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Abstract. The scheme to propagate correlations between on-

line and off-line state variables in atmospheric inversions us-

ing the fixed-lag Kalman smoother proposed in Bruhwiler

et al. (2005) is explained as a process to impose a balanced

constraint on the on-line state variables. It is then extended

to the fixed-lag ensemble square root Kalman smoother and

fixed-lag square root sigma-point Kalman smoother, allow-

ing us to treat nonlinear observation operators easily. Further,

to constrain the posterior fluxes within their feasible ranges,

the constrained fixed-lag Kalman smoother is presented and

the variable transform technique is proposed for the other two

smoothers. Comparisons between various methods and ob-

servational data are conducted using a synthetic inversion of

atmospheric CH4 fluxes. The results indicate that our devel-

oped methods are good alternatives to existing methods for

conducting sequential inversion of atmospheric trace gases.

It is also shown that the benefit to include the correlations be-

tween on-line and off-line state variables is case dependent.

1 Introduction

Closing the budget of various greenhouse gases, such as

CO2, CH4 and N2O, has been an important task in our un-

derstanding of the human-induced climate change. A good

knowledge of the different sources and sinks of these green-

house gases is invaluable to mitigate or avoid the environ-

mental risk due to the increasing atmospheric content of

those trace gases. Atmospheric inversion modeling plays an
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important role in quantifying the sources and sinks of various

trace gases (Enting, 2002). It involves the comparison of for-

ward model simulations from atmospheric transport models

using prior sources and sinks with the spatiotemporally dis-

crete observations. The prior sources and sinks are optimized

by minimizing a cost function defined by the distances be-

tween the forward model simulation and observations (e.g.,

Gurney et al., 2002).

The inversion problem is usually formulated in the form

of Bayesian inference (Tarantola, 2005). In the Bayesian

theorem, the fluxes and their associated error characteristics

that are known as the prior (Pr(s)) and the observations and

their error characteristics that define the likelihood function

(Pr(o | s)) are used to obtain the posterior fluxes (Pr(s | o)) as

Pr(s | o) = C−1Pr(s)Pr(o | s) (1)

where C is some constant to normalize the posterior dis-

tributions. The Eq. (1) can be solved in the “batch” mode

(Gelb, 1974) that treats all observations simultaneously and

infer all the sources and sinks at the same time. This works

efficiently when the number of observations and the num-

ber of fluxes involved are small. However, as it is often the

case, the “batch” mode is cumbersome to implement when

more observations become available and higher spatiotempo-

ral resolution fluxes are to be inverted. Other methods, e.g.

the fixed-lag Kalman smoother (KS), adjoint-based nonlin-

ear optimization method, and the fixed-lag ensemble Kalman

smoother, have been used to overcome the difficulties found

in the “batch” inversion technique (e.g., Hartley and Prinn,

1993; Houweling et al., 1999; Bruhwiler et al., 2005; Peters

et al., 2005). These various methods have proven to be effi-

cient in solving the well-configured problems in their studies.
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Among these methods, the fixed-lag KS has been used

in a number of studies (e.g., Hartley and Prinn, 1993;

HaasLaursen et al., 1996; Bruhwiler et al., 2005; Michalak,

2008), because of its easiness to implement and its efficiency

to assimilate observations sequentially. The fixed-lag KS was

developed based on the fact that the signal of a certain flux

at a given time period in a given region will be fully blended

into the background field, such that no useful information

will be extracted from the observations after a sufficient time

of transport of the flux (Hartley and Prinn, 1993; Bruhwiler

et al., 2005).

Bruhwiler et al. (2005) noted that the conventional imple-

mentation of fixed-lag KS treats the fluxes that are no longer

estimated as if they are exact, even with known uncertainties.

They recommended to use correlations between the on-line

state variables (fluxes that are still under optimization) and

the off-line state variables (fluxes that are no longer updated)

to improve the posterior fluxes. They showed by propagat-

ing such correlations with the fixed-lag KS, superior results

to those from inversions without considering such correla-

tions can be obtained in their CO2 inversion experiments.

Bruhwiler et al. (2005) derived the correlation propagating

scheme as a correction to the prior covariance of the on-line

state variables before assimilating the atmospheric observa-

tions.

