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Technical Notes

On Waiting Times for a Queue in Which
Customers Require Simultaneous Service from a
Random Number of Servers

ANDREW F. SEILA
University of Georgia, Athens, Georgia
(Received February 1982; accepted January 1984)

We consider a queueing system, first introduced by L. Green in 1980, in which
customers from a Poisson arrival stream request simultaneous service from a
random number of identical servers with exponential service times. Computa-
tional formulas for the second moment of time in queue are given, along with
tables of these values for selected systems. Numerical results show that the
coefficient of variation for time in queue is always greater than 1 and decreases
with increasing congestion.

REEN [1980] introduced a multiserver queueing system in which

customers from a Poisson arrival stream require simultaneous
service from a random number of independent and identical exponential
servers with a first-come-first-served queue discipline. This model has
been suggested for such systems as hospital emergency rooms, loading
docks, and maintenance systems. It is also a useful system for simula-
tion methodologists to use in testing certain estimation methods (Seila
[1980]). In this note, we present an expression for the second moment of
the stationary waiting time (in queue). All notation and terminology are
the same as in Green. In particular, A denotes the arrival rate, u the
common service rate for each server, s the number of servers in the
system, and ¢, for j = 1, 2, - - -, s the probability that an arriving customer
requests exactly j servers.

1. THE SECOND MOMENT OF TIME IN QUEUE

Green gives an expression for the Laplace-Stieljtes transform W(s) of
the stationary distribution of time in queue. A straightforward, but
tedious, evaluation of lim,_od2W(s)/ds? yields an expression for the
second (noncentral) moment. Define b, = E(B’) and d, = E(D’) for j =
1, 2,3, ---, where B is the interservice time random variable and D is

Subject classification: 705 simultaneous service from random numbers of servers.
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the initial delay random variable. Then, if Ab; < 1, the second moment
of time in queue is given by

E(W?) = [(1 = p)pa/6(1 — Ab1)*){2(1 — Ab1)*(3dz — Abs3 + Ad3)
+ 2Abs(1 — Ab)(1 — Ay + Ad))
+ 3Ab2(1 — Ab1)(2d; — b2 + Ady)
+ 3(Ab2)%(1 — Ab; + Ady)}.
The third moments of B and D are
bs = (3!/u®) The1 ¢k Thesre1 (1/h) Ts=n (1/7) Ty (1/1),

0y

and
ds = (3!/u’pa) Tim1 Gi The1 Comivr Dhmicksr (1/R) Tien (1/7) They (1/D).
The mean time in queue is given by
E(W) = (p/Nf1 + (M2)[(do/d1) + (\bo/(1 — Ab1))]},  (2)

where
by = (2/1%) Th=1 x Timsmierr (1/7) Thej (1/1),
dy = (2/6%pa) i1 G Thm1 Cx D=1 (1/7) iy (1/1),

and b, and d; are given in Green. With (1) and (2), the variance and
coefficient of variation of waiting times can be computed. In addition,
since service times are independent of waiting times, it is straightforward
to compute the first two moments of total time in system.

Tables I through III give means and standard deviations of waiting
times for a selected group of systems with various numbers of servers
and various levels of congestion given by Ab;. The arrival rate for all
systems is normalized to 1.0. The systems in Table I give equal proba-
bilities to the numbers of servers requested by arriving customers

¢g=1/s for j=1,2,... s,

where ¢; is the probability that j servers are requested. For the systems
in Table II, the probabilities are increasing

ci=2/s(s+1) for j=1,2,...,5,
and the probabilities are decreasing for the systems in Table III
g=2(s—j+1)/s(s+1) for j=1,2,...,s.

