This article was downloaded by: [106.51.226.7] On: 09 August 2022, At: 23:30
Publisher: Institute for Operations Research and the Management Sciences (INFORMS)
INFORMS is located in Maryland, USA

Operations Research
OPERATIONS E .

RESEAH':H Publication details, including instructions for authors and subscription information:
i nu:l http://pubsonline.informs.org

Technical Note—Solving Integer Programming Problems by

'iE N H i Aggregating Constraints
* ﬂ F . Kenneth E. Kendall, Stanley Zionts,

594

To cite this article:
Kenneth E. Kendall, Stanley Zionts, (1977) Technical Note—Solving Integer Programming Problems by Aggregating Constraints.
Operations Research 25(2):346-351. https://doi.org/10.1287/opre.25.2.346

Full terms and conditions of use: https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-
Conditions

This article may be used only for the purposes of research, teaching, and/or private study. Commercial use
or systematic downloading (by robots or other automatic processes) is prohibited without explicit Publisher
approval, unless otherwise noted. For more information, contact permissions@informs.org.

The Publisher does not warrant or guarantee the article’s accuracy, completeness, merchantability, fitness
for a particular purpose, or non-infringement. Descriptions of, or references to, products or publications, or
inclusion of an advertisement in this article, neither constitutes nor implies a guarantee, endorsement, or
support of claims made of that product, publication, or service.

© 1977 INFORMS

Please scroll down for article—it is on subsequent pages

informs.

With 12,500 members from nearly 90 countries, INFORMS is the largest international association of operations research (O.R.)
and analytics professionals and students. INFORMS provides unique networking and learning opportunities for individual
professionals, and organizations of all types and sizes, to better understand and use O.R. and analytics tools and methods to
transform strategic visions and achieve better outcomes.

For more information on INFORMS, its publications, membership, or meetings visit http://www.informs.org

http://pubsonline.informs.org
https://doi.org/10.1287/opre.25.2.346
https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-Conditions
https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-Conditions
http://www.informs.org

Downloaded from informs.org by [106.51.226.7] on 09 August 2022, at 23:30 . For personal use only, all rights reserved.

Published in Operations Research on April 01, 1977 as DOI: 10.1287/opre.25.2.346.
This article has not been copyedited or formatted. The final version may differ from this version.

OPERATIONS RESEARCH, Vol. 25, No. 3, March-April 1977

Solving Integer Programming Problems by Aggregating
Constraints

KENNETH E. KENDALL

University of Wisconsin, Milwaukce, Wisconain

STANLEY ZIONTS
State University of New York, Buffalo, New York
(Received original Junuary 1973; finul, July 1976}

Integer programming problems with bounded variables can be
solved by combining the constraints info an equivalent single con-
straint. This note presents a refinement to earlier work that reduces
the size of the coefficients in the equivalent constraint and points out
advontages as well as computational considerations for solving
problems by this method.

NUMBER of mcthods have been proposed for reducing an integer

programming problem with bounds on the variables to a single-con-
straint knapsack problem. These include works of Anthonisse [1, 2], Brad-
ley 4, 5], Elmaghraby and Wig [6], Glover [7], Glover and Woolsey [8],
Hammer and Rudeanu [9], Mathews [10], and Padberg [11]. The basic
idea of all of these methods is to find an cquivalent single-constraint prob-
lem that is ostensibly casier to solve than the original nulti-constraint
problem. (One of the approaches, that of Bradley |5, includes a method for
combining the remaining constraint with the objective function, leaving
only the bounds on variables.) In this note we present a theorem that
gives a new result that appears to integrate some of the previous work, und
we show that single-constraint problems having relatively small cocthi-
cients can be found by means of the result. We then use it to develop some
gimpler and more practical results. We conclude with some observations
about the possible implementation of such methods.

1. AN OVERVIEW OF CONSTRAINT AGGREGATION SCHEMES AND A
CONSTRAINT AGGREGATION THEOREM
A naive constraint aggregation scheme was proposed by Padberg {11]
and independently by us. Consider a constraint set
Az = b, 0=:sSu, r integer, 1
346

Downloaded from informs.org by [106.51.226.7] on 09 August 2022, at 23:30 . For personal use only, all rights reserved.

~ Published in Operations Research on April 01, 1977 as DOI: 10.1287/opre.25.2.346.
This article has not been copyedited or formatted. The final version may differ from this version.

Kenneth E. Kendoll and Stanley Zionts 347

where A is an m by n matrix, z and u are n by 1 vectors, and b is an m
by 1 vector. 4, g, and b are made up of finitc real constants. Without loss
of generality, we assume A, b, and u to consist only of integers. Define
the vector y as a 1 by m row vector: y = (1, M, A, --- |, M™™"), where
M is a sufficiently large integer. Now the following constraint set (which,
except for the bounds on z, is a single constraint) is equivalent to (1):

yAz = yd, 0 <z < u, zinteger. (2)

This method generally leads to cnormous coefficients in the constraints
and is consequently useful only as a means for thinking about constraint
aggregation schemes. We omit the proof but note that, by virtue of the
bounds on the variable z and of the integrality and finiteness of the ele-
ments of the matrix A and the veetor b, the procedure permits a scalar
representation of a veetor relationship, thereby preserving the original
relationships. The less naive methods deseribed below accomplish the
same result but achieve smaller (and thercfore more desirable) coefficients.

