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We show how to formulate a O-1 integer programming problem as a "mixed
integer' generalized network and as a discrete *'0-U"’ pure network problem.
Special integer programming structures aliow convenient simplifications The
usefulness of these formulations is in providing new relaxations for integer
programming that can take advantage of recent advances in the development
of efficient computer programs for network problems We cite three practical
applications in which these ideas have led to marked improvement in solution

efficiency.

HE MIXED INTEGER generalized network problem and a 0-U

(discrete) version of the pure network problem are capable of accom-
modating a variety of problems not ordinarily conceived of as related to
networks, including the 0-1 integer programming problem. In this note,
we will show more generally how to model the mixed problem

Minimize Y ,en ¢;%, (1)
subject to
d=Y,eva,;x=<b, ieM={1,...,m} 2)
w=x,=0 for JEN (3)
x€{0,1} for jJEN,CN (4)
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where the set M, = {i € M: a,, # 0} has at most two elements for JEN
— N;. (Thus (1), (2), (3) and (4) is an ordinary generalized network
problem if N, is empty, and is a pure 0-1 integer programming problem
if N = N;.) We may also allow any subset of x, variables forj € N — N,
to be integer constrained. We first give a mixed integer generalized
network formulation of this problem, and then give a discrete pure
network formulation for the case in which the N — N, portion corresponds
to a pure network.

1. THE GENERALIZED NETWORK FORMULATION

The mixed integer generalized network formulation of (1)-(4) may be
obtained as follows. Note that if M, has at most two elements for each J
€ N, (as well as for each j € N — N,), the problem is already a mixed
integer generalized network. That is, each constraint of (2) may be
associated with a node (having upper and lower bounds on its “demands”
of b, and d,), and each variable x, may be associated with an arc (whose
endpoints are the nodes for which a,, # 0).

For the general case, each constraint of (2) continues to correspond to
a node, but a variable x, for j € N, is viewed as an arc with multiple ends,
one for each ¢ € M,. To create the appropriate network structure, x, is
subdivided into a collection of ordinary (generalized) arcs which link to
each other through a common node j,. Such a node jj is created for each
%, and has no supply or demand of its own. In particular, for each i € M,
(when | M, | = 3), an arc (i, jo) is created that connects the common node

Jo to “node i” (of the ith constraint). The conversion rules are as follows.

1. Assign arc (i, jo) a multiplier of a,, on its “node i” end.

2. Select some i € M, to be designated by the symbol j*, and designate
arc (j*, Jo) to be a “0-1” arc. Give this arc a multipler on its j, end
of | M,| — 1, and a cost equal to c,.

3. Assign each remaining arc (i, jo), i € M, — {j*}, a multiplier of —1
on its jo end, a cost equal to 0, and a capacity (upper bound on its
flow) equal to 1. (Each such arc will then automatically receive a
flow value of 0 or 1 when arc (j*, jo) receives such a value. Given
unit capacities, this effect is also achieved by assigning (j*, jo) any
nonzero multiplier on its jo end, and assigning the remaining arcs
multipliers of the opposite sign that sum to the negative of the
multiplier for (j*, jo).)

It is easy to see that the resulting mixed integer generalized network
(with variables x, for j € N — N, and for j € N, with |M,| < 2
corresponding to generalized arcs in the natural way) is equivalent to the
original problem (1)-(4), since assigning an arc (j*, j,) a flow of 0 or 1
accomplishes precisely the same effect as assigning the variable x, this
value.

Copyright © 2001 All Rights Reserved
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The usefulness of the mixed generalized network formulation is that it
provides a new relaxation of problem (1)-(4) when the integer require-
ment is removed from the generalized network. This relaxation is less
stringent than the ordinary linear programming relaxation of (1)-(4), but
has the advantage of being much faster to solve (see e.g., [9]). Other
characteristics of this relaxation will be discussed subsequently.

2. THE PURE NETWORK FORMULATON

The 0-U pure network formulation of (1)-(4) can be described using
the same terminology as the 0-1 generalized network formulation, under
the assumption that the N — N, portion is a pure network. Here the
problem (1)-(4) is first modified by the addition of a constraint

d() = Z]ENl aO]x] = bO (5)
where the coefficients aq,, j € Ny, are selected so that
ay = — ZLEMI Q.

The constants do and b, are selected so that (5) is redundant, e.g., bo
can equal the sum of the positive @y and dy can equal the sum of the
negative ag,. Thereupon, incorporating (5) into (2), the amended problem
(1)-(4) has the property that ¥.em, + @, = — Y.em,- a,, for all j where M,*
={ieEM:a,>0}and M,” = {i € M,: a,, < 0}. For this problem the
network is constructed as follows:

1. Create a node for each i € M as in the generalized network formu-

lation.

