, the seller progressively refines her estimate on the

optimal price, which enables her to establish the choice of optimal price in the earning phase.

The function MΦ(P ) in line (7) of the mPC algorithm is defined as follows.

Definition 1. Let p∈P be a discriminative price. We define MΦ(p) as

MΦ(p) :=
16σ2

mini 6=j (di(p)− dj(p))2 ∨
8b

mini 6=j |di(p)− dj(p)|
, (3)

where the minimum is taken over distinct pairs of indices i, j ∈ {1, · · · ,K}.

Since we assume that p is a discriminative price, MΦ(p) is well defined. The function MΦ(p)

measures the distinguishability of the demand functions d1, · · · , dk under the discriminative price

p. We explain the definition of MΦ(p) further in the analysis of mPC.

Define M∗
Φ = maxi∈{1,··· ,K}MΦ(p∗i ) and r∗ = maxi∈{1,··· ,K} r

∗
i . The following result shows that the

regret of mPC is bounded by O(log(m) T ).

Theorem 1. Suppose the demand set Φ satisfies Assumption 1. For all T ≥ 1, the regret of mPC

is bounded by

RegretmPC
Φ (T )≤CΦ(P ∗0 )max{log(m) T,1}+ 4(M∗

Φ + 1)r∗,

where CΦ(P ∗0 ) = maxi∈{1,··· ,K}{MΦ(P ∗0 )(r∗i − ri(P ∗0 ))}.

Proof Idea of Theorem 1. In the proof, we establish that the regret incurred in Phase 0 is

O(log(m) T ), and the cumulative regret incurred in the remaining phases is O(1). At the beginning

of Phase 0, which is also the beginning of the sale horizon, the seller has no information on the
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optimal price. Thus, the regret during Phase 0 is proportional to the length of Phase 0. However,

in each of the subsequent phases, the seller can choose a price based on the previous sale history.

By choosing the lengths of the subsequent phases appropriately, we ensure that the total regret in

these phases is O(1).

Proof of Theorem 1. Suppose d1 is the underlying demand function. The regret under demand

d1 can be decomposed as

RegretmPC
1 (T ) =E1

[
T∑
t=1

(r∗1 − r1(Pt))

]
=

m∑
`=0

E1

[ τ`+1∑
t=τ`+1

(r∗1 − r1(Pt))

]
.

We first consider the case where log(m) T > 0. By definition, τ1 =
⌈
MΦ(P ∗0 ) log(m) T

⌉
, so the regret

during Phase 0 is equal to

E1

[
τ1∑
t=1

(r∗1 − r1(Pt))

]
=
⌈
MΦ(P ∗0 ) log(m) T

⌉
(r∗1 − r1(P ∗0 )). (4)

Next, we show that for each 1≤ `≤m, the regret during Phase ` is bounded by

E1

[ τ`+1∑
t=τ`+1

(r∗1 − r1(Pt))

]
≤ 2M∗

Φr
∗
1

log(m−`) T
+

2r∗1
(logm−` T )2

, (5)

where M∗
Φ = maxi∈{1,··· ,K}MΦ(p∗i ).

For 1≤ `≤m, the regret during Phase ` satisfies the following bound:

E1

[ τ`+1∑
t=τ`+1

(r∗1 − r1(Pt))

]

=E1 [(τ`+1− τ`)× (r∗1 − r1(P ∗` ))]

≤E1

[(
MΦ(P ∗` ) log(m−`) T + 1

)
× (r∗1 − r1(P ∗` ))

]
≤
(
M∗

Φ log(m−`) T + 1
) K∑
i=1

(r∗1 − r1(p∗i ))×P1(P ∗` = p∗i ) (6)

≤
(
M∗

Φ log(m−`) T + 1
)
r∗1 ×

K∑
i=2

P1(P ∗` = p∗i ).

In the above calculation, the expectation is taken on the price offered in Phase `, P ∗` , which is a

random variable depending on the realized demand in phases 0, · · · , `− 1. In equation (6), we use

the fact that for all `= 1, · · · ,m, the offered price P ∗` ∈ {p∗1, · · · , p∗K} (see line 10 of mPC).
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To complete the proof of inequality (5), we prove the following inequality:

K∑
i=2

P1(P ∗` = p∗i )≤
2

(log(m−`) T )2
. (7)

By the definition of mPC, the choice of price P ∗` is determined by the sample mean X̄`−1 in

Phase `− 1, so we have

K∑
i=2

P1(P ∗` = p∗i ) = P1

(
|X̄`−1− d1(P ∗`−1)| ≥ |X̄`−1− di(P ∗`−1)| for some i 6= 1

)
.

Now, if |X̄`−1− d1(P ∗` )| ≥ |X̄`−1− di(P ∗` )| for some i 6= 1, we have

|X̄`−1− d1(P ∗`−1)| ≥ 1

2

(
|X̄`−1− di(P ∗`−1)|+ |X̄`−1− d1(P ∗`−1)|

)
≥ 1

2
|di(P ∗`−1)− d1(P ∗`−1)|,

where the last step uses the triangle inequality. This results in the following bound:

K∑
i=2

P1(P ∗` = p∗i )≤ P1

(∣∣X̄`−1− d1(P ∗`−1)
∣∣≥ 1

2
min
i 6=1

∣∣d1(P ∗`−1)− di(P ∗`−1)
∣∣) . (8)

Given price P ∗`−1, sample mean X̄`−1 is the average of i.i.d. random variables with mean d1(P`−1).

Because demand in each period is lighted-tailed with parameters (σ, b), we can apply the Chernoff

inequality: conditioning on P ∗`−1, for any ε > 0, it holds that

P1

(
|X̄`−1− d1(P ∗`−1)| ≥ ε

∣∣P ∗`−1

)
≤ 2exp

(
−(τ`− τ`−1)

( ε2
2σ2
∧ ε

2b

))
.

