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Minimax Procedure for a Class of Linear
Programs under Uncertainty

R. JAGANNATHAN
Untversity of Iowa, Iowa City, Iowa
(Received original December 11, 1975; final, March 29, 1976)

We consider a linear programming problem with random a;; and b;
elements that have known (finite) mean and variance, but whose dis-
tribution functions are otherwise unspecified. A minimax solution of the
stochastic programming model is obtained by solving an equivalent
deterministic convex progromming problem. We derive these de-
terministic equivalents under different assumptions regarding the
stochastic nature of the random parameters.

IN FORMULATING a stochastic linear programming model, we gen-

erally assume definite probability distribution for the parameters
(4, b, ¢) of the model. In this note we avoid making the assumption that
the precise form of the probability distribution of the parameters is known.
What we assume, however, is that the random a.; and b; elements have
known (finite) means and variances. The problem is then to obtain a
minimax solution that minimizes the maximum of the objective function

_ over all distributions with the given mean and standard deviation.

The situation of a decision maker facing an unknown probability dis-
tribution can be viewed as a zero-sum game against nature. Zackova (3]
proves that the general min-max theorem holds in this case if the set I’
of all possible distributions is assumed to be convex and compact (in the
sense of Levy’s distance). However, neither the above result nor its proof
presents any effective method for finding the value of the game or determin-
ing explicit solutions.

In Section 1 we obtain some results that are used later in determining
minimax solutions under different assumptions regarding the stochastic
nature of the random parameters of a linear programming model. Section
2 considers a stochastic linear programming problem with random RHS
elements and obtains a minimax solution of the problem as an optimal solu-
tion of an equivalent deterministic convex separable programming prob-
lem. Section 3 presents similar results for the case of random a.; elements.
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1. PRELIMINARY RESULTS

Let T'(, o) be the class of distribution functions F such that [ ¢ dF(t)
= pand [ £ dF(t) = o + u*, where u and ¢ are finite constants. Also, let
TFe(p, 0) < I'(p, o) be the subclass of symmetric distributions and let
Iy (g, 0) © T'(y, o) be the subclass of distributions F of nonnegative
random variables (i.e., F(0—) = 0).

THEOREM 1. maxrire [=° (t — z) dF(t) = [(¢* + 2*)! — 2]/2.

Proof. By Schwarz’s inequality we have [f,”(t - o) dF(HT =
[2dF () .7 (t — z)* dF(t), where equality occurs if the distribution F
attributes a probability mass p to a point y 2 z such that p = [.” dF(¢).
Thus the problem of maximizing [.” (¢ — z) dF(t) reduces to one of
choosing p and y to maximize p(y — z) subject to the conditions (i) y = =,
(i) [ZatdF(t) = —py, (iii) [ZfdF(t) = ¢ — py’, and (iv) 1 — p
= [IJdF(1). Again by the Schwarz inequality, [[Z.tdF(8)]' =
e & dF()]1J% dF(L)], where the equality holds if the distribution F
attributes a probability mass (1 — p) to a point w £ min (z, 0). Then
(1 —p)w+ py = 0and (1 - p)w’ + py° = o’. Therefore, maximizing
[°(t — z) dF(t) subject to F € T(0, o) is equivalent to maximizing
{o(p(1 — p))! — pz} subject to 0 < p < 1. After some simple calculations
the required result follows easily.

COROLLARY L1, maXrroue o (¢ — 2) dF(t) = ([&* + (z — WY -
(z — u))/2.
COROLLARY 1.2. (6-2)/2 # —o/25250/2
MaXper, oo fo (8 — x) dF(t) = {o*/8z, if z> /2
—(* + 8" /8x, if z< — /2
Proof. It can be shown, as before, that an optimal F attributes a prob-

ability mass p to points y and —y and a probability mass (1 — 2p) to
the point ¢ = 0. Some simple calculations then yield the required result.