2. Create two nodes, j1 and j., for each variable x;, j € N;, and an
associated ordinary arc (ji, j2) with capacity equal to Y.em,+ a,.
(Nodes ;i and j; have no net supply or demand of their own.) Arc
(/1, J2) is designated a 0-U arc, which means that it is restricted to
receive either a 0 flow or a flow equal to its capacity. It is given a
cost equal to ¢, divided by its capacity.

3. For each i € M,”, create an ordinary arc (i, j;) with 0 cost and with
capacity equal to —a,,.

4. For each i € M,™ create an ordinary arc (2, {) with 0 cost and with
capacity equal to a,,.

5. If there is only a single arc (i, j,) entering node i, then this arc can
be collapsed by designating node j, to be the same as node i.
Similarly, if there is a single arc (2, {) leaving node j2, then this arc
can be collapsed by designating node j: to be the same as node i.

The equivalence of this 0-U pure network problem to the original 0-1
problem is established due to the fact that assigning an arc (/, j2) a flow
equal to 0 or to its upper bound accomplishes the same effect as setting

Copyright © 2001 All Rights Reserved
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%, equal to 0 or to 1, respectively. The relaxed problem in which the 0-U
restriction is removed, is a weaker relaxation than that of the generalized
network formulation, but has the advantage that it can be solved still
more efficiently (e.g., using the specialized codes of [2, 7, 12, 13]).

3. STRATEGIC CONSIDERATIONS AND SPECIAL STRUCTURES

In the generalized network formulation, it is legitimate to manipulate
the costs on the arcs incident to a given node j, provided simply that
these costs always sum to ¢,. This is obvious by inspection, but it also
may be interpreted as a form of “Lagrangian” manipulation [5, 6], taking
side constraints into the objective function, where these side constraints
stipulate that the flow on each arc incident to j, is to be the same.
Moreover, by linear programming duality, there exists some such assign-
ment of costs for which the optimum objective function value for the
generalized network problem is the same as that for the direct linear
programming relaxation of (1)-(4). Analogously, in the pure network
relaxation, the costs on all arcs associated with a given variable x, can be
manipulated so long as the weighted sum of these costs, each divided by
the associated arc capacity, is equal to ¢,. The Lagrangian interpretation
again applies.

It should be noted that for special structures the form of these network
relaxations can often be simplified. For example, in the case of the set
covering and set partitioning problems (in which all a,, = 0 or 1 — see [1,
3, 11, 12]), the 0-U formulation collapses all j; nodes into a single node,
by Instruction 5. As a result, the relaxation can be modeled as an ordinary
transportation problem simply by reversing the 0-U slack arc relative to
the upper bound U, thus giving the j: nodes a supply of U and the
common j; node a demand equal to the difference between the total
supply and total demand. Srinivasan and Thompson [15] have proposed
a network relaxation for set partitioning problems of exactly this form,
and are to our knowledge the first to use ideas of this type.

In addition, special tricks exist to obtain both tighter and looser
relaxations for certain multiple choice and scheduling structures. It is not
our intent to itemize these tricks or the associated network strategies for
capitalizing on their structures (e.g., by specialized penalty calculations),
but merely to point out that a variety of alternatives exist for tailoring
the general formulations to specific applications.

4. COMPUTATIONAL EXPERIENCE

From a computational standpoint, the utility of network-related models
has been demonstrated in a variety of studies [4, 7, 8, 16]. We have had
experience with three models, making use of the formulations proposed
in this paper, that have proved to be highly susceptible to efficient

Copyngnt © 2007 All Rights Reserved
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solution in the network guise. The complete details of these models are
rather extensive, due to their real world origins. Their parameters and
structural characteristics are elaborated in [8-10, 12]. Having described
the general model transformation in the preceding sections that led to
the discrete network formulations of these problems, we will summarize
here the computational results of employing these transformations.

The first of these models is a mixed integer programming problem to
determine a minimum cost refueling scheduling for nuclear reactors
[10]. Four versions of this problem were solved with data supplied by the
TVA. The most difficult version of the problem (and the only one that
was not solved easily in the network-related formulation) involved 173
constraints, 511 continuous variable, and 126 zero-one variables. The
original mixed IP formulation was run for 7 hours with MPSX, at the
end of which time the best (minimum cost) solution obtained had an
objective function value of $136,173,440. With an imposed time limit of
30 minutes on the network-related solution effort, the best solution found
has an objective function value of $125,174,727. The network-related
approach used a simple LIFO branch and bound strategy to handle
dichotomous conditions. The branching rule selected the discrete arc
whose flow was closest to a 20% deviation from one of its bounds, and
enforced a flow that satisfied the nearest bound.

The second type of problem examined in this framework was an Air
Force flight training model involving the selection of schedules for as-
signing pilots to courses of study. The integer programming formulation
for this problem involves 200 constraints on class sizes, 120 multiple
choice constraints, and 460 zero-one variables. (See [9] for details.) The
Air Force had attempted to solve this problem by customary integer
programming approaches and concluded the problem was too difficult to
solve optimally.