Let ε= 1
2

mini 6=1

∣∣d1(P ∗`−1)− di(P ∗`−1)
∣∣. Because τ`− τ`−1 =

⌈
MΦ(P ∗`−1) log(m−`+1) T

⌉
, we have

P1

(∣∣X̄`−1− d1(P ∗`−1)
∣∣≥ 1

2
min
i 6=1

∣∣d1(P ∗`−1)− di(P ∗`−1)
∣∣∣∣∣∣P ∗`−1

)
≤2E1

[
exp

(
−
⌈
MΦ(P ∗`−1) log(m−`+1) T

⌉( ε2
2σ2
∧ ε

2b

))∣∣∣∣P ∗`−1

]
≤2E1

[
exp

(
−MΦ(P ∗`−1) log(m−`+1) T

( ε2
2σ2
∧ ε

2b

))∣∣∣∣P ∗`−1

]
≤2E1

[
exp

(
−2 log(m−`+1) T

)∣∣∣P ∗`−1

]
(9)

=
2(

log(m−`) T
)2 ,
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where step (9) uses the definition

MΦ(P ∗`−1) = 2×

(
2σ2

1
4

mini 6=j
(
di(P ∗`−1)− dj(P ∗`−1)

)2 ∨
2b

1
2

mini 6=j
∣∣di(P ∗`−1)− dj(P ∗`−1)

∣∣
)
.

By integrating over the realizations of P ∗`−1 in the above bound, we have established inequality (7),

which in turn proves (5).

Combining equations (4) and (5), we can prove the regret bound on mPC under demand d1 as

follows:

RegretmPC
1 (T ) =E1

[
τ1∑
t=1

(r∗1 − r1(Pt))

]
+

m∑
`=1

E1

[ τ`+1∑
t=τ`+1

(r∗1 − r1(Pt))

]

≤
(
MΦ(P ∗0 ) log(m) T + 1

)
(r∗1 − r1(P ∗0 )) +

m∑
`=1

(
2M∗

Φr
∗
1

log(m−`) T
+

2r∗1

(log(m−`) T )2

)
.

Since log(m) T > 0, it is easily verified that log(m−`) T ≥ e`−1 for all `≥ 1, so

m∑
`=1

1

log(m−`) T
≤
∞∑
`=1

1

e`−1
≤ 2,

m∑
`=1

1

(log(m−`) T )2
≤
∞∑
`=1

1

e2`−2
≤ 3

2
.

Therefore,

RegretmPC
1 (T )≤

(
MΦ(P ∗0 ) log(m) T + 1

)
(r∗1 − r1(P ∗0 )) + 4M∗

Φr
∗
1 + 3r∗1

≤MΦ(P ∗0 )(r∗1 − r1(P ∗0 )) log(m) T + 4M∗
Φr
∗
1 + 4r∗1 .

The minimax regret of demand set Φ is bounded by

RegretmPC
Φ (T ) = max

i=1,...,K
RegretmPC

i (T )≤CΦ(P ∗0 ) log(m) T + 4M∗
Φr
∗+ 4r∗,

where CΦ(P ∗0 ) = maxi∈{1,··· ,K}{MΦ(P ∗0 )(r∗i − ri(P ∗0 ))} and r∗ = maxi∈{1,··· ,K} r
∗
i .

If log(m) T = 0, let m′ ≤m be the largest integer such that log(m′) T > 0. Clearly, log(m′) T ≤ 1.

In this case, policy mPC applied to T periods uses only m′ price changes, so

RegretmPC
Φ (T )≤CΦ(P ∗0 ) log(m′) T + 4M∗

Φr
∗+ 4r∗ ≤CΦ(P ∗0 ) + 4M∗

Φr
∗+ 4r∗.

Combining both cases for log(m) T > 0 and log(m) T = 0, we have

RegretmPC
Φ (T )≤CΦ(P ∗0 )max{log(m) T,1}+ 4M∗

Φr
∗+ 4r∗.

�
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Remark 1. In Phase 0, the discriminative price P ∗0 is given as a input. One can further reduce

the regret bound by choosing a discriminative price P ∗0 which minimizes the regret during Phase

0, namely CΦ(P ∗0 ).

Remark 2. In line (9) of Algorithm 1, the test to select a demand function i` is a simple com-

parison between the sample mean X̄` and the mean demand function value di(P
∗
` ). Therefore, the

algorithm does not require the seller to know the demand distributions for each demand model.

Nevertheless, if the seller does know the demand distribution, line (9) can be replaced by other

selection criteria, such as a likelihood ratio test.

Remark 3. The proof shows that in the special case of m= 1, Assumption 1 is not required for

Theorem 1. We only require that the initial price P ∗0 is discriminative.

4.2. Lower Bound

We show next that for a family of problem instances, any m-change policy incurs a regret of

Ω(log(m) T ). Thus, the regret achieved by the m-change policy mPC is optimal up to a constant

factor.

Consider a problem instance (Γ) that satisfies the following conditions:

1. There exists a constant QΓ > 0, such that
∑K

i=1(r∗i − ri(p))≥QΓ for all p∈P.

2. The demand D(p)∈N for any price p∈P.

3. Given p ∈ P, there exists a subset Bp ⊂N, such that for all i, Pi(D(p) = d)> 0 if and only if

d∈Bp.

4. There exists a constant 0 < κΓ < 1, such that Pi(D(p) = d)/Pj(D(p) = d) ≥ κΓ for all i, j ∈

{1, . . . ,K}, p∈P, d∈Bp.

The first condition states that there is no price p ∈ P that simultaneously maximizes the revenue

of all demand functions in Φ. This ensures that the problem instance is nontrivial and a learning

process is necessary for maximizing the revenue when the demand function is unknown. The second

condition is that demand must be integers. The third condition states that all demand functions
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have the same support for a given price. The fourth condition states that the ratios of probability

mass functions of different demand models are bounded.

The key step in the proof of the lower bound theorem is to quantify the performance of a pricing

policy under different demand functions. This is made precise by following lemma.

Lemma 1 (Change-of-Measure Lemma). Let Ht = (P1,X1, · · · , Pt,Xt) be the history observed

by the end of period t, and let ht be a realization of Ht. For any non-anticipating pricing policy π,

we have

Pπi (Ht = ht)≥ κtΓPπi′(Ht = ht),

for all i, i′ ∈ {1, . . . ,K}. The constant κΓ is defined in the condition (Γ).

The proof of Lemma 1 can be found in Appendix A.1.

The regret lower bound of any m-change policy is formally stated in the following.