(I + (= w1 = (@ = w)/2,
CoOROLLARY 1.3. if 22 (o + w)/2
M8Xper, (uo) Jo~ (8 — ) dF(t) = {p — uz/(d® + W),
if 0sz<(d+ /2
u— z, if z<0.

Proof. In this case an optimal F attributes a probability mass p to a
point ¥y = max (z, u») and a probability mass (1 — p) to a point
(s = yp)/(1 — p). The required result follows after some simple calcula-
tions.
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Remark. Note that in all the above cases the maximum wvalue of
[« (t — z) dF(t) is nondecreasing in ¢. Hence the above results hold even
if we redefine o® as an upper bound on the variance of the distribution F.
Similarly, in dealing with a stochastic programming problem, we need
specify only the mean and an upper bound on the variance of the various
random parameters of the model.

2. STOCHASTIC LINEAR PROGRAMMING, RANDOM RHS ELEMENTS

Consider a stochastic linear programming problem with simple recourse

1, 2].
minc'z + EY, (a2t + B27) (1)
ez +zt—27 =b,i=1 -, maz€S,

where c is an n-vector, b; is an m-vector, a, is an n-vector, z is the unknown
n-vector, S is a convex polyhedron, and b, is a random variable whose dis-
tribution function is F;.

If (a; + 8:) 20,2 =1, ---, m, Problem 1 is equivalent to a deterministic
convex separable program:

minc'z + X By, — b) + X (ai + B:) [uit — y:) dF (1)
ar —y.=0,i=1,---,mz€8.
Now we can state the deterministic equivalents whose optimal solutions
are the minimax solutions for Problem 1.
(a) F; € T(b;, 0v).
An application of Corollary 1.1 yields the convex separable program:
min ¢z + X (B + (e + B)[(6® + ¥H — yl/2
e/t — yi =b,t =1 ---, m z€8.
(b) F. € Tu(bs, o).
Applying Corollary 1.2 we have the convex sepa.rable program:
min ¢z + 2 B:(yir + Yz — )
+ 2 (e + B o/8y% + yi — ya/2 (2)
— oifiz/(20: + 4yir)]
as'x+yﬁ~y5~y?z=§;
¥h 2 o2 )
0<va<a i=1, .-, max€ 8.
Y2 0
(¢) Fi € T4(bs, 0v).
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The deterministic equivalent in this case is
min ¢’z + ¥ Bi(aizr — E)

+ X (e + BIE/2 + yh — ENa/(ol + ED)

+ (o + (o = EN /2% + yal)! — (0//25 + yi))
0z + yh — ¥ — ya =0
¥hz0
0 = ya = (o + £ /25
Yyir 2 0

i=1 -, mzec8

3. RANDOM a,; ELEMENTS

In this section we again consider the simple recourse model (1), but its
a,; elements are assumed to be random variables. Then a/'z is a random
variable whose, distribution function is denoted as F,(z, 1); i.e., F(z, f)
= Pr(a/z £ t).

Problem (1) can be recast as an equivalent deterministic programming
problem:

min., ¢’z + 2 ai(bi(bs — ai'z) + 3 (as+ B:) [3, (t ~ by) dFu(x, ).
Note that the random variable a;'z has mean 4,2 and variance 2'V.
where V; is the covariance matrix of the random vector a..

Again, if Fu(z, t) € T(d'z, (2'V.x)?), then a minimax solution of Prob-
lem (1) can be obtained by solving the convex program:

min ¢’z + 2 {ads + (e + 8V + v — /2
dt+yi=b,i=1 -+, mz€S8.
Also, if F,(z, t) € T.(ax, (2 V.-x)*), we can obtain a convex program
similar to Problem (2) as a deterministic equivalent.

It is interesting to compare the above problem to the deterministic
equivalent of Problem 1, where we assume that o'z is normally distrib-
uted with mean d';x and variance z'v;x:

min ¢’z + X {ai + (o + 8:) [Y27 (v — ow) ¢ (u) du}
a's + yi = b; } ;

(52) = o0 =1...,mz€S8

where ¢ (-) is a unit normal density function.
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