In view of this, a heuristic solution procedure had been developed for
the problem in an attempt to get reasonably good solutions in an accept-
able amount of time. Using the network-related model (again coupled
with a branch and bound procedure), this problem was solved optimally
in 10 seconds on a CDC 6600, which was substantially faster than the
nonoptimal heuristic procedure (according to the Air Force and the
developer of the heuristic procedure). The network related formulation
of this problem involves 460 zero-one arcs with multipliers, 2,200 contin-
uous flow arcs without multipliers, and 780 nodes. The 10-second solution
time was again achieved by a simple LIFO branch and bound strategy.
The branching rule in this case involved a fixed, a priori, ranking of the
0-1 scheduling arcs on the basis of their costs and of the costs of the
second and third best alternatives. The time to set up this initial ranking
is included in the 10-second solution time.

Copyright © 2001 All Rights Reserved
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Finally, we have applied this type of network related model approach
to alarge (20,000 node, 100,000 arc) planning system for the United States
Strategic Air Command. The integer programming formulation for this
problem is a generalized set covering model with time constraints. With
the network related model, the size of the problem effectively decreases
because of a special structure for collections of columns in the mixed IP
formulation. In particular, this structure admits p unit entries in any of
q specified positions (where a single column may have repetitions of the
coefficient organization over different subsets of g positions, for different
values of p and q). These types of collections are readily modeled by the
network related ideas previously described, allowing these collections to
be implicitly defined (see [12]). In this manner, problems that cannot be
handled by traditional optimization approaches are solved. Indeed, the
usual zero-one IP model is enormous—100,000 rows, tens of millions of
variables—and cannot be solved by linear programming. Yet, the discrete
network model approach provides suboptimal solutions (within 5% of the
optimal) using only the LIFO strategy coupled with a branching rule that
first branches on arcs with smaller associated M, sets (see Section 2), and
assigns a flow equal to the closest bound. The problem takes less than 30
minutes of execution time to solve.

The successes of the foregoing applications do not imply that the
network related modeling ideas will be useful for all 0-1 problems.
Srinivasan and Thompson found in their study [15] that network relax-
ations for set partitioning problems yielded computational successes only
when the number of nonzeroes (in this case, 1’s) did not exceed 3 or 4 per
column, which suggests that the more general transformations may
likewise be limited in value as the number of nonzeroes per column of the
original formulation increases. Our experience with the preceding prac-
tical applications is compatible with this expectation, though the column
densities averaged slightly higher than those found limiting for set
partitioning.

The number of nonzeroes per column for the original form of the
nuclear refueling problem comes closest to the 3-4 range: the columns for
the integer variables each contain exactly four nonzeroes (although larger
than 1), and the columns for the continuous variables contain from 2 to
4 nonzeroes, averaging 3. The Air Force flight training problem contains
from 3 to 6 classes per schedule; hence, the original 0-1 integer formulation
contains from 4 to 7 nonzeroes per column (all 1’s), including the multiple
choice constraints. The average number of nonzeroes per column for this
problem is 5.3. The third application, i.e. the strategic planning system,
possesses from 3 to 100 nonzero entries (1’s) per column, averaging
approximately 10 nonzeroes.

Quite recently, Nemhauser and Weber [14] have devised a relaxation
for integer programming based on solving matching problems. Their

Copyright © 2001 All Rights Reserved
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relaxation is at least as strong as the LP relaxation. Thus, we are
witnessing the emergence of network and graph (or matroid) theory
relaxations that bracket the LP relaxations. Just as the network structure
has been found to be highly exploitable, and yields attractive results for
integer programs that exhibit a certain “structural proximity” to networks
(in a manner as yet incompletely defined), so this emergence of relaxa-
tions based on additional structural characteristics may be expected to
bring still other classes of integer programs into the range that can be
solved effectively.
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A New Norm for Measuring Distance Which
Yields Linear Location Problems
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We propose a new norm, called the one-infinity norm, for characterizing
distance in facility location problems. This new norm, which is a hybrid version
of the rectilinear and Tchebycheff norms, not only gives a good characteri-
zation of distance (as compared, for example, to results by Love and Morris)
but also has two alternate interpretations of travel. Furthermore, it yields linear
programming formulations of location problems.

ECALL that a norm in R? is a function, | -|:R* — R, having the
following properties: | 5| = 0iff 6 = 0; |5 + d| = | 7| + || & |l; || aT ||
= |«| || 7|l for every scalar a. In particular, for each p = 1, an [, norm is
defined as ||G, = (Jv:|” + |v2|?)'", § = (v1, v2) so that we get the
Euclidean norm when p = 2, the rectilinear (i.e., city-block or Manhattan)

norm when p = 1, and the Tchebycheff norm when p = «, i.e., || i, =
Max{l U1|, |Uz|}.
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