Theorem 2 (Lower Bound Theorem). For any m-change policy π on problem instance Γ,

there exists a constant θm > 0 such that for any T > θm, we have

RegretπΦ(T )≥ 1

K
CΓQΓ log(m) T,

where CΓ := (−8 logκΓ)−1 ∧ 1 and QΓ is given by the first condition of (Γ).

Proof Idea of Theorem 2. We consider the time period τ when the first price change occurs, and

compare it with CΓ log(m) T . If τ > CΓ log(m) T , the seller spends at least CΓ log(m) T periods on

learning with price P1, which is determined without any observation. This implies that the seller

must incur a regret of at least Ω(log(m) T ). Otherwise, if we have τ ≤ CΓ log(m) T , we argue that

the seller has not extracted enough information about the underlying demand function, using the

Change-of-Measure Lemma. In addition, the seller can perform at most m− 1 price changes after

CΓ log(m) T periods. It turns out that these two facts cause the seller to incur a regret of at least

Ω(log(m) T ).
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Proof of Theorem 2. Without loss of generality, we restrict π to be a deterministic policy, since

the regret of a randomized policy is the expectation of the regret of corresponding determin-

istic policies. In other words, we restrict price Pt to be a deterministic function of the history

(P1,X1, . . . , Pt−1,Xt−1).

We prove the theorem by establishing the following induction claim.

Induction Claim-(m) There exists θm > 0 such that for any m-change policy π and any

T > θm, we have
K∑
i=1

Regretπi (T )≥CΓQΓ log(m) T,

where CΓ := (−8 logκΓ)−1 ∧ 1 and QΓ is given by the first condition of (Γ).

Note that the constants CΓ,QΓ are independent of the time horizon T , the number of price

changes m, and the choice of pricing policy π. If the induction claim is established for all m≥ 0,

the theorem is easily proved since we have

RegretπΦ(T ) = max
i=1,...,K

Regretπi (T )≥ 1

K

K∑
i=1

Regretπi (T )≥ 1

K
CΓQΓ log(m) T.

Basic induction hypothesis m= 0. In this case, the seller must use a fixed price throughout

the sales horizon, i.e., Pt = P1 for all t= 1, . . . , T . By the first condition of (Γ), the regret of any

0-change policy π is at least

K∑
i=1

Regretπi (T ) =
K∑
i=1

T∑
t=1

∆i(P1) =
T∑
t=1

(
K∑
i=1

∆i(P1)

)
≥QΓT ≥CΓQΓT,

where ∆i(P1) = r∗i − ri(P1). This proves the case for m= 0 by setting θ0 = 0.

Induction step. For some m > 0, suppose the induction claim is true for m− 1. We prove

that the induction claim is also true for m. Without loss of generality, we assume log(m) T > 0,

otherwise the induction claim trivially holds. For a given m-change policy π, let τ be the time

period when the first price change occurs, i.e., τ = min1≤t≤T{t : Pt 6= Pt−1}. Let Tm = dCΓ log(m) T e,

where CΓ = (−8 logκΓ)−1∧1. Note that the constant κΓ ∈ (0,1), so CΓ > 0. We use L to denote the

event L= {τ > Tm}.
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We decompose the regret RegretπΦ(T ) and bound it from below as follows:

K∑
i=1

Regretπi (T ) =
K∑
i=1

Ei

[
T∑
t=1

∆i(Pt)

]

=
K∑
i=1

Ei

[
T∑
t=1

∆i(Pt)

∣∣∣∣∣L
]
Pi(L) +

K∑
i=1

Ei

[
T∑
t=1

∆i(Pt)

∣∣∣∣∣LC
]
Pi(LC)

≥
K∑
i=1

Ei

[
Tm∑
t=1

∆i(Pt)

∣∣∣∣∣L
]
Pi(L)︸ ︷︷ ︸

(†)

+
K∑
i=1

Ei

[
T∑

Tm+1

∆i(Pt)

∣∣∣∣∣LC
]
Pi(LC)︸ ︷︷ ︸

(‡)

.

Consider the regret term (†). Conditioned on the event L, the first price change only occurs after

the T th
m period. Thus, we have Pt = P1 for all 1≤ t≤ Tm, and the term (†) can bounded by

(†)≥
K∑
i=1

CΓ log(m)(T )∆i(P1)Pi(L). (10)

Next, we analyze the regret term (‡). Recall that Ht = (P1,X1, · · · , Pt,Xt) is the history observed

by the seller at the end of period t, and let ht be a specific realization of Ht. We define the set

H∆
m = {hTm = (P1,X1, · · · , PTm ,XTm) : Ps 6= Ps+1 for some 1≤ s≤ Tm− 1}

as the set of history for which a price change occurs before period Tm. By the definition, we have

Pi(LC) = Pi(HTm ∈H∆
m).

Thus, term (‡) is bounded by

(‡) =
K∑
i=1

Ei

[
T∑

t=Tm+1

∆i(Pt)

∣∣∣∣∣LC
]
Pi(LC)

=
K∑
i=1

Ei

[
T∑

t=Tm+1

∆i(Pt)

∣∣∣∣∣LC
]
Pi(HTm ∈H∆

m)

=
K∑
i=1

∑
hTm∈H∆

m

Ei

[
T∑

t=Tm+1

∆i(Pt)

∣∣∣∣∣HTm = hTm

]
Pi (HTm = hTm) (11)

=
K∑
i=1

∑
hTm∈H∆

m

Regret
π(hTm )

i (T −Tm)Pi (HTm = hTm) (12)

≥
K∑
i=1

∑
hTm∈H∆

m

Regret
π(hTm )

i (T −Tm)

(
κTmΓ max

ι∈{1,...,K}
Pι (HTm = hTm)

)
(13)

=
∑

hTm∈H∆
m

(
κTmΓ max

ι∈{1,...,K}
Pι (HTm = hTm)

) K∑
i=1

Regret
π(hTm )

i (T −Tm)
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In step (11), we decompose the previous expression into a summation of conditional expectations

over realized history hTm ∈H∆
m. Note that the set H∆

m is countable, since the demand Xt is integer

and the price Pt is completely determined by the previous history. In step (12), the pricing policy

π(hTm) denotes the policy adopted by the seller from period Tm+ 1 to period T , after she observes

the history hTm from period 1 to period Tm. Note that the policy π(hTm) is determined after the

history hTm is realized. Thus, the expression in (12) is a weighted sum of regret under strategies

{π(hTm), hTm ∈H∆
m}, where each regret term is weighted by the probability of the corresponding

history. Step (13) applies the Change-of-Measure Lemma.

