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Maximal Funnel-Node Flow in an Undirected Network

John J. Jarvis
Georgia Institute of Technology, Atlanta, Georgia
and
Duane D. Miller
Office of the Assistant Vice Chief of Staff, United States Army, Washington, D.C.
(Received May 25, 1971)

This note formulates, examines, and solves a funnel-node maximal-flow
problem for an undirected network. The solution procedure requires only
applications of the single-commodity flow algorithm, and is therefore extremely
efficient. Several applications are presented.

CONSIDER THE following transportation problem: Supplies are located at a supply
terminal for shipment to a destination terminal. The only vehicles available
to transport the supplies are located at still another terminal. Given a road net-
work of limited capacity, it is desired to determine the routing of vehicles that will
allow the maximum number of vehicles to proceed from the vehicle terminal through
the supply terminal to the destination terminal. The road network can be repre-
sented by an abstract undirected network G(N; E) as shown in Fig. 1.

Now consider a second problem. A communication-systems designer is re-
quired to establish a message center for an existing communication network. All
messages are to pass through the message center and the message center must be
located at an existing installation. It is desirable to maintain the maximum pos-
sible message flow under the given conditions. The communication network can
be represented as shown in Fig. 2.

These two problems are examples of the type of problem with which this paper
will be concerned. In each case a special node is singled out, through which all
flow from source to sink must pass. We define this special node as a funnel-node.

A mathematical statement of the funnel-node max-flow problem is:

maximize v(s; a; f), subject to

! v(s;a), if i=s,
ZJ'UI(Ni;NJ')_fl(NJ’yNi)]= 0, if 1is%s,aq,

[—v(s;a), if i=a,

v(a; ), if i=a,
2 [f(Niy Nj)—fo(N;, No)]= 0, if it

—v(a;t), if i={,
[i(Ns, N+ 1fe(Ni, N) | Se(Ny, Ny), all 4,

v(s; a; t) =v(s; a) =v(a; 1),
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where v(z; y) is the value of the flow from node z to node y in the network and

v(8; @; ) is the value of the flow from s to ¢ passing through the funnel-node a.
The similarity of the funnel-node max-flow problem and the two-commodity

max-flow problem is evident (see Hu®). The constraint sets are identical with

Source
of
vehicles

capaclty

Delivery
point

Fig. 1. A road network.
the exception that, in the funnel-node problem, (i) the first source is 8; the second

sink is ¢, (ii) the first sink and second source are both a, and (iii) the flows of com-
modity 1 and of commodity 2 are both v(s; a; t). Now with the addition of the

capacity

@ Sending installation @ Receiving installatlon

Fig. 2. A communication network.

last constraint, the function to be maximized is exactly one-half of the one that is
to be maximized in the two-commodity max-flow problem.

Hu™ has solved the two-commodity max-flow problem by using an algorithm
involving flow exchanges that determines both max[v(sy; #)+v(s:; &)] and the
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appropriate routing of flows through the network. If we define v*(z; ¥) to be the
maximal value of v(z; y), then the first of T. C. Hu’s results is that a solution to
the two-commodity max-flow problem always exists, and there are at least two
solutions (possibly identical) of which one has the property that v(s;; &) =v*(s;; h)
and the other has the property that v(s,; fz) =v*(ss; ).

Let v*(s1; &) =max[v(ss; &) +0(s2; )] —0*(82; ) and v™(sy; &) =max[v(si; &) +
I)(Sz; tz) ]—U*(Sl; tl) .

It should be noted that Hu’s first result guarantees the existence of v*(s1; &)
and v*(se; &). Using this definition, it follows that Hu’s first result may be re-
written: At least two solutions (possibly identical) to the two-commodity, max-
flow problem exist such that

max[v(ss; b) 4+0(82; &) 1=v"(s1; 1) +07 (505 1) =07 (81; 81) +0* (805 o).

We now establish the principal result of this note by the statement and proof
of a theorem. We will then use the theorem to develop and demonstrate an algo-
rithm for the construction of maximal funnel-node flows in undirected networks.

THE FUNNEL-NODE MAX-FLOW THEOREM

THEOREM. v*(8; a; {) =min{v*(s; a), v*(a; t), 15 max[v(s; a) +v(a; H}}.

Proof. It is clear that v*(s; a; t) cannot exceed v*(s; @) or v*(a; t). Also
14 max [v(s; @) +v(a; £) ]2 15 max,eiam=van [0(8; @) +o(a; 1) ]2 14 max|2v(s; a;8)]12
v*(s; a; t). Thus v*(s; a; t) Sminfo*(s; a), v*(a; ), 34 maxfp(s; a)+v(a; ]
and it is only necessary to show that equality holds. There are two cases.