In this note, we put their derivation of the correlation prop-

agating scheme into a more general context, by showing that

the correlations between the on-line and off-line state vari-

ables effectively act as a special type of observational con-

straint without measurement error. This makes it possible to

extend the correlation propagation scheme to the ensemble

methods directly. We then extend the fixed-lag KS in Bruh-

wiler et al. (2005) to two ensemble-based methods, the fixed-

lag ensemble square root Kalman smoother (ESRKS) and

the fixed-lag square root central difference Kalman smoother

(SRCDKS). We apply the new developments to an atmo-

spheric inversion problem of CH4 fluxes, and show the new

developments are good alternatives to the fixed-lag KS in

solving the atmospheric inversion problem. In addition, in

our use of these three methods, we find that some of the in-

verted fluxes could have non-realistic values, i.e., either too

large or even negative because of the ill-posedness of the in-

version problem or insufficient constraints on the fluxes to be

inverted compared to that in the linear batch inversion. Solu-

tions to avoid such spurious inversions are provided with the

three methods.

In Sect. 2.1, we introduce the inversion problem and its

lagged-form. In Sect. 2.2, we show that the correlation prop-

agation scheme between the off-line and online state vari-

ables is an effective way to impose a balanced constraint on

the on-line state variables. We extend the development to the

fixed-lag ESRKS in Sect. 2.3 and to the fixed-lag SRCDKS

in Sect. 2.4. Techniques to impose interval constraint are pre-

sented in Sect. 2.5. The designation of the synthetic inversion

experiment is described in Sects. 2.6 and 2.7. Results and

discussions are made in Sect. 3, followed by a conclusion of

findings in Sect. 4.

2 Methods

2.1 The inversion problem and its lagged-form

z = Hs +v (2)

where z is the vector of observations, s is the vector of sinks

and sources, H is the sensitivity matrix that maps the fluxes

into the measurement space, and v is the uncertainty of the

approximated observations Hs with respect to the real obser-

vation z.

The aim of Bayesian inversion is to solve for s in Eq. (2)

using the Bayes theorem Eq. (1), by assuming variables z, s

and v as random variables with certain probability distribu-

tions.

In the lagged form, the forward equation Eq. (2) is

zJ =
[

HJ,J HJ,J−1 ··· HJ,1

]

[

s
T
J s

T
J−1 ··· s

T
1

]T

+v (3)

= [Hu Hv]
[

s
T
u s

T
v

]T

+v (4)

where su is the vector of on-line state variables defined by

fluxes that are still in estimation, from time J back to time

J −L+1, and sv is the vector of off-line state variables de-

fined by fluxes that are no longer updated, from time J−L

back to time 1. The observation operators Hu and Hv are

defined accordingly for su and sv .

2.2 A revisit of the Kalman smoother

The posterior distribution of the fluxes s+
u is

p(s+
u |s+

v ,z) =
p(z|s−

u ,s+
v )p(s−

u |s+
v )p(s+

v )
∫

p(z)dz
(5)

where superscript − means the prior forecast, and superscript
+ indicates the posterior inference.

Since s+
v is no longer estimated, it holds that p(s+

v ) is con-

stant, which leads to

p(s+
u |s+

v ,z) =
p(z|s−

u ,s+
v )p(s−

u |s+
v )

∫

p(z)dz
(6)

For the special case when normal distributions are as-

sumed for the state variables and observations, the posterior

distribution of su is

p(s+
u |s+

v ,z) = CN
(

z−Hus
−
u −Hvs

+
v ,R

)

N

(

[

s
+T
u −s

−T
u ,s+T

v −s
+T
v

]T

,Q

)

= CN
(

z−Hus
−
u −Hvs

+
v ,R

)

×N(s+
u −s

−
u ,Qaa) (7)
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where

Q =
[

Q−
uu Quv

Qvu Qvv

]−1

=
[

Q−1
aa Q−1

ab

Q−1
ba Q−1

bb

]

(8)

Qaa = Q−
uu −QuvQ−1

vv QT
uv (9)

and N(a,B) means a multi-dimensional normal distribution

with mean a and covariance B. C is a normalization constant.