Let θ′m−1 the threshold such that
⌈
CΓ log(m) T

⌉
≤ 2CΓ log(m) T for all T > θ′m−1. So we have

κTmΓ ≥ κ2CΓ log(m) T
Γ ≥ exp(−1

4
log(m) T )≥ exp

(
−
(

1− log(2 log(m) T )

log(m) T

)
log(m) T

)
=

2 log(m) T

log(m−1) T
.

(14)

The first inequality uses the definition of Tm, the second inequality applies the definition of CΓ,

and the third inequality uses the fact that log(2x)/x< 3/4 for all x> 0.

For all hTm ∈H∆
m, the policy π(hTm) changes price no more than m−1 times during period Tm to

period T , because at least one price change is exhausted before period Tm. Applying the induction

claim for (m− 1), we know that for all hTm ∈H∆
m, we have

K∑
i=1

Regret
π(hTm )

i (T −Tm)≥CΓQΓ log(m−1)(T −Tm)

for T such that T −Tm ≥ θm−1. Furthermore, let θ′′m−1 > 0 be a threshold such that T > Tm + θm−1

and log(m−1)(T −
⌈
CΓ log(m) T

⌉
)≥ 1

2
log(m−1) T for all T ≥ θ′′m−1. Then, for T ≥ θ′′m−1, we have:

K∑
i=1

Regret
π(hTm )

i (T −Tm)≥ 1

2
CΓQΓ log(m−1) T. (15)

Combining (14) and (15), we have the following:

(‡)≥
∑

hTm∈H∆
m

(
κTmΓ max

ι∈{1,...,K}
Pι (HTm = hTm)

) K∑
i=1

Regret
π(hTm )

i (T −Tm)

≥
∑

hTm∈H∆
m

(
2 log(m) T

log(m−1) T
max

ι∈{1,...,K}
Pι (HTm = hTm)

)
1

2
CΓQΓ log(m−1) T
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=CΓQΓ log(m) T
∑

hTm∈H∆
m

(
max

ι∈{1,...,K}
Pι (HTm = hTm)

)

≥CΓQΓ log(m) T max
ι∈{1,...,K}

∑
hTm∈H∆

m

Pι (HTm = hTm)

=CΓQΓ log(m) T max
ι∈{1,...,K}

Pι(LC). (16)

Altogether, by both (10) and (16), we have

K∑
i=1

Regretπi (T )≥ (†) + (‡)

≥
K∑
i=1

CΓ log(m)(T )∆i(P1)Pi(L) +CΓQΓ log(m) T max
ι∈{1,...,K}

Pι(LC)

≥CΓ log(m)(T )

(
1− max

ι∈{1,...,K}
Pι(LC)

) K∑
i=1

∆i(P1) +CΓQΓ log(m) T max
ι∈{1,...,K}

Pι(LC)

≥CΓ log(m)(T )

(
1− max

ι∈{1,...,K}
Pι(LC)

)
QΓ +CΓQΓ log(m) T max

ι∈{1,...,K}
Pι(LC)

=CΓQΓ log(m) T,

for all T ≥max{θ′m−1, θ
′′
m−1}. By setting θm := max{θ′m−1, θ

′′
m−1}, the induction step is established.

This completes the proof. �

Taken together, the proofs of the upper and lower bounds provide important insights into the

structure of any optimal m-change policy. With high probability, an optimal m-change policy has

m− 1 learning phases of lengths Θ(log(m) T ), · · · ,Θ(logT ). They are followed by the last phase,

which is the earning phase on the last T −Θ(logT ) time periods, see Fig 1.

Learning

Θ(log(m) T )

Θ(log(m−1) T )

Θ(logT )

Earning

T −Θ(logT )

Figure 1 The structure of an optimal m-change policy.

The lengths of the learning phases are set in a way to ensure an optimal balance between learning

and earning. If any of the learning phases is shortened significantly, such lack of learning will incur



Cheung, Simchi-Levi, and Wang: Dynamic Pricing and Demand Learning with Limited Price Experimentation 19

a large regret in the subsequent phases. In general, for each `∈ {1, · · · ,m}, if the `th learning phase

is of length o(log(m−`+1) T ), then a regret of Ω(log(m−`) T ) is incurred in the subsequent phases.

This quantifies the value of learning in any m-change policy.

4.3. Unbounded but Infrequent Price Experiments

Policy mPC defines m learning phases with exponentially increasing lengths. This motivates us to

consider a modification of mPC, which improves the regret bound to a constant. We call this mod-

ified policy uPC (which standing for “unbounded price changes”), see Algorithm 2. Although the

number of price changes under this policy is not bounded by any finite number as T increases, it

grows extremely slowly with order O(log∗ T ), where log∗ T = min{m∈Z+ : log(m) T ≤ 1}. For exam-

ple, for T ≤ 3,000,000, we have log∗ T ≤ 3. According to the Lower Bound Theorem in Section 4.2,

this is the minimum growth rate possible.

Proposition 1. Suppose Assumption 1 holds. For all T ≥ 1, the pricing policy uPC has regret

RegretuPC(T )≤CΦ(P ∗0 ) + 2(M∗
Φ + 1)r∗,

where CΦ(P ∗0 ) = maxi∈{1,··· ,K}{MΦ(P ∗0 )(r∗i − ri(P ∗0 ))}.

The proof of Proposition 1 is in Appendix A.2.

Furthermore, uPC is an anytime policy, meaning that the seller can apply uPC algorithm without

any knowledge of T . Anytime policies can be used for customized pricing. In customized pricing,

each customer arrival is modeled as a single time period, so T is the total number of customers

arrivals (see Harrison et al. 2012, Broder and Rusmevichientong 2012). Since uPC is an anytime

policy, the seller is not required to know the total number of customers arrivals.

