This article was downloaded by: [106.51.226.7] On: 09 August 2022, At: 00:06
Publisher: Institute for Operations Research and the Management Sciences (INFORMS)
INFORMS is located in Maryland, USA

Operations Research
OPERATIONS E .

RESEAH':H Publication details, including instructions for authors and subscription information:
i nu:l http://pubsonline.informs.org

Technical Note—Shortest-Path Algorithms: A Comparison

gﬂgimmm
HEER
59-8

To cite this article:
Bruce Golden, (1976) Technical Note—Shortest-Path Algorithms: A Comparison. Operations Research 24(6):1164-1168.
https://doi.org/10.1287/opre.24.6.1164

Full terms and conditions of use: https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-
Conditions

This article may be used only for the purposes of research, teaching, and/or private study. Commercial use
or systematic downloading (by robots or other automatic processes) is prohibited without explicit Publisher
approval, unless otherwise noted. For more information, contact permissions@informs.org.

The Publisher does not warrant or guarantee the article’s accuracy, completeness, merchantability, fitness
for a particular purpose, or non-infringement. Descriptions of, or references to, products or publications, or
inclusion of an advertisement in this article, neither constitutes nor implies a guarantee, endorsement, or
support of claims made of that product, publication, or service.

© 1976 INFORMS

Please scroll down for article—it is on subsequent pages

informs.

With 12,500 members from nearly 90 countries, INFORMS is the largest international association of operations research (O.R.)
and analytics professionals and students. INFORMS provides unique networking and learning opportunities for individual
professionals, and organizations of all types and sizes, to better understand and use O.R. and analytics tools and methods to
transform strategic visions and achieve better outcomes.

For more information on INFORMS, its publications, membership, or meetings visit http://www.informs.org

http://pubsonline.informs.org
https://doi.org/10.1287/opre.24.6.1164
https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-Conditions
https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-Conditions
http://www.informs.org

Downloaded from informs.org by [106.51.226.7] on 09 August 2022, at 00:06 . For personal use only, all rights reserved.

Published in Operations Research on December 01, 1976 as DOI: 10.1287/opre.24.6.1164.
This article has not been copyedited or formatted. The final version may differ from this version.

OPERATIONS RESEARCH, Vol. 24, No. 6, November-December 1976

Shortest-Path Algorithms: A Comparison

BRUCE GOLDEN
Massachusetts Institute of Technology, Cambridge, Massachusells
(Received original May 5, 1975; final, October 8, 1975)

In this note we present some computational evidence to suggest that
a version of Bellman’s shortest-path algorithm outperforms Treesort-
Dijkstra's for a certain class of networks.

MANY APPLICATIONS dealing with transportation and communi-
cation networks require the calculation of shortest paths. We discuss
here the specific problem of finding the shortest paths from one node to
all others. Our objective is to present some computational experience to
support the claim that a version of Bellman’s algorithm outperforms
Treesort-Dijkstra’s for a certain class of networks. This note complements
a recent paper by Pape [8] and indicates that, for the class of networks
under consideration, Pape’s reluctance to use a variable length list of modes
to be scanned is unwarranted. (The phrase ‘“variable length list”” refers
to the fact that no realistic a priori bound on the length of the list is known.)
A sequence of distinct arcs (ay, ag, - -, a,), where a, and a4, are ad-
jacent for £ = 1,---, p — 1 is called a path; a route is defined as a se-
quence of adjacent arcs that need not be distinct. We seek the shortest
paths from the origin to all other nodes. Dreyfus [3] discusses several such
algorithms in his survey paper, primarily from the viewpoint of compu-
tational complexity.

Dijkstra’s algorithm (reference 2) requires on the order of NN? addi-
tions and NN® comparisons in the worst case where NN is the number
of nodes. This algorithm is a “label-setting”’ method that assigns permanent
labels as it proceeds. Initially, the set T consists of the origin alone. T is
augmented one node at a time so that at each step T is a set of permanently
labeled nodes that corresponds to the shortest-path tree for all nodes in 7'
Termination occurs when all nodes of the graph are in 7. Labeling methods
for computing shortest paths can be divided into two general classes,
‘“label-setting” and “label-correcting” (see reference 5). Label-setting
methods are valid only for non-negative arc lengths.

Bellman’s algorithm (reference 1) solves the problem in at most NN?3
additions and comparisons or detects the existence of a negative cycle. This
algorithm is an example of the label-correcting approach, in which no

1164

Downloaded from informs.org by [106.51.226.7] on 09 August 2022, at 00:06 . For personal use only, all rights reserved.

Published in Operations Research on December 01, 1976 as DOI: 10.1287/opre.24.6.1164.
This article has not been copyedited or formatted. The final version may differ from this version.

Bruce Golden 1165

node labels are considered permanent until, when at termination, they all
are.