Quu is the covariance of the on-line state variables, Qvv is

the covariance of the off-line state variables, and Quv is the

correlation matrix between the on-line and off-line state vari-

ables. Qbb, and Qab are defined exactly as the Eqs. (22–23)

in Bruhwiler et al. (2005).

The Kalman update of s+
u is then

s
+
u = s

−
u +Ku

(

z−Hs
−
u −Hs

+
v

)

(10)

where the Kalman gain is

Ku = PuzQ−1
zz

= QaaHu
T
(

R+HuQaaHu
T
)−1

(11)

where Puz is the correlation matrix between the state vari-

ables su and the measurement z defined as the product

QaaHT
u , and Qzz is the total error covariance of the measure-

ment with respect to the forecast defined as
(

R+HuQaaHT
u

)

.

For the posterior covariance Q+
uu of s+

u , we require it as

close as possible to that derived when both su and sv are up-

dated with z. Therefore, using the Kalman smoother update

of the posterior covariance of the full state variables,

Qa = Q−KHQ

=
[

Q−
uu Quv

Qvu Qvv

]

−KH

[

Q−
uu Quv

Qvu Qvv

]

(12)

we obtain

Q+
uu = Q−

uu −K1H

[

Q−
uu

Qvu

]

= Q−
uu −K1

(

Ps
uz

)T
(13)

where

K1 =
[

Q−
uu,Quv

]

H
T
(

R+HQHT
)−1

(14)

H≡[Hu, Hv], and Ps
uz is the correlation between the full

state variables
[

sT
u ,sT

v

]T
and the measurement z.

It can be proved the above formula for Q+
uu is equivalent

to the formula given in Bruhwiler et al. (2005) (their Eq. 25).

An alternative derivation for the above formulae is avail-

able when viewing sv as a special type of measurement. De-

fine a measurement operator Hvu, such that

sv = Hvusu +ǫ (15)

Qvv = HvuQuuHT
vu (16)

Quv = QuuHT
vu (17)

where ǫ is a random variable with distribution N
(

o,
√

γ I
)

,

with γ ≈ 0 (a small positive number). Therefore, using the

Kalman update we have

Therefore, using the Kalman update we have

s
−
u

′ = s
−
u +Quv (Qvv +γ I)−1

(

sv −Hvus
−
u

)

(18)

Thence, in the limit γ ≈ 0, E
(

s−
u

′
)

= E
(

s−
u

)

. Further invok-

ing the Kalman update of covariance, it can be shown that the

covariance of s−
u

′
is defined by Eq. (9). Now, it is clear that

the correlation between on-line and off-line state variables

effectively acts as a balanced constraint on the on-line state

variables. It indeed helps to reduce the background covari-

ance before the measurement data are used to constrain the

on-line state variables, but makes no update of the prior mean

E
(

s−
u

)

. The assimilation equation is still Eq. (10), and the fi-

nal update of covariance matrix is Eq. (13). This alternative

derivation more clearly shows that the covariance correction

Eq. (9) is necessary in order to sufficiently constrain the on-

line state variables. In addition, the new derivation provides a

way to assimilate the unusual correlation information (which

corrects the covariance of the on-line state variables) to im-

prove the inversion.

2.3 Further development of the ensemble square root

Kalman smoother

A detailed description of the ensemble square root Kalman

filter can be found in Tippett et al. (2003). We here give only

the steps needed in our study. According to Eq. (18), before

assimilating the observations, an adjustment to the scaled

ensemble perturbations from the evolution of the forecast

model should first be carried out to assure that the correla-

tion is properly accounted for. One possible implementation

of such adjustment is

S−
u,1 = S−

u −QuvQ−1
vv Sv (19)

Then the ensemble mean is updated with Eq. (10), while

the Kalman gain is computed as

Ku = S−
u,1V1

(

R+VT
1 V1

)−1
(20)

where V1≡
(

HuS−
u,1

)T

.