In comparison, if the seller is only allowed to change price m times, it is impossible to achieve

the optimal regret bound O(log(m) T ) if the seller does not know T . The lower bound theorem

shows that in order to achieve the optimal regret bound, the `th price change must happen at

Θ(log(m−`+1)T ), so it is impossible to determine when to change price without knowing T .
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Algorithm 2 Policy uPC

1: INPUT:

• A set of demand functions Φ = {d1, · · · , dK}.

• A discriminative price P ∗0 .

2: Set τ0 = 0.

3: for `= 0,1, · · · do

4: From period τ` + 1 to τ`+1 := τ` +
⌈
MΦ(P ∗` )e(`)

⌉
, set the offered price as P ∗` .

5: if T ≤ τ`+1 then stop the algorithm at period T .

6: else

7: At the end of period τ`+1, compute the sample mean X̄` from period τ` + 1 to τ`+1:

X̄` :=

∑τ`+1
j=τ`+1Xj

τ`+1− τ`
, where Xj = Number of items sold in period j.

8: Choose an index i` ∈ {1, · · · ,K}, which solves

min
i∈{1,··· ,K}

∣∣X̄`− di(P ∗` )
∣∣ .

9: Set the next offered price as P ∗`+1 = p∗i` , where p∗i` is an optimal price for demand di` .

10: end if

11: end for

4.4. Discussion on the Discriminative Price Assumption

The O(log(m) T ) regret of mPC and the O(1) regret of uPC hold under the assumption that there

exists an optimal discriminative price for each demand function (Assumption 1). In fact, one can

show that this assumption is necessary for any non-anticipating policy to achieve a regret better

than o(logT ).

Proposition 2. If Assumption 1 is violated, then there exists a price set P and a demand set

Φ such that any non-anticipating pricing policy incurs a regret of Ω(logT ), even if that policy is

allowed to change price for infinitely many times.
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The proof of Proposition 2 is in Appendix A.3. It implies that the best possible regret bound

without Assumption 1 is O(logT ). The question remaining is what is the best regret upper bound

we can have when Assumption 1 does not hold. Below we show that for any set of K demand

functions, policy kPC (see Algorithm 3) achieves regret bound of O(logT ) with at most K−1 price

changes.

For this purpose, we need the following definition:

Definition 2. For any nonempty subset of demand functions A⊂ {d1, . . . , dK}, let

p̃A := arg max
p∈P
|{di(p) | di ∈A}|,

i.e., p̃A is the price that maximizes the number of distinct values of di(p) for all di ∈A.

Furthermore, define

M̃A(p) :=
8σ2

min(i,j):di(p)6=dj(p) (di(p)− dj(p))2 ∨
4b

min(i,j):di(p) 6=dj(p) |di(p)− dj(p)|
, (17)

where the minimum is taken over all pairs of demand functions di, dj ∈A such that di(p) 6= dj(p).

Note that if |A| ≥ 2, for any pair of demand functions di and dj in A, we can always find a price

p such that di(p) 6= dj(p), because otherwise the two demand functions are identical. So the value

M̃A(p̃A) in line (4) of Algorithm 3 is well defined for any |A| ≥ 2.

Proposition 3. For all T ≥ 1, the regret of kPC is bounded by

RegretkPCΦ (T )≤ (K − 1)(M̃Φr
∗ logT + 3r∗),

where M̃Φ = maxA⊂{1,...,K} M̃A(p̃A).

Proof Idea of Proposition 3. In each of the learning phases, the definition of the algorithm (line

6) guarantees that at least one demand function is eliminated. So the number of iterations in the

while loop is at most K − 1, and the regret of the learning phases is O((K − 1) logT ). Then, we

show that with high probability, the single demand function remained in the earning phase is the

true demand function. The complete proof is in Appendix A.4.
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Algorithm 3 Policy kPC.

1: INPUT: A set of demand functions Φ = {d1, · · · , dK}.

2: (Learning) Set A←Φ. Set `= 0, τ0 = 0.

3: while |A| 6= 1 do:

4: Set the price as P ∗` = p̃A from period τ` + 1 to τ`+1 := τ` +
⌈
M̃A(P ∗` ) logT

⌉
.

5: At the end of period τ`+1, compute the sample mean X̄` from period τ` + 1 to τ`+1:

X̄` :=

∑τ`+1
j=τ`+1Xj

τ`+1− τ`
, where Xj = Number of items sold in period j.

6: Update A: keep all di in set A if it is a minimizer of mindi∈A
∣∣X̄`− di(P ∗` )

∣∣. Eliminate other

demand functions from A. If there are two minimizers di and dj such that di(P
∗
` )< X̄` <dj(P

∗
` ),

remove dj and only keep di.

7: Set `← `+ 1.

8: end while

9: (Earning) Suppose A = {di}. From period τ` + 1 to period τ`+1 = T , set the selling price as

P ∗` = p∗i .

5. Field Experiment at Groupon

We collaborated with Groupon, a large e-commerce marketplace for daily deals, to implement the

dynamic pricing strategies proposed in the previous section. Groupon offers subscribed customers

discount deals from local merchants. By the second quarter of 2015, Groupon served more than

500 cities worldwide, had nearly 49 million active customers and featured more than 510,000 active

deals globally.

As an example, Figure 2 shows a local restaurant deal on Grouopon’s website. The deal can be

purchased through Groupon at $17 and redeemed at the local restaurant for $30. The amount paid

by customer ($17) is called “booking”. The booking is then split between Groupon and the local

merchant. For example, in a 50/50 split, the local business gets $8.5 and Groupon keeps $8.5 as

its revenue. In most cases, a deal is only available for a limited time, ranging from several weeks

to several months.
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Figure 2 Screenshot of a restaurant deal on the Groupon website.

Prior to our collaboration, Groupon applied a fixed price strategy for each deal until it expires.

Our initial analysis suggested that Groupon could benefit from the dynamic learning and pricing

algorithm that we proposed in this paper for the following reasons:

• Groupon launches thousands of new deals everyday across its global markets, and most of

these deals are offered on its website for the first time. There is not enough historical data to

predict demand before the new deals are launched. So there is an opportunity to learn demand

using real time sales data.

