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ON THE ASYMPTOTIC CONVERGENCE RATE OF COST
DIFFERENCES FOR MARKOVIAN DECISION PROCESSES

Thomas E. Morton
Carnegie-Mellon University, Pittsburgh, Pennsylvania
(Received January 2, 1970)

The modified method of successive approximations for solving Markovian
decision problems as formulated by WHiTE, ScHWEITZER, MACQUEEN, and
OpoNI, concentrates attention on cost differences either between successive
stages in the same state, or relative to a base state in the same stage, rather
than on the total cost function. The former bound the (discounted) gain of
the optimal policy, while the latter relative-cost function determines the
policy to be chosen at each stage. While these authors have demonstrated
that these modified constructs converge to the gain and the optimal rela-
tive-cost function under rather general circumstances (undiscounted,
single-chain, aperiodic processes), little is known about the rates of con-
vergence. [Note that convergence of the relative-cost function guarantees
optimality of a currently repeating policy, as noted by Howarp.] A great
deal of insight into this mathematically difficult question may be gained by
working out the actual asymptotic convergence rates of these constructs for
the special case of a single fixed policy. This is an easy exercise via How-
ward’s methods, but very suggestive, since the policy will be asymptotically
constant for a well-behaved problem. (In particular, if there is a unique
optimal policy it will eventually repeat.) Convergence for both constructs
for the fixed-policy case is very powerful even for discount rates greater than
1.0, depending principally on the dominant eigenvalue of the transition
matrix. This note discusses the intuitive implications of this fact for the
relative efficiencies of modified value iteration, policy iteration, policy
iteration via successive approximations, or possible hybrids.

WHITE“‘ FIRST modified the method of successive approximations for solv-
ing Markov decision problems to focus attention on the convergence of
costs relative to the cost of a base state rather than on convergence of the total
cost function. For the undiscounted case, he proved rather elegantly that the
modified cost function converged at least geometrically ~(1—+)*'¥, where n is the
iteration, and there is postulated to be a state that one must return to every &
iterations with probability at least v, irrespective of the sequence of policies chosen.
He realized that the true convergence rate might be much faster, and that the latter

S

e ger



Downloaded from informs.org by [106.51.226.7] on 09 August 2022, at 20:38 . For personal use only, all rights reserved.

Published in Operations Research on February 01, 1971 as DOI: 10.1287/opre.19.1.244.
This article has not been copyedited or formatted. The final version may differ from this version.

Thomas E. Morton 245

restriction might be relaxed. ScawerTzer!"® proved convergence for the more
general single-chain aperiodic case, but said very little about the rate of conver-
gence.

MacQueen and Oponil have greatly strengthened the position of the user
of the procedure by modifying White’s method slightly to provide computable up-
per and lower bounds on the gain of the process at each iteration.

There is one special case for which it is easy to get sharp estimates of the asymp-
totic behavior of these modified costs and bounds via Howarp’s methods!U—the
special case of a single fixed policy. For arbitrary discount factor, the gain bounds
for a fixed policy turn out to converge asymptotically geometrically with a factor of
B, where 8 is the dominant eigenvalue of the transition matrix. Thus convergence
of these bounds is independent of the discount rate. Similarly the relative cost
function for this special case converges at rate o, where o is the discount factor.
Thus the relative cost function converges for discount factors greater than or equal
to 1.0 aslong as @ <1/8. Of course, in practice one need not actually compute 8 in
advance to use this fact; attainment of geometric convergence is easily recognizable
asit occurs. These facts will be demonstrated in the next section (utilizing Odoni’s
definitions and notation as much as possible).

While these results are not particularly deep, it does not seem that the following
practical and intuitive implications have been drawn.

First, if there is a unique optimal policy, experience of many authors indicates
that it is often reached very early. One is indeed, after that point, iterating a
fixed policy. It is necessary for the relative costs to converge to guarantee that
this policy will in fact be optimal, so that the fixed-policy asymptotic convergence
is of great interest.

Second, if the problem is ‘well-behaved’ in the sense that policies with gains
close to that of the optimal policy also have transition matrices very similar to that
of the optimal policy, then one would expect convergence characteristics ‘close to’
that for a fixed policy. Since policies with gains not close to optimal should be
eliminated fairly early, it is at least quite plausible, then, that the over-all number
of iterations be governed by the dominant eigenvalue also. (The author predicts,
for example, that many problems will converge by modified successive approxima-
tions for discount rates greater than 1.0.)

Third, these results make it absolutely clear that, even for the policy iteration
method, it is inefficient both from the point of view of computer storage, and com-
putations required to do the ‘policy-evaluation’ step by solving a set of simultaneous
equations. Simply repeatedly using the successive approximation machinery with
the policy kept fixed will produce both the gain and the needed relative cost func-
tion with geometric convergence. (Note that this machinery is needed for the
‘policy-improvement’ step in any event, so that the programming needed for such
a ‘modified policy iteration’ is actually a subset of that for ordinary policy iteration.)

Finally, mixtures of the two procedures may be employed. For example, one
could alternate a full maximizing iteration with 3 or 4 ‘cheap’ fixed iterations to
approximate the relative cost function of the current policy to increase the chance
that the next maximizing iteration would find an improved policy, etc. These
ideas will be discussed more fully in the final section.
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ASYMPTOTIC CONVERGENCE FOR A FIXED POLICY

A FINITE-STATE, discrete-time Markov system is controlled by a decision-maker,
After each transition n =0, 1, 2, - - ., the system is in one of N statesi=1, ---, N.
Then the decision-maker picks one of K actions resulting in an expected reward for

the period of qf” and the transition probability row vector p® =[p§f)], J=1,,
N, where [pff)] is the probability of going from state ¢ to state j given decision k.  *
We define vi(n) as the total expected earnings from the next n transitions, if the
system is now in state 7, and if an optimal policy is followed. Future costs are dis- =
counted by the factor «, where the only initial restriction on a is — » <@ < «.