The scaled ensemble perturbations for next evolution cycle

are

S+
u = S−

u X2U2 (21)

where

X2XT
2 =

[

I−V2

(

VT
2 V2 +R

)−1
VT

2

]

(22)

where V2≡
(

HS−)T
, with H = [Hu,Hv], S−=

[

S−T
u , S+T

v

]T

and U2 is an arbitrary m×m orthogonal matrix. X2 is the

square root matrix of the above equation. The posterior co-

variance is

Q+
uu = S+

u S+T
u (23)
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2.4 Further development of the sigma-point square root

central difference Kalman smoother

The fixed-lag sigma-point Kalman smoother deterministi-

cally samples a group of points in the state variable space

for the ensemble simulations (Ambadan and Tang, 2009;

Van der Merwe, 2004). It is derivative free in assimilat-

ing the measurements (Nørgaard et al., 1998). The sigma-

point Kalman smoother is accurate up to second order in es-

timating mean and covariance (Julier and Uhlmann, 2004;

Nørgaard et al., 1998). Among the several different choices,

we use the square root form of the central difference Kalman

smoother for this study. Also, we assume the measurement

and model errors are additive, which greatly reduces the

computation requirements, while resulting in little loss of ac-

curacy compared to the complete forms presented elsewhere

(e.g., Nørgaard et al., 1998). The SRCDKS uses a set of

sigma points of size 2L1 + 1 derived from the distribution

defined by Eq. (7) to approximate the dynamic system,

S−
u =







s−
u , i = 0

s−
u +h2a,i, i = 1,···,L1

s−
u −h2a,i, i = L1 +1,···,2L1

(24)

where h is a scaling parameter of value
√

3 to make the ap-

proximation with second order accuracy, and

2a =
[

√

Qaaq(L1)
,
√

Qaaq(L1)

]

(25)

where q(L1) means taking L1 columns of
√

Qaa with some

specific criterion, which is detailed in the end of this section.

The predicted mean of the measurement is then

z =
i=0
∑

i=2L1

w
(m)
i zu,i (26)

w
(m)
0 =

h2 −L1

h2
, w

(m)
i =

1

2h2
, i = 1,···,2L1 (27)

where zu,i means the measurement variable calculated with

sigma point s
−
u,i .

The correlation matrix between state variables and mea-

surement is

Pu
uz =

√

Qaaq(L1)
CT

1,1:n (28)

and the Kalman gain is

Ku = Pu
uzQ−1

zz (29)

with

Qzz = C1CT
1 +C2CT

2 +R (30)

and

C1,i = w
(c)
1 (zu,i −zu,L1+i), i = 1,···,L1 (31)

C2,i = w
(c)
2 (zu,i +zu,L1+i −2zu,0), i = 1,···,L1 (32)

w
(c)
1 =

1

2h
,w

(c)
2 =

√
2h2 −1

2h2
(33)

The mean state is updated as

s
+
u = s

−
u +Ku(z−z) (34)

The posterior covariance is updated by making use of the

full state variables, whose sigma points are represented as

Su,v =







s−
u,v, i = 0

s−
u,v +h2i, i = 1,···,L2

s−
u,v −h2i, i = L2 +1,···,2L2

(35)

where s
−
u,v=

[

s
−T
u ,s−T

v

]T
, and

2 =
[
√

Q−
ssq(L2)

,

√

Q−
ssq(L2)

]

(36)

where q(L2) means taking L2 columns of
√

Q−
ss with some

specific criterion (see the last paragraph of this section).

Q−
ss =

[

Q−
uu Quv

Qvu Qvv

]

(37)

The correlation matrix between the full state variables and

observations, and the Kalman gain are computed in a similar

way as for the mean update step, except that only the u com-

ponents that are related to the on-line state variables are up-

dated. The posterior covariance is computed using Eq. (13).