• Most deals are offered for a limited time, so there is a time tradeoff between price experimen-

tation and revenue maximization, a tradeoff addressed by our pricing algorithm.

• Groupon prefers to use as few price changes as possible for each deal. Since the result from

Section 4 shows that most benefit of dynamic pricing is captured by the first price change, we

apply a single price change in our implementation. More specifically, we use the mPC algorithm of

Section 4.1 with m= 1.

• Each deal has a monthly cap that specifies the maximum quantity that can be sold within

a month. But historical data show that only a small fraction of deals have actually reached their

monthly caps. So the unlimited inventory assumption is a reasonable approximation of reality.

The pricing algorithm mPC requires two inputs: a set of demand functions, Φ, and an initial

discriminative price, P1. We discuss how they were generated in the following two subsections.
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5.1. Generating the Demand Function Set

Although it is unlikely that we can find a finite set Φ such that the underlying demand func-

tion belongs to it, our objective is to generate a set Φ so that the true demand function is well

approximated by at least one of the functions in it.

We suppose the price set is a continuous interval P = [pl, pu], and each demand function in Φ is

linear. Every time period is one day.

We first collect sales data of previous deals that have been tested for dynamic pricing. Note that

all deals in this dataset have been offered under more than one price. In the preprocessing step, the

demand data are normalized to remove the time effect (e.g. holiday/weekend effect). Then, given

a new deal, we generate a set of linear demand functions using the following process:

1. Select a subset of deals from the historical data that share similar features with the new deal

(e.g. initial price, category/subcategory, discount rate).

2. Since any given deal in this subset has been offered under more than one price, we can fit

a linear demand function to it by least squares method. The linear demand function is then

mapped to a point on a plane, where the y-coordinate is the slope, and the x-coordinate is

the demand function valued at the initial price of the new deal. For example, suppose we fit

a demand function di(p) = a− bp for an old deal, and the new deal has an initial price P1,

then the demand function is mapped to the point (a− bP1, b), see Figure 3. Every deal in the

subset is now represented by a point on the plane.

3. Apply K-means clustering to group the points into K clusters. For example, Figure 3 shows

K = 3 clusters. Note that the center of each cluster also represents a linear demand function.

In particular, if the center is located at (xi, yi), it corresponds to linear function di(p) =

xi+yi(P1−p). So the set of centers contains exactly K linear demand functions, which forms

the demand set Φ.

To determine the best value of K, we apply cross-validation. The previous deals are randomly

split into training and testing sets. For each deal in the testing set with two prices p1, p2, we treat
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Figure 3 Applying K-means clustering to generate K linear demand functions.

it as a new deal with initial price p1. For different values of K, we generate K demand functions

using the training set following the process described above. Then, we select one function among

the K functions whose value at p1 is the closest to the actual demand of the new deal at p1, since

this is the function that would have been chosen by our learning algorithm. Next, we compare

the realized demand under price p2 to the mean demand predicted by the selected function at p2.

The difference between these two values can be interpreted as the prediction error of our learning

algorithm.

In Figure 4, we plot the mean squared error of demand prediction and bookings prediction for

different values of K. The error is large for small values of K, and then decreases as K increases.

This implies that for small values of K, none of the demand functions in set Φ is close to the true

demand function, so the prediction error is large. Therefore, it is important to choose a K large

enough so that at least one of the demand function in Φ is close to the true demand function. Notice

that what is not shown in the figure is that the error will eventually go up due to over-fitting when

K becomes sufficiently large. We didn’t have enough data points in this example to demonstrate

over-fitting.

5.2. Choosing the Initial Price and the Time of Price Change

The initial price P1 is negotiated by the local merchant and Groupon. Basically, this is the price

that Groupon would have used in its fixed pricing policy.
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Figure 4 Prediction error of re for different values of K.

Since a finite set of linear demand functions has only finite non-discriminative prices in the price

interval [pl, pu], it is unlikely that the initial price is non-discriminative. In fact, in all the examples

that we tested, the initial price P1 is discriminative with respect to demand set Φ.

In the definition of mPC for m = 1, the price is changed at period dMΦ(P0) logT e, where the

constant MΦ(P0) is given by Equation (3) in Section 4.1. However, this constant is mainly designed

to prove the theoretical regret bound, and may not be a good choice for implementation. In

practice, we tested several price switching times (between 1 to 7 days), and the value with the best

performance was chosen.

When changing price, Groupon has a constraint that price can only be decreased between 5% to

30%. If the output of the algorithm either decreases price by less than 5% or increases price, then

no price change is made. If the output decreases price by more than 30%, then we decrease price by

only 30%. More importantly, the merchant’s share of bookings is unchanged after price decrease.

For example, if a deal has initial price $20 and the merchant get $10 from each purchase, it would

still get $10 after price decrease. Therefore, the merchant is never worse off after price change, and

hopefully is more willing to accept the dynamic pricing policy that Groupon proposed. However,

for those merchants who prefer fixed pricing, there is always an option to keep using fixed pricing.
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Figure 5 Bookings and revenue increase by deal category.

5.3. Field Experiment Results

In the field experiment, we included 1,295 deals that span five product categories: Beauty, Food

& Drink, Activities, Services, and Shopping. We focused on two performance measurements. One

is the total amount money paid by the customers to Groupon, referred to as bookings, which is

directly related to Groupon’s market share; the other is the portion of money that Groupon keeps

after paying local merchants, referred to as revenue. For each product category, we compare the

average bookings and revenue before and after price change. Since the initial price of dynamic

pricing is determined in the same way as in fixed pricing, the bookings and revenue before the

price change represent the performance for fixed pricing strategy. Note that if a deal is tested using

our pricing algorithm but the algorithm does not recommend price decrease, then this deal is not

included in the 1,295 selected deals.

Figure 5 shows the average increase in bookings and revenue of after price changes by category.

The numbers in parentheses are the quantity of deals tested in each category. Among the five

categories, Beauty, Food & Drink, and Shopping have significant revenue increase, Services category

has almost no revenue change but significant bookings increase, and Activities category has a

decrease in revenue. Overall, bookings is increased by 116%, and revenue is increased by 21.7%.

The revenue improvement may also be partly attributed to increased exposure, because deals with
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price decrease are featured on a separate webpage labeled as “clearance”, so they may attract more

customer visits.