Then we can write:
vi(n+1) =max; (g7 +aPPu(n)}. 1)

Now we restrict our attention to the special case of a single possible policy, for *
which this easily simplifies (after Howard) to ;

v(n+1)=32128 (aP)ig+ (aP)*+1(0). 2)

The inclusion of the ‘salvage’ term (aP)"+(0) allows us to interpret (2) as the
terminal stage of a full dynamic programming problem (n-1) iterations after the *
optimal policy (with transition matrix P and one stage reward vector q) has been
permanently achieved. (It should be repeated that nothing is being proved here
about the achievement of such a position in the first place.)

Suppose for ease of exposition that P has distinct real eigenvalues 1, 8, - -,
By—1 where 1>|B1] >|B|- - -, ete. (It is not really necessary that the eigenvalues
be real or distinct, only that |8;] <1 and that there be only one ergodic class. How-
ever, these generalizations would really add little and might tend to obscure the
point.)

Then after Howard (reference 1, pages 9-12).

Pi=8+3 70" 8T, @

e ke e e e,

where S has identical rows that are the stationary probabilities and the T'; are
transient matrices. It is convenient to define

1
Sa=k(§>=ke, (T))g=¢;, Sv(0)=ke, (T;)v(0)=r;. (4)
1

Thus k is the generalized gain, while the g¢;, r; are transient-cost error vectors.
Thus equation (2) can be rewritten as

p(n+1)= [ I @ (ket 2, Brgn)} +artkoetart o 870 ®)
Thus if, in the fashion of Odoni we define
z(n)=a *p(nt+1)—v(n)i, (6)
it follows directly that
z(n) =[k+ (a—1)kle+B1* @1+ (a1~ 1)r1]+0(8:"). (7)

Now let ¢ be the largest component of {g;4(af1—1)rs] and g be the smallest, and
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let K =k+(a—1)ko. Then the bounds of Odoni for the generalized gain become

L" (n)=[max; z.(n)l~K+8,"7,

d 8)
L’ (n)=[min, z:(n)l~K+8:3. (

Thus, the number of iterations required for convergence of z, L', or L” is of
the order of 1/(1—81) irrespective of a.
Next we turn to the convergence of the relative cost function defined (again as
by Odoni):
w(n)=v(n)—ovx(n)e. 9)
Now, if we define
a'=q,—aqne, r)=r;~7Nn,€ (10)

(that is, subtract the last component from every component), we have from (5)
and (9) that

wn)=Y im0 at{(ket e Brg)~ (-t Dorn Brgn))el+ Dopr (aBy)ory’

=20 1= a8/ (1—aB) g, + (a8)) ™)) av
Thus, the limiting relative-cost vector is given by
B=w(=)=30" ¢,/ (1-a8))", (12)
and the principal transient is given by
g=—q’ (1—ap1) 41/, (13)
allowing us to simplify the n-stage relative cost function to
w(n)=w+(af1)"g+0[(aB2)"]. (14)

Thus, the convergence of the relative-cost function takes about 1/(1—af:)
iterations, where we must restrict

—(1/8)<a<(1/81). (15)

However, a can always be 1.0 and usually considerably larger, and relative costs
will still converge.

COMPUTATIONAL IMPLICATIONS

For A TYPICAL large-scale problem, one does not need to calculate and store all
possible transition matrices and costs. Instead, one stores functional relations for
calculating the one-stage cost as a function of the state and the decision, which
states can be reached from the current state, and the associated probabilities.
These require very little storage, so that needed storage is three or four times the
number of states N. If from each state there are say at most J possible transitions
and K possible decisions, it is almost always the case that both J and K are much
smaller than N.

Ordinary value iteration takes on the order of 1/(1 —a) iterations for the cost
function to converge, so that the total computational effort is on the order of
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JKN /(1—ea). In particular, of course, convergence is tortuous for a close to 1.0
and impossible for a =1.0. :

The method of checking cost differences, which we might call ‘modified value -
iteration,” would take, after convergence to the optimal policy, about JKN /(1 —
af3*) computations. From the author’s experience, initial convergence to the
optimal policy requires a similar amount of effort. Problems of similar structure
seem to have similar dominant eigenvalues regardless of N.

The value-determination step of policy iteration requires N3 calculations per
iteration and vastly more storage than successive approximations. No amount of
decomposition or fancy programming would seem able to make large problems
tractable by this method.

On the other hand, policy iteration features the comfort of guaranteed monotone
convergence in a finite number of policy guesses. If the value-determination step
were to be done by modified successive approximations, the value determination
step would be reduced to JN /(1 —af*) computations, and storage requirements
down to 3N or 4N. The modified policy iteration and modified value iteration
would both still require JKN calculations on the full maximizing step. For large
values of K it might very well be that JN /(1 —af*)<KJKN, so that the value
determination step might become relatively cheap. Then one would be able to
compare modified value iteration and modified policy iteration directly by the
number of major iterations required.

Taking this one step further, a reasonable hybrid scheme might be: one full
iteration alternating with 5 or 6 ‘cheap’ fixed iterations in the early stages when
straight modified value iteration might converge slowly, one full iteration alternat-
ing with one or two in the middle stages, switching completely to the cheap itera-
tions after the same policy began to repeat, terminated by a full iteration just to
check the policy.
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