We now give the method to specify q(L1) and q(L2). In

the original formulation of the sigma-point Kalman filter (see

e.g., Van der Merwe, 2004), the total number of sigma points

is chosen equal to 2L+1, where L is the total dimension of

the problem, including the dimension of the state variables,

the dimension of measurements and the dimension of process

noise of the forecast model. For high dimensional systems,

as often found in inversion, such formulation would require

tremendous computation. For instance, for a lag length of 6

and a total number of 62 measurement site in this study, the

total dimension L would be 195(= 19×6+19+62), with-

out model noise being accounted for. Even by assuming ad-

ditive error between the model and measurement, L is 133,

which means 267 sigma-points are needed to propagate the

state variables. So to reduce the computation burden, only

a subset of the total sigma points is chosen to propagate the

system. Those sigma points are chosen such that they are

closest to the error sub-space that is spanned by the dominant

eigen vectors of the error space. In implementation, the error

sub-space is formed using the principal component analysis

(Smith, 2002).

2.5 Dealing with interval constraint

When implementing our developed methods in inversion, we

find some of the inverted fluxes is negative or of extremely

large values. The following techniques are used to impose

the interval constraint to overcome this problem. Since the

KS can only deal with linear operators, we use the projec-

tion operator method (Simon and Chia, 2002) to impose the
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constraint. After inversion using the unconstrained formula

in Sect. 2.2, the following minimization problem is solved

J2 =
(

s
++
u −s

+
u

)T (

Q+
uu

)−1(

s
++
u −s

+
u

)

lbu ≤ s
++
u ≤ ubu (38)

We use the method associated with the concept of active

set (Murty, 1988) to solve the above optimization problem it-

eratively. Specifically, before each iteration, we first identify

the set of variables (say w(s)) that violate the interval con-

straint. This would give equality constraint of those variables

c
(

s
++
u

)

= o (39)

where c is a linear operator to impose the proper constraints.

Then the problem of Eqs. (38) and (39) is solved using the

Kalman update

s
++
u = s

+
u −Q+

uucT (cQ+
uucT )−1(c(s+

u )) (40)

Q++
uu = Q+

uu −Q+
uucT (cQ+

uucT )−1cQ+
uu (41)

After one iteration, if there are still (usually fewer) vari-

ables violating the constraint, the above iteration is repeated

until all constraints are satisfied.

For the ESRKS and the SRCDKS, the following variable

transform is used to impose the constraint

y = lb+
(

0.5+
atan(x)

π

)

(ub− lb) (42)

The above transform ensures the variable y will always fall

within the range (lb, ub). In the inversion, the state variable

is defined as a vector containing the scaling factors of the

flux adjustments defined with respect to the prior fluxes. The

posterior fluxes are thus the sum of prior fluxes and their ad-

justments. The constraints are imposed by letting the scaling

factors fall in the range [−0.95, 2.0] for all the flux adjust-

ments, except for that of the stratospheric destruction, which

is set to [−0.2, 0.2].

2.6 GEOS-Chem model and sensitivity matrix

To test our developed methods, we use the CH4 forward

transport simulations from an atmospheric transport model

GEOS-Chem (Bey et al., 2001; Wang et al., 2004) to de-

rive the elements of the sensitivity matrix H. GEOS-Chem

is a global 3-D offline transport model developed in the at-

mospheric chemistry group at Harvard University. The ver-

sion used in this study is based on v8-01-03 (http://www.

as.harvard.edu/chemistry/trop/geos), with proper modifica-

tions to transport CH4. The model is driven by meteorolog-

ical data assimilated by the Goddard Earth Observing Sys-

tem (GEOS) at the NASA Global Modeling and Assimila-

tion Office (GMAO) (Bey et al., 2001). An evolution of dif-

ferent versions of GEOS assimilated meteorology data from

GEOS-1 to most recent GEOS-5 are used in GEOS-Chem

simulations. In this study, we use the GEOS-5 meteorology

Fig. 1. Map of measurement sites involved in the inversion exper-

iments. The blue shaded region is used to compare the inverted

wetland CH4 flux by the different methods.

data. The horizontal resolution of the simulation is 4◦ longi-

tude by 5◦ latitude, with 47 hybrid eta levels in the vertical

direction that extends from 1000 hPa at surface to 0.01 hPa at

top.