These tables will be useful to simulation methodologists who need to
know the first two moments of waiting time in order to evaluate esti-
mators of E(W). In each group of numbers, the mean is on top, the
standard deviation is directly below it, and the coefficient of variation is
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TABLE 1 .
MEANS AND STANDARD DEVIATIONS OF WAITING TIMES: CONSTANT
PROBABILITIES
Servers
by
2 3 4 5 7 9
0.3 0.108 0.010 0.095 0.093 0.090 0.088
0.284 0.275 0.270 0.266 0.262 0.260
2.64 2.76 2.83 2.87 2.93 2.96
0.5 0.444 0.421 0.409 0.401 0.391 0.386
0.832 0.816 0.806 0.801 0.793 0.789
1.87 1.94 1.97 2.00 2.03 2.05
0.7 1.529 1.483 1.457 1.440 1.419 1.407
2.190 2.173 2.162 2.155 2.147 2.142
1.43 1.47 1.48 1.50 1.51 1.52
0.8 3.067 3.006 2.971 2.948 2.920 2.904
3.890 3.875 3.865 3.859 3.852 3.847
1.27 1.29 1.30 1.31 1.32 1.33
0.9 7.935 7.857 7.812 7.782 7.746 7.724
8.937 8.927 8.921 8.917 8.912 8.909
1.13 1.14 1.14 1.15 1.15 1.15
0.95 17.868 17.781 17.730 17.697 17.655 17.631
18.966 18.961 18.958 18.955 18.952 18.951
1.06 1.07 1.07 1.07 1.07 1.07
0.99 97.814 97.719 97.664 97.627 97.581 97.554
98.993 98.992 98.991 98.991 98.990 98.989
1.01 1.01 1.01 1.01 1.01 1.01
TABLE 11
MEANS AND STANDARD DEVIATIONS OF WAITING TIMES: INCREASING
PROBABILITIES
Servers
b
2 3 4 5 7 9
0.3 0.107 0.096 0.089 0.084 0.077 0.072
0.303 0.298 0.293 0.288 0.278 0.269
2.84 3.11 3.30 3.43 3.62 3.74
0.5 0.457 0.431 0.411 0.396 0.373 0.357
0.898 0.904 0.901 0.893 0.873 0.855
1.97 2.10 2.19 2.25 2.34 2.40
0.7 1.611 1.580 1.547 1.517 1.465 1.423
2.378 2.432 2.446 2.442 2416 2.383
1.48 1.54 1.58 1.61 1.65 1.67
0.8 3.262 3.255 3.224 3.185 3.109 3.044
4.224 4.340 4.379 4.383 4.352 4.306
1.29 1.33 1.35 1.38 1.40 1.41
0.9 8.510 8.627 8.632 8.592 8.473 8.352
9.688 9.977 10.084 10.108 10.060 9.974
1.14 1.16 1.17 1.18 1.19 1.19
0.95 19.232 19.644 19.752 19.730 19.550 19.333
20.528 21.140 21.368 21.423 21.332 21.160
1.07 1.08 1.08 1.09 1.09 1.09

0.99 105.57 108.46 109.46 109.64 109.05 108.12
106.96 110.08 111.22 111.48 111.00 110.12
1.01 1.01 1.02 1.02 1.02 1.02
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on the bottom. Pascal routines for computing these quantities are avail-
able from the author.

It is interesting to note that, for this system, the coefficient of variation
(c.v.) of waiting times is always greater than 1, and it increases as the
congestion level decreases. For example, in Table III, the system with 5
servers and congestion level (Ab;) 0.3 has a mean waiting time of 0.090

TABLE III
MEANS AND STANDARD DEVIATIONS OF WAITING TIMES: DECREASING
PROBABILITIES
Servers
by
2 3 4 5 7 9
0.3 0.106 0.097 0.093 0.090 0.087 0.085
0.264 0.247 0.238 0.232 0.225 0.221
2.50 2.54 2.57 2.58 2.60 2.61
0.5 0.426 0.396 0.380 0.370 0.358 0.352
0.765 0.772 0.698 0.683 0.665 0.654
1.80 1.95 1.84 1.85 1.86 1.86
0.7 1.436 1.352 1.306 1.277 1.242 1.222
2.006 1.907 1.852 1.817 1.774 1.749
1.40 1.41 1.42 1.42 1.43 1.43
0.8 2.857 2.706 2.622 2.568 2.504 2.467
3.560 3.396 3.303 3.243 3.171 3.129
1.25 1.26 1.26 1.26 1.27 1.27
0.9 7.336 6.990 6.794 6.668 6.516 6.428
8.186 7.830 7.626 7.495 7.336 7.243
1.12 1.12 1.12 1.12 1.13 1.13
0.95 16.463 15.730 15.313 15.045 14.719 14.529
17.392 16.651 16.228 15.954 15.622 15.428
1.06 1.06 1.06 1.06 1.06 1.06
0.99 89.887 86.083 83.903 82.495 80.785 79.785
90.881 87.071 84.887 83.474 81.757 80.754
1.01 1.01 1.01 1.01 1.01 1.01

and a c.v. of 2.58. However, if the congestion level is 0.8, the mean
increases to 2.568, but the c.v. decreases to 1.26. Therefore, although
lower congestion levels mean smaller mean waiting times, they also
produce greater relative variation.
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