Further analysis of the field experiment result shows that reducing price has a much bigger

impact on deals that have fewer bookings per day. For deals with bookings per day less than the

median (across all product categories), the average increase in revenue is 116%, while the increase

is only 14% for deals with bookings per day more than the median. This explains the big increase

in bookings and revenue for the Shopping category, because the average daily bookings of the

Shopping category is only around 1/10 of the average daily bookings the Food & Drink category.

Our pricing algorithm has a poor performance for the Activities category, despite the fact that

this categories has almost the same level of average daily bookings as the Beauty category. We

suspect that some information of customer demand for Activities is not included in our demand

model. For example, it might be that the weekend/holiday effect is much more significant for

this category than we estimated, or perhaps the holiday effect happens a few days before the

actual holiday. Further work is needed to improve the demand prediction method for the Activities

category.

6. Conclusion

We consider a dynamic pricing problem where the latent demand model is unknown but belongs

to a finite set of demand functions. The seller faces a constraint that price can be changed at most

m times. We propose a pricing policy that incurs a regret of O(log(m) T ), where T is the length of

the sales horizon. In addition, we show that this regret bound is the best possible, up to a constant

factor.

We then implement this pricing algorithm at Groupon, a website that sells deals from local

merchants. We design a process to generate a set of linear demand functions from historical data,

and use it as an input to our pricing algorithm. The algorithm allows for at most one price change

per deal and price decrease only. Field experiment shows that the algorithm has a significant

improvement on revenue and bookings.
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Appendix A: Additional Proofs of the Results in Section 4

A.1. Proof of Lemma 1

Proof of Lemma 1. Let ht = (p1, x1, . . . , pt, xt) be a realization of Ht = (P1,X1, · · · , Pt,Xt). We

first assume Pπi (Ht = ht)> 0, so we have

Pπi (Ht = ht) =
t∏

s=1

Pπi (D(ps) = xs)
t−1∏
s=1

Pπi (Ps+1 = ps+1 |Hs = hs)

=
t∏

s=1

(
Pπi′(D(ps) = xs) ·

Pπi (D(ps) = xs)

Pπi′(D(ps) = xs)

) t−1∏
s=1

Pπi (Ps+1 = ps+1 |Hs = hs) (18)

≥
t∏

s=1

(Pπi′(D(ps) = xs) ·κΓ)
t−1∏
s=1

Pπi (Ps+1 = ps+1 |Hs = hs) (19)

=κtΓ

t∏
s=1

Pπi′(D(ps) = xs)
t−1∏
s=1

Pπi (Ps+1 = ps+1 |Hs = hs)

=κtΓ

t∏
s=1

Pπi′(D(ps) = xs)
t−1∏
s=1

Pπi′(Ps+1 = ps+1 |Hs = hs) (20)

=κtΓPπi′(Ht = ht).

Step (18) uses the third condition of (Γ), which states that all demand functions have the same

support under a given price, so Pπi′(D(ps) = xs) 6= 0. Step (19) uses the fourth condition of (Γ).

Step (20) holds because price Ps+1 is determined by policy π and realized history hs, and is

independent of the underlying demand model. Note that if π is a deterministic policy, we always

have Pπi (Ps+1 = ps+1 |Hs = hs) = 1 for all i.

Finally, if Pπi (Ht = ht) = 0, we have Pπi′(Ht = ht) = 0, too. This is again due to the third condition

of (Γ), which states that all demand functions have the same support under a given price. �

A.2. Proof of Proposition 1

Proof of Proposition 1. Let m be the integer such that τm <T ≤ τm+1. Suppose d1 is the under-

lying demand function. The regret under demand d1 can be composed as

RegretuPC1 (T ) =E1

[
T∑
t=1

(r∗1 − r1(Pt))

]
≤

m∑
`=0

E1

[ τ`+1∑
t=τ`+1

(r∗1 − r1(Pt))

]
.
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The regret during Phase 0 is equal to

E1

[
τ1∑
t=1

(r∗1 − r1(Pt))

]
= dMΦ(P ∗0 )e(r∗1 − r1(P ∗0 )).

For 1≤ `≤m, the offered price P ∗` ∈ {p∗1, · · · , p∗K}, so the regret during Phase ` is bounded by:

E1

[ τ`+1∑
t=τ`+1

(r∗1 − r1(Pt))

]
=E1 [(τ`+1− τ`)× (r∗1 − r1(P ∗` ))]

≤E1

[(
MΦ(P ∗` )e(`) + 1

)
× (r∗1 − r1(P ∗` ))

]
≤
(
M∗

Φe
(`) + 1

) K∑
i=1

(r∗1 − r1(p∗i ))×P1(P ∗` = p∗i )

≤
(
M∗

Φe
(`) + 1

)
r∗1 ×

K∑
i=2

P1(P ∗` = p∗i ).

By the definition of the uPC policy, the choice of price P ∗` is determined by the sample mean

X̄`−1 in Phase `− 1. Similar to the proof of Theorem 1, letting ε= 1
2

mini 6=1

∣∣d1(P ∗`−1)− di(P ∗`−1)
∣∣,

we have

K∑
i=2

P1(P ∗` = p∗i )

≤P1

(∣∣X̄`−1− d1(P ∗`−1)
∣∣≥ ε)

=E1

[
P1

(∣∣X̄`−1− d1(P ∗`−1)
∣∣≥ ε∣∣P ∗`−1

)]
≤E1

[
2E1

[
exp

(
−(τ`− τ`−1)

( ε2
2σ2
∧ ε

2b

))∣∣∣∣P ∗`−1

]]
≤E1

[
2E1

[
exp

(
−MΦ(P ∗`−1)e(`−1)

( ε2
2σ2
∧ ε

2b

))∣∣∣∣P ∗`−1

]]
≤E1

[
2E1

[
exp

(
−2e(`−1)

)∣∣P ∗`−1

]]
=2/(e(`))2.

So

E1

[ τ`+1∑
t=τ`+1

(r∗1 − r1(Pt))

]
≤
(
M∗

Φe
(`) + 1

)
r∗1 ·

2

(e(`))2
=

2M∗
Φr
∗
1

e(`)
+

2r∗1
(e(`))2

.