The surface fluxes are organized into two categories. The

seasonal fluxes, i.e. the first category fluxes, vary month

by month and the aseasonal fluxes, i.e. the second category

fluxes, keep constant throughout the inversion period. For

seasonal fluxes, 1 Tg CH4 is emitted in one month and is then

shut down and allowed to decay until the end of forward sim-

ulation. For aseasonal fluxes, 1 Tg CH4 month−1 is emitted

in a year and is then shut down and allowed to decay until the

end of forward simulation. We sample the responses to the

emissions at the site-locations involved in the globalview-

CH4-2009 product (GLOBALVIEW-CH4, 2009). The for-

ward simulation is done from 1 January 2004 to 1 January

2010, totally 6 yr. We choose a subset of 62 measurement

sites (Fig. 1) to form the observational network. Therefore,

for every month, the sensitivity matrix is of maximum size

38×62 in our study. The maximum overall size of H for a

“batch” inversion is thence (19 × 72 + 19)×(62 × 72), which

is much larger than that involved in the fixed-lag inversions.

2.7 Implementation and comparison experiments

The different methods are coded with Fortran 95. The linear

algebra is done with publicly available packages of BLAS

and LAPACK from the Intel Math Kernel Library version

10.3.

Comparisons are made for an ideal inversion problem with

known true values of the fluxes. The synthetic observations

are sampled at 62 sites (GLOBALVIEW-CH4, 2009) (Fig. 1).

To quantify the uncertainty in model simulations when com-

pared to globalview measurements, the relative residual error

www.atmos-chem-phys.net/11/921/2011/ Atmos. Chem. Phys., 11, 921–929, 2011
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Fig. 2. Inversion results from the interval unconstrained inversion

using different methods. A lag length of 7 and a correlation length

of 0 are used for all Kalman update smoothers. The ensemble size

for ESRKS is 500, and that for SRCDKS is 101. The red lines are

the linear regressions of the inversions against the true fluxes.

(RRE) are derived for time series at each sample location

by comparing a reference run with the globalview CH4 data.

The RREs are different from January to December and are

assumed of no interannual variability. These RREs are then

used to derive the uncertainty (one-σ error) at different sam-

pling locations for the given temporal domain. The obser-

vations are finally obtained by perturbing the sampled time

series with the deduced one-σ error. The prior fluxes for the

inversion are perturbed randomly from the true fluxes, and

are used to run a prior simulation to sample the prior CH4

concentrations at the measurement sites.

3 Results and discussions

Inversions using different lag lengths for the different

Kalman update smoothers are shown in Table 1 and Fig. 2.

It is found a lag length 6 is enough to obtain stable inver-

sions, and inversions with a lag length 7 are conducted for the

comparisons. Results from a linear batch inversion and those

from the KS, ESRKS and SRCDKS with a lag length 7 are

compared in Fig. 2. Due to the ill-posedness of the inversion

problem, we find that all the inversions are not able to fully

reveal the true fluxes. Some unreasonable negative fluxes are

found in all inversions, due to the insufficient observational

constraint. This justifies the necessity of using some method

to impose the interval constraint on the posterior fluxes.

Posterior fluxes and their uncertainties obtained from the

interval unconstrained inversions using different months of

correlations are compared at the selected region for a two-

year period in Fig. 3. For the KS, differing from the re-

sults in Bruhwiler et al. (2005) and Michalak (2008), we find

Table 1. Inversion results using different lag lengths without tak-

ing correlations into account. All statistics are tested for statisti-

cal significance with p < 0.001. The first value in the brackets is

the root mean square error of the inversion; the second value is the

R2 value of the linear regression. The regressions are the posterior

fluxes against the true fluxes. The SRCDKS is implemented with

the reduced set of sigma points chosen using the PCA method. No

interval constraint is imposed for the inversions.

Methods Lag=6 Lag=8

KS 0.88x+0.20 (0.80, 0.83) 0.89x+0.20 (0.80, 0.83)

ESRKS-500 0.88x+0.21 (0.79, 0.84) 0.88x+0.22 (0.80, 0.83)

SRCDKS 0.87x+0.22 (0.83, 0.82) 0.87x+0.22 (0.82, 0.82)
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Fig. 3. Two-year comparison of the posterior fluxes and posterior

uncertainties between inversions using the different Kalman update

smoothers and those from the linear batch inversion. Results from

the linear batch inversion have been subtracted from the time series

for a better illustration. The ensemble size for ESRKS is 500, and

that for SRCDKS is 101. None of the Kalman type smoothers uses

interval constraints.