Case 1. v*(s; a) £v™(a; t) or v*(a; ) Sv*(s; a). Suppose v*(s; a) Sv™(a; t).
Now, from the flow solution yielding v*(s; a) and v¥(a; 1), reduce flow along paths
from a to ¢ successively up to an amount s=[v"(a; t) —v*(s; a)]. This new flow
is a feasible funnel-node flow and has value v*(s,a). Therefore, it must be optimal.

The result is similar for v*(a; t) Sv*(s; a).

Case 2.
v*(s;8) >v7(a; 1), (1)
and
v*(a; ) >v¥(s; a). (2)
Let
vo=max[v(8; a) +v(a; t)]
=v*(8; a)+v7(a; t) (3)
=v*(s;a)+v*(a;0). (4)
Equations (1) and (3) imply
n/25v*(s8; a). (5)
Equations (2) and (4) imply
w/250%(e; 1), (6)
and obviously
vo/24v0/2 S 5. (7

But (5), (6), and (7) are exactly conditions (1), (2), and (3) of Theorem 1 of
Hu.™ Hence, there exists a two-commodity flow with v(s; a)=1345n and

v(a;t) =14 .
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THE ALGORITHM

THE FUNNEL-NODE, max-flow theorem leads directly to the following algorithm
for the construction of maximal funnel-node flows in an undirected network.

Step 1. Solve for v*(s;a) and v*(a;!) using the single-commodity flow algorithm.

Step 2. Construct a new network (& by the addition to G of a node s’ and edges (¢',8)
and (s',f), each with infinite capacity. Now solve for v*(s';a), using the single-commodity
flow algorithm.

Step 8. Determine

v*(s; a; ) =minfp*(s; @), v*(a; 1), 25 0°(s'; 0)).
If v*(s;a;t) =0, stop. No flow is possible.

Fig. 3. The flow pattern for v*(s;a;!); the optimal flow for Fig. 1 has a value of 8.

Step 4. Construct a new network G by the addition to G of a node &~ and edges o)
and (s ,f), each with capacity equal to v*(s;a;t). Solve for v*(s” ;) using the smgle—com—
modity flow algorithm. Decompose the flow pattern obt.amed into a flow from s through
& to ¢ and a flow from a through ¢ to s”. Remove node s” and edges (s ,8) and (s 0.
The result is a funnel- node max-flow from s through a to ¢.

The use of v*(s’; @) to determine the value of max[v(s; ) +v(a; £)} in Step 2
of the algorithm is a consequence of a second result of Hu:

max[v(s1; &) +v(8s; ) | =minfe(81—8:; h—1h), c(81—b; h—8)].

[He defines c(z—y; z—w) as the capacity of the minimal cut that has nodes z and
¥ in one set with z and w in the other set.] But, for our problem, s,=3, ss=4=a,
and ,=1. Making these substitutions, Hu’s result is

max{v(s; a) +v(a; t)]=min[c(s—a; a—t), c(s—t; a)].
But (s—a; a—t) implies that a is in both components of @, which violates the
definition of a cut. Therefore this case cannot exist and max([v(s; a)+v(a; 8)]=
c(s—t;a). Thus we can determine max[v(s; a)+v(a; t)] by computing v*(s—1;a)
or, equivalently, by computing v*(s’; a).
Figure 3 shows the optimal flow (of value 8) for Fig. 1.
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6.

On a Duality Theorem for a Nonlinear
Programming Problem

Bertram Mond
La Trobe University, Melbourne, Australia
(Received October 21, 1971)

Duality theorems were given recently for a mathematical program with a non-
linear nondifferentiable objective function. Here we point out that the con-
verse dual theorem holds without the usually stated restrictions and assump-
tions.

CONSIDER THE following pair of problems:

I: Maximize f(z)=p'z— J.ior (&'Dz)"®,  subject to Az<b, z20. (1)
I1: Minimize g(y)=>b'y,  subject to:

Ay+ 2ot D'w'zp; @)
»w'D'w'<l, i=1,.--.,m; 3)
y=0. @

Here D4, i=1. ---, m, are symmetric positive semidefinite matrices. Problem I



Downloaded from informs.org by [106.51.226.7] on 09 August 2022, at 21:04 . For personal use only, all rights reserved.

Published in Operations Research on February 01, 1973 as DOI: 10.1287/opre.21.1.365.
This article has not been copyedited or formatted. The final version may differ from this version.

Copyright 1973, by INFORMS, all rights reserved. Copyright of Operations Research
is the property of INFORMS: Institute for Operations Research and its content may not
be copied or emailed to multiple sites or posted to a listserv without the copyright
holder's express written permission. However, users may print, download, or email
articles for individual use.