Most of the current constraint aggregation schemes combine two con-
straints into one and then combine a third with the resulting constraint,
and so on until all constraints have been combined. A few methods com-
bine all the constraints at one time, although the calculations are effec-
tively the samc as in a onc-at-a-time scries of calculations.

Let the two constraints be Y j-f a;2; = bi, = 1, 2, with conditions
0 < z; S u;, z; integer. Define the function g(z) = b; — X j=1 ayz; for
any set of values z; integer, 0 < x; S u,. The veetor z is a solution to
the sth constraint if and only if ¢.(z) = 0.

A valid sct of multipliers A\, and A gencrates an equation Mgi(z) +
Mga(z) = 0. We are interested only in multipliers for which the latter
equation implics g1(z) = g(z) = 0. By rewriting the combined equation,
we have

0n(z) = (—M/M)ga(2), (3)
and by using the bounds
bi— 2T afu; S gd(z) S b — 20T ai,,
where af; = max {a;, 0} and a7; = min {a;, 0}, we sec that A, = 1 and
M > max{b — Y -t Gijui, —by + X.i=t aiju;} is a legitimate set of
multiplicrs. (We may obtain another sct of multipliers by exchanging
subscripts.) Thus, for the smallest absolute nonzero value of ga(z) we re-

quire the value of gi(x) for cquality to be outside its feasible range. Theo-
rem 1 gives a strong though not a dominant sct of multipliers.

TuroreEM 1. If0 < z < uand inleger, the constrainis
Yitaz; =b (gi(z) = 0) (4)

Downloaded from informs.org by [106.51.226.7] on 09 August 2022, at 23:30 . For personal use only, all rights reserved.

~ Published in Operations Research on April 01, 1977 as DOI: 10.1287/opre.25.2.346.
This article has not been copyedited or formatted. The final version may differ from this version.

348 Technical Notes
and Yitamgi=b (ga(z) = 0) (5)
are equivalent to
Mg:(-’ﬁ) + MI(I) = {6)
if the inleger multipliers \; satisfy the following condilions:
1. For any inleger solution values 0 < z; < u;,;j = 1, --- . n, either \,

does not divide ga(x) or \s does not divide g,(x}.
2. A\ and \; are relatively prime. (Their yreatest common divisor 18 une.)

Proof. The proof that (4) and (5) imply (6) is trivial. To prove that
(8) implies (4) and (5), write (6) a8 gi(x) = (—M/N) ¢g:(x). By defi-
nition the left-hand side of the above equation is integer; consequently,
so is the right-hand side. Now, by virtue of condition 2, gs(x)/As is in-
teger, and 80 is g,(z)/\. But this contradicts condition 1 unless ¢:(x)
= ga(x) = 0, thereby proving the theorem.

Theorem 1 may not appear to be much valuc at first glance. We may,
however, use it in conjunction with the basic requirement that

gi(x) # —(A/N)ga(x) (N

unless both g,(z) and gs(x) are zero. Theorem 1 and (7) give us a syste-
matic (but computationally horrible) way of cnumerating to find good
multipliers. For a particular sct of relatively prime multipliers, we can
first check to ace if all solutions satisfy condition 1 of Theorem 1. If con-
dition 1 is not satisfied, the multipliers will still be valid if we can show
that (7) holds.

Mcthods proposed by Anthonisse [1, 2], Bradley [4], and Glover and
Woolscy [8] use relatively prime values for A; and As outside the range of
values specified by the upper and lower bounds of each cquation. These
methods consequently satisfy conditions 1 and 2

On the contrary, we propose that multipliers smaller than those gen-
crated by others can be found cfficiently by obtaining values of n(x!
and gs(x) that cannot occur within the range of values for gi(r} and
ga(x) as specified by the bounds of each cquation. Such values are valid
multipliers A; and A, provided that they satisfy the conditions of Theorem
1.

The first method is to choose A > by — 3,i°7 azp%, — MiNey;0 [a2, |}
and) > bx—);z:fzi' aiju; — Min, 0 {| @15 |} such that (ba— 25T azju,) /M
and (b, — Y =t azyu;) /M are not integers and A, and A arc relatively
prime.

The second method is slightly more involved.

(2) Enumerate a few values of gi(z) = b -- Y it ar, for 0 S 1,
< u; beginning with the solution x; = u; if a;, < 0 and r, = 0 otherwise,
so that g.(z) strictly decreases and no values in the sequence are omitted.

Downloaded from informs.org by [106.51.226.7] on 09 August 2022, at 23:30 . For personal use only, all rights reserved.

Published in Operations Research on April 01, 1977 as DOI: 10.1287/opre.25.2.346.
This article has not been copyedited or formatted. The final version may differ from this version.