that the incorporation of correlations between on-line and

off-line state variables does not improve the inverted fluxes

and their posterior uncertainties appeared even smaller when

compared to the batch inversion. Including more months of

correlations further reduce the posterior uncertainty. Such

results are explained by the ill-posedness of the problem. In

the linear batch inversion, we find the inversion failed when

the state variable is updated using Eq. (11), and the covari-

ance is updated using Eq. (13). So their equivalent forms

(e.g. Eqs. (12–13) in Bruhwiler et al., 2005) derived using

the Sherman-Morrison-Woodbury identity are used in the
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Fig. 4. Inversion results from the interval constrained inversion us-

ing different methods. A lag length of 7 and a correlation length of

0 are used for all Kalman update smoothers. The ensemble size for

ESRKS is 500, and that for SRCDKS is 101. The red lines are the

linear regressions of the inversions against the true fluxes.
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Fig. 5. Two-year comparison of the posterior fluxes and posterior

uncertainties between inversions using the different Kalman update

smoothers. The true fluxes have been subtracted from the time se-

ries for a better illustration. The ensemble size for ESRKS is 500,

and that for SRCDKS is 101. Interval constraints are applied for all

Kalman update smoothers using the different algorithms described

in the text.

computation to ensure the numerical stability. For ESRKS,

the inclusion of one month of correlations slightly degrades

the inversion. Including more months of correlations does

improve the inversion when compared to the true fluxes and
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Fig. 6. Two-year comparison of the posterior fluxes and poste-

rior uncertainties between inversions using the different ensemble

Kalman update smoothers. The true fluxes have been subtracted

from the time series for a better illustration. The ESRKS in panels

(a) and (b) uses an ensemble size 400, and uses an ensemble size

600 in (c) and (d). The SRCDKS in panels (e) and (f) uses a ensem-

ble size 305. Interval constraints are applied for all inversions using

the variable transform algorithm described in the text.

reduces the posterior uncertainty. The results from includ-

ing six months of correlations are even better than that from

the linear batch inversion. The inclusion of correlations does

not affect the inversion result much when the SRCDKS is

used. This is explained by the fact that better approximations

of the covariance matrices are obtained by the SRCDKS be-

cause of its second order accuracy when the Gaussian error

is assumed. Also the information that can be extracted from

the approximated correlation matrix provides much less con-

straint on the on-line state variables than the observations.

Therefore, we conclude that the benefit from including cor-

relations between the on-line and off-line state variables de-

pend on the property of the problem to be solved. While in

the carefully designed problems in Bruhwiler et al. (2005)

and Michalak (2008), the correlation propagation is useful

to further constrain the inversion. For the problems in this

study, little or no benefit is obtained from the inclusion of the

correlations between the on-line and off-line state variables.

Since the interval unconstrained inversions could produce

some unphysical results, the interval constrained inversions

are conducted using the three Kalman update smoothers. The

results are compared with the true fluxes in Fig. 4, Fig. 5 and

Table 2. After applying the interval constraint, we find all

negative fluxes are corrected into the reasonable range. The

impact of inclusion of the correlations between the on-line
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Table 2. Inversion results using different correlation lengths (CL) with the lag length equals to 7. All statistics are tested for statistical

significance with p < 0.001. The first value in the brackets is the root mean square error of the inversion; the second value is the R2 value

of the linear regression. The regressions are the posterior fluxes against the true fluxes. Interval constraints are applied using the methods

described in the text. The SRCDKS is implemented with the reduced set of sigma points chosen using the PCA method.

Methods CL=0 CL=1 CL=3

KS 0.89x+0.16 (0.79, 0.83) 0.89x+0.16 (0.80, 0.83) 0.88x+0.17 (0.82, 0.83)

ESRKS-500 0.85x+0.15 (0.82, 0.83) 0.85x+0.17 (0.80, 0.84) 0.85x+0.17 (0.81, 0.84)

SRCDKS 0.85x+0.12 (0.85, 0.83) 0.84x+0.13 (0.86, 0.82) 0.84x+0.13 (0.85, 0.83)

Table 3. Inversion results using different correlation lengths (CL) with the lag length equals to 7. All statistics are tested for statistical

significance with p < 0.001. The first value in the brackets is the root mean square error of the inversion; the second value is the R2 value

of the linear regression. The regressions are the posterior fluxes against the true fluxes. Interval constraints are applied using the variable

transform method described in the text. The SRCDKS is implemented with the full set of sigma points determined by the error covariance

matrix of the state variables.