In sum, the regret of uPC under demand d1 is bounded by

RegretuPC1 (T ) =E1

[
τ1∑
t=1

(r∗1 − r1(Pt))

]
+

m∑
`=1

E1

[ τ`+1∑
t=τ`+1

(r∗1 − r1(Pt))

]

≤(MΦ(P ∗0 ) + 1)(r∗1 − r1(P ∗0 )) +
m∑
`=1

(
2M∗

Φr
∗
1

e(`)
+

2r∗1
(e(`))2

)
≤MΦ(P ∗0 )(r∗1 − r1(P ∗0 )) + r∗1 + (2M∗

Φr
∗
1 + r∗1)

=MΦ(P ∗0 )(r∗1 − r1(P ∗0 )) + 2M∗
Φr
∗
1 + 2r∗1.
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The minimax regret of demand set Φ is given by

RegretuPCΦ (T ) = max
i=1,...,K

RegretuPCi (T )≤CΦ(P ∗0 ) + 2M∗
Φr
∗+ 2r∗,

where CΦ(P ∗0 ) = maxi∈{1,··· ,K}{MΦ(P ∗0 )(r∗i − ri(P ∗0 ))} and r∗ = maxi∈{1,··· ,K} r
∗
i . �

A.3. Proof of Proposition 2

Proof of Proposition 2. Consider a price set P = {1,2} and two demand functions d1(1) =

0.6, d1(2) = 0.25;d2(1) = 0.4, d2(2) = 0.25. Demand per period has a Bernoulli distribution. It is

clear that the optimal prices are p∗1 = 1, p∗2 = 2. This demand model violates Assumption 1, because

p∗2 = 2 is not a discriminative price. We show that for this model, any non-anticipating policy must

have a regret of Ω(logT ).

The one period regret for not using the optimal price is a= 0.1 under either demand function.

For any policy, we let T1 be the number of the times that p= 1 is used.

We prove the result by contradiction. Suppose Regret2(T ) = a · E2[T1] = o(1) · logT and

Regret1(T ) = a(E1[T −T1]) = o(1) · logT . The change-of-measure inequality (see proof of Lemma 1)

implies that for any event A,

P2(A)≤E1[1A exp(bT1)].

where b= log(0.6/0.4).

Consider the event: A= {T1 ≤ logT/(2b)}, then we have

P2(A)≤ P1(A) exp(b · logT/(2b)) = P1(A)
√
T .

By Markov’s inequality,

P1(A) = P1(T −T1 ≥ T − logT/(2b))≤ E1[T −T1]

T − logT/(2b)
=

o(1) logT

T − logT/(2b)
.

Thus, we have

P2(A)≤ o(1)
√
T logT

T − logT/(2b)
= o(1).

Using Markov’s inequality again, we get

E2[T1]≥ logT

2b
P2(T1 ≥

logT

2b
) =

logT

2b
(1−P2(A)) =

logT

2b
(1− o(1)).

This contradicts the assumption that E2[T1] = o(1) · logT . �
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A.4. Proof of Proposition 3

Proof of Proposition 3. Suppose d1 is the underlying demand function. Let k ≤K − 1 be the

number of iterations in the while loop.

The regret under demand d1 can be composed as

RegretkPC1 (T ) =E1

[
T∑
t=1

(r∗1 − r1(Pt))

]
≤E1

[
k∑
`=0

τ`+1∑
t=τ`+1

(r∗1 − r1(Pt))

]
.

Let ε= 1
2

mini:d1(P∗
`−1

)6=di(P∗`−1
)

∣∣d1(P ∗`−1)− di(P ∗`−1)
∣∣. The probability that demand d1 is eliminated

in phase ` < k is bounded by

P1

(
|X̄`−1− d1(P ∗`−1)| ≥ |X̄`−1− di(P ∗`−1)| for some i 6= 1

)
≤P1

(∣∣X̄`−1− d1(P ∗`−1)
∣∣≥ ε) (21)

=E1

[
P1

(∣∣X̄`−1− d1(P ∗`−1)
∣∣≥ ε∣∣P ∗`−1

)]
≤E1

[
2E1

[
exp

(
−(τ`− τ`−1)

( ε2
2σ2
∧ ε

2b

))∣∣∣∣P ∗`−1

]]
(22)

≤E1

[
2E1

[
exp

(
−M̃Φ(P ∗`−1) logT

( ε2
2σ2
∧ ε

2b

))∣∣∣∣P ∗`−1

]]
≤E1

[
2E1

[
exp (− logT )

∣∣P ∗`−1

]]
=2/T.

Inequality (21) is proved in Theorem 1, and (22) uses the Chernoff bound. Since k ≤K − 1, we

have

P1

(
|X̄`−1− d1(P ∗`−1)| ≥ |X̄`−1− di(P ∗`−1)| for some i 6= 1,0≤ ` < k

)
≤ 2(K − 1)

T
.

For each of the learning phase (0≤ `≤ k− 1), the regret is bounded by

E1

[ τ`+1∑
t=τ`+1

(r∗1 − r1(Pt))

]
=E1

[⌈
M̃A(P ∗` ) logT

⌉
(r∗1 − r1(P ∗` ))

]
≤ M̃Φr

∗
1 logT + r∗1.

The regret in the earning phase (`= k) is bounded by

E1

[
T∑

t=τk+1

(r∗1 − r1(Pt))

]
≤ Tr∗1P1(Pk 6= p∗i ).

So the regret of kPC under demand d1 is bounded by

RegretkPC1 (T ) =E1

[
k−1∑
`=0

τ`+1∑
t=τ`+1

(r∗1 − r1(Pt))

]
+E1

[
T∑

t=τk+1

(r∗1 − r1(Pt))

]

≤(K − 1)(M̃Φr
∗
1 logT + r∗1) +Tr∗1

2(K − 1)

T

=(K − 1)M̃Φr
∗
1 logT + 3(K − 1)r∗1 .
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The minimax regret of demand set Φ is given by

RegretkPCΦ (T ) = max
i=1,...,K

RegretkPCi (T )≤ (K − 1)M̃Φr
∗ logT + 3(K − 1)r∗.

�
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