If negative cycles exist, then clearly there can be no shortest route on a
network. The shortest-path problem in that case has been shown to be
combinatorially equivalent to the traveling salesman problem [4].

The performance of shortest-path algorithms is heavily dependent upon
the following three factors: (i) the sparseness of the network, (ii) list
processing and network representation in the computer code, and (iii)
distance measures on the ares.

The topological structure of the network clearly exerts a major influence
on running time for any graph algorithm. Theoretical upper bounds have
been calculated assuming a complete graph with every pair of nodes con-
nected by an arc. If the graph is sparse, running times may be reduced
significantly [5]. (The same observation has been exploited with the mini-
mum spanning tree problem [7].) Computer representation of networks
is discussed in reference 5. Distance measures will be mentioned later.

1. IMPLEMENTATION

For sparse graphs Bellman’s algorithm can be made quite efficient using
a list structure that keeps track of which nodes can potentially label other
nodes. This list is of nodes to be scanned.

The origin is the first element on the list. Those nodes that can be
reached directly from the origin are labeled and placed on the list. We
proceed downward from the top of the list and scan each member of the
list, possibly adding new members if a new label is less than a current
label. When we have scanned the entire list, we have the shortest-path tree.
At the same time we trace the shortest-path tree through the predecessor
labels for each node. A flag associated with the active (unscanned) mem-
bers of the list prevents us from placing one node on the active list more
than once at any time.

In the Dijkstra algorithm a primary computational concern involves the
determination of the minimum distance node at each step. We haveimple-
mented a modified Dijkstra algorithm, where Floyd’s treesort algorithm

Downloaded from informs.org by [106.51.226.7] on 09 August 2022, at 00:06 . For personal use only, all rights reserved.

Published in Operations Research on December 01, 1976 as DOI: 10.1287/opre.24.6.1164.
This article has not been copyedited or formatted. The final version may differ from this version.

1166 Technical Notes

is used for the sorting of these distances. This approach has been studied
by Johnson [6] and by Kershenbaum and Van Slyke [7]. The node dis-
tances dy, d, - - - , dm, where m = 2 — 1, are arranged in a binary tree

TABLE 1

CoMPUTATIONAL EXPERIENCE: BELLMAN vS. DIJKSTRA (SERIES A) (AVERAGE
RunniNGg TiMEs GIVEN IN SECONDS)

DIJKSTRA BELLMAN AVERAGE LIST MAXIMUM LIST
NN R TIME TIME LENGTH LENGTH
3 .021 .014 60.0 72
50 7 024 013 55.6 56
5 027 017 8.5 73
3 029 071 59.7 70
3 .047 .026 117.6 131
100 7 -055 L0532 128.2 130
5 ~062 037 174.6 T41
6 .065 044 125.7 149
3 .084 .040 176.1 185
150 7 ~087 053 197.6 735
5 _102 060 201.3 132
5 .103 066 1951 720
3 .148 .072 323.3 389
250 7 .164 -090 338.9 386
3 178 .103 3271 363
3 ~190 116 353.0 377
3 .230 .108 466.6 518
350 z ~251 178 173.8 523
T 7264 152 501.3 506
5 277 71 509.2 595
3 .327 .155 703.0 819
500 T 368 177 658.5 766
T .406 218 699.7 802
3 A 249 7225 782
3 .538 .229 1012.6 1136
750] 573 286 1090.7 1262
5 637 334 1068.2 1140
5 _690 -402 T110.5 1731
3 .733 .300 1389.5 1589
1000 1 _809 383 1447.6 1661
5 .848 433 1462.0 1629
3 894 518 1535.8 1676

with k levels, called a heap. The essential property of a heap is that d; <
ds; and d; £ dyiq1. Figure 1 shows a heap fork = 3(dy = 3,dy = 5,ds = 4,
and so on.

If the list length is I < 2* — 1, we can fill positions I + 1, -+, 2 —1
for the smallest k such that I < 2° — 1 with distances of «. Clearly, dy
is the minimum node distance under consideration. If we remove d; from
the heap, a new heap can be constructed with relative ease. The modified
Dijkstra algorithm has node distances d; composing the heap for all nodes

Downloaded from informs.org by [106.51.226.7] on 09 August 2022, at 00:06 . For personal use only, all rights reserved.

Published in Operations Research on December 01, 1976 as DOI: 10.1287/opre.24.6.1164.
This article has not been copyedited or formatted. The final version may differ from this version.

Bruce Golden 167

7 that are not yet in 7. After a new node has been added to T and has been
scanned, we remove the top node of the heap and form a new heap.