Methods CL=0 CL=1 CL=3

ESRKS-400 0.86x+0.14 (0.79, 0.84) 0.85x+0.17 (0.81, 0.84) 0.85x+0.17 (0.80, 0.84)

ESRKS-600 0.86x+0.15 (0.80, 0.84) 0.85x+0.17 (0.80, 0.84) 0.85x+0.17 (0.81, 0.84)

SRCDKS-full 0.86x+0.17 (0.78, 0.85) 0.87x+0.16 (0.77, 0.85) 0.87x+0.15 (0.77, 0.85)

and off-line state variables again differs among the inver-

sions using different methods. For the interval constrained

KS, the inclusion of correlations degrades the inverted pos-

terior fluxes. However, for ESRKS and SRCDKS, the in-

clusion of correlations does not affect the posterior fluxes

significantly (Table 2). Including more months of correla-

tions in KS does not change the posterior uncertainty of the

fluxes significantly because of the numerical noise in the im-

plementation. With the ESRKS, more months of correlations

reduces the posterior uncertainty for the selected fluxes at the

specific time period. In contrast, with the SRCDKS, the in-

clusion of correlations increases the posterior uncertainty and

the inversion is not significantly dependent on the number of

months that are used to propagate the correlations (Fig. 5).

For the ensemble filters ESRKS and SRCDKS, we test the

impact of ensemble size on the inversions (Fig. 6 and Ta-

ble 3). When the ESRKS is implemented with an ensemble

size 400, the inverted posterior fluxes have a slightly worse

linear fitting against the true fluxes when compared to that

from the inversion using an ensemble size 500 (Table 2).

Increasing the ensemble size to 600, the inversion changes

slightly. Therefore 500 is a proper ensemble size to obtain

a good inversion with ESRKS. The inclusion of correlations

between on-line and off-line state variables impacts the re-

sults more when the ensemble size is smaller. This is because

of the insufficient approximation of the correlations for the

inversion using a smaller ensemble size and it tends to de-

grade the inverted fluxes. The posterior uncertainties appear

smaller as the correlation length increases for the inversion.

The uncertainty reduction is most significant by the inclu-

sion of the first month of correlations. For the SRCDKS with

the full set of sigma points determined by the covariance ma-

trix, the inversion provides superior results to that uses sigma

points chosen with the PCA method. In addition, we notice

that the inclusion of correlations in such case increases the

posterior uncertainty for the specific fluxes used in compar-

ison. The inclusion of the first month of correlations again

improves the inversion most (Table 3), similar to the finding

in Bruhwiler et al. (2005).

We also repeat the above comparisons using observations

from 151 globalview sites. The results (not shown) are sim-

ilar to the inversions using 62 globalview sites. The linear

batch inversion still results in some negative fluxes and the

inclusion of correlations between on-line and off-line state

variables only affects the posterior fluxes from the Kalman

update smoothers slightly. We conclude that our developed

methods are robust in atmospheric CH4 inversions, irrespec-

tive of the number of sites being used.

4 Conclusions

Propagating correlations between on-line and off-line state

variables is necessary to improve the sequential atmospheric

inversion with the KS proposed in (Bruhwiler et al., 2005).

We show that such correlations act as a balanced constraint

on the on-line state variables. We then extend the correlation

propagating scheme to two different ensemble smoothers.

The extensions are able to account for nonlinearity in the

inversions and impose interval constraints on the inverted
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fluxes easily. The comparison studies indicate the new meth-

ods are good alternatives to existing methods in inverting

fluxes of trace gases (e.g., CO2 and CH4) using atmospheric

measurements. The methods are potentially useful to solve

very high dimensional inversion problems.
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