2. COMPUTATIONAL EXPERIENCE

Bellman’s and Dijkstra’s algorithms have been coded and tested on
M.LT.’s IBM 370/168 system assuming non-negative arc distances. Two
groups of networks are studied: Series A and Series B. Node coordinates
are generated from a uniform probability distribution over a rectangular
grid, and then the euclidean distances are calculated between ‘“‘randomly
selected” pairs. These pairs are chosen in such a way that the out-degree
of every node is equal to R for Series A, and the out-degree of each node

TABLE II

COMPUTATIONAL EXPERIENCE: BELLMAN vs. DIiksTRA (SERIES B) (AVERAGE
RunNiNg TiMeEs GIVEN IN SECONDS)

DIJKSTRA BELIMAN AVERAGE LIST MAXIMIM LIST

NN TIME TIME LENGTH LENGTH
50 .028 .015 58.7 64
100 .055 .030 117.2 132
150 .091 .052 193.3 211
250 .165 .088 323.6 358
350 .238 .133 497.5 574
500 .365 .184 695.9 886
750 .574 275 1050.9 1305
1000 .808 .382 1422.7 1501

takes on the value 2, 3, 4, 5, or 6 with equal probability for Series B. A
computational consideration in Bellman’s algorithm is how long the list
of nodes to be scanned grows. With cuclidean distances and sparse net-
works, one would expect that most nodes are not put on the list to be
scanned more than once (precisely because of the triangle inequality).

For Series A we generated ten networks of NN nodes, where each node
had fixed out-degree R for NN = 50, 100, 150, 250, 350, 750, 1000 and
R = 3,4, 5, 6. For Series B we generated and tested ten networks of NN
nodes, where the out-degree for each node varied from 2 to 6. We then
applied Bellman’s and Dijkstra’s algorithms to determine shortest paths.
The mean running times for Series A and Series B are shown in Table I
and Table II, respectively. In addition, the average length of the list of
nodes to be scanned and the maximum length are displayed.

For a given R (Serics A) our results indicate that the relationship be-

Downloaded from informs.org by [106.51.226.7] on 09 August 2022, at 00:06 . For personal use only, all rights reserved.

Published in Operations Research on December 01, 1976 as DOI: 10.1287/opre.24.6.1164.
This article has not been copyedited or formatted. The final version may differ from this version.

1168 Technical Notes

tween NN and running time is nearly linear for both algorithms. The
Series B results are similar. Bellman’s algorithm clearly outperforms
Dijkstra’s algorithm; running times from Dijkstra’s algorithm are about
twice the running times from Bellman’s. Interestingly, as the number of
nodes increases, Bellman’s algorithm becomes more and more attractive
relative to Dijkstra’s.

Our computational experience suggests that the variable length list does
not become a great deal longer than NN. In fact, for NN < 1000, we can
be confident that the list length will not exceed 2- NN for the class of net-
works discussed in this paper. Key properties in this class include network
sparsity and euclidean distances.

ACKNOWLEDGMENTS

The author would like to thank Aaron Kershenbaum of Network Analy-
sis Corporation and Professor Gabriel Handler of M.L.T. for the oppor-
tunity to perform this computational comparison. Helpful comments by
Professor Thomas Magnanti of M.L.T. are appreciated. In addition, the
author is grateful to NAC for the use of their modified Dijkstra code.

REFERENCES

1. R. BELLMaN, “On a Routing Problem,” Quart. Appl. Math. 16, 87-90 (1958).

2. E. DuksTrA, “A Note on Two Problems in Connection with Graphs,” Nu-
merische Mathematik 1, 269-271 (1959).

3. S. DreyruUs, “An Appraisal of Some Shortest-Path Algorithms,” Opns. Kes.
17, 395412 (1969).

4. L. Forp, Jr., anp D. R. FuLkerson, Flows in Networks, Princeton University
Press, Princeton, N.J., 1962.

5. J. GrusiNN anp C. Wirzears, “A Performance Comparison of Labelling Al-
gorithms for Calculating Shortest Path Trees,” National Bureau of Stand-
ards, Technical Note 772, May 1973.

6. E. Jounson, “On Shortest Paths and Sorting,”” pp. 510-517, in Proceedings of
1972 ACM Conference, Boston, August 1972.

7. A. KErsHENBAUM AND R. VAN SvykE, “Computing Minimum Spanning Trees
Efficiently,” pp. 518-529, in Proceedings of 1972 ACM Conference, Boston,
August, 1972.

8. U. Parg, “Implementation and Efficiency of Moore-Algorithms for the Shortest
Route Problem,” Math. Programming 7, 212-222 (1974).

Downloaded from informs.org by [106.51.226.7] on 09 August 2022, at 00:06 . For personal use only, all rights reserved.

Published in Operations Research on December 01, 1976 as DOI: 10.1287/opre.24.6.1164.
This article has not been copyedited or formatted. The final version may differ from this version.

Copyright 1976, by INFORMS, all rights reserved. Copyright of Operations Research
is the property of INFORMS: Institute for Operations Research and its content may not
be copied or emailed to multiple sites or posted to a listserv without the copyright
holder's express written permission. However, users may print, download, or email
articles for individual use.