Kenneth E. Kendall and Stanley Zionts 349

(Alternatively, the enumeration may be begun from the lower bound
b: — 2.j=t atju;, making the necessary changes.) The first few values are
easy to enumerate because we increase or decrease the variable whose
| as; | is minimum and so on, using a lexicographical ordering scheme.

(b) Choose \; greater than the smallest gs(z) enumerated and A greater
than the smallest g:(z) enumerated, \; # any g(z), 2 ¥ any gi(z), M
and M are relatively prime, and A > (bs — it azju;)/2 and A >
(b — 252 auy) /2.

How effective these multipliers are in practice remains to be seen. To
illustrate the methods, we use an example presented by Balas [3]. Since
it is necessary to work with equalities, slack variables are added and the
constraints are written as follows:

minz = 5z, + 70 + 1023 + 3z +

hi—n4+3n+ 5n+4 i+ 464+ 2 = =2

f1:22, — 6z + 323+ 22 — 213 + = = 0

it —2m4+ o +n + 2y = —1
z;=0 or 1 j=1---,5

z; 2 and integer j = 6,7, 8.

(A weak set of upper bounds for the slack variables is given by (zs, 1, Zs)
= (5, 8, 1). A stronger set yielding better multipliers may be found by
solving a linear programming problem maximixing sequentially each
slack variable.)

If we represent the solution vector as (z,, - - - ,), only solutions (01100)
and (11100) satisfy the constraints.

Using Theorem 1, (7), and enumeraticn, we find that Ay = 7and A2 = 6
are valid multipliers for combining f; and f;. The combined constraint is

fo = 5z, — 1523 — 172, + 524 + 16z + Tz4 + 62y = —14,

from which we generate tighter upper bounds us = 2 and u; = 3. Further
enumerating with f, and f;, we find that Ay = 1 and A3 = 5 are valid multi-
pliers that yield the aggregate constraint

bzy — 1022 — 27z + 10z, — 2615 + 7z4 + 621 + 52 = —19.

(Even smaller coefficients may be attainable, but we limited our search
to positive multipliers.)

The first of the suggested methods gives \, = 9 and A\ = 7. Using fo
to represent the combined equation, we find that Ay = 2 and A3 = 17.
The second of the suggested methods also gives A, = 9 and Ay = 7. Thus,
the combined constraint is

Downloaded from informs.org by [106.51.226.7] on 09 August 2022, at 23:30 . For personal use only, all rights reserved.

~ Published in Operations Research on April 01, 1977 as DOI: 10.1287/opre.25.2.346.
This article has not been copyedited or formatted. The final version may differ from this version.

350 Technical Notes
fo:51‘-| — 151 — 2413 + Ay + 225 + Uxs - Ta7 = —IS8
($j§11j=1,"',5,1‘§2,J’[§3)

and the remaining constraint is f;. The cnumeration of a few values of
gi(z) are go(z) = {21, 16, 14, 12, 11, - -}, g5y = {1, 0, =1, -2, -},
We therefore choose A\ = 2, Ay = 13, which yiclds

10z, — 1723 — 7413 + 2344 + O7xs + 184s + 14y + 1325 = - 49

The order in which constraints are combined makes a difference. (For
instance, if we first combine constraints 1 and 3 und then combine con-
straint 2 with the result, we generate an aggregate constraint having
larger coefficients than those obtained in the ¢xample.) Thus, assuming
smaller cocfficients in the aggregate constraint are desirable, further study
in selecting the order of the constraints in the aggregation process i ap-
propriate.

In addition, we may take advantage of the fact. that our methods) and
2 generate smaller multipliers when coefficients of one are not. found on
varisbles with upper bounds greater than one. A strategy of combining
the first and second constraints, then the third and fourth constraints, und
80 on, cach pair becoming a new constraint and then aggregating the re-
sulting sct. of constraints, may be appropriate. Also, it would appear to
be worthwhile, as propused by Zionts [12], to scan the constraints before
combining and after cach aggregation to tighten upper bounds, and to de-
termine implied values of variables.

2. DISCUSSION

All of the aggregation schemes have the same disadvantage—the co-
cfficients become too large to be stored as an integer in a single computer
word. Since it is necessary to maintain accuracy in an integer programming
problem, a multiple precision package of subroutines (subroutines that
storce an integer in more than one computer word and exceute the basic
operations of add, subtract, and multiply in that manner) must be utilized.
This sct of subroutincs would be a major part of a computer program
using an aggregation approach.

One advantage of these methods is the simplicity of solving the single-
constraint problem that is generated once the constraints are aggregated.
We should emphasize, however, that a single-cquality constraint problem
is much more difficult to solve than a single-incquality constraint problem.
A sccond major advantage derives from the recursive nature of the al-
gorithm since it is necessary to store only two constraints in core memory
at a time. Furthermore, the objective function nced not be considered
until all the constraints are combined into one.

The possibility of writing an efficient computer program using n con-
straint aggregation algorithm and a multi-precision package of subroutines

Downloaded from informs.org by [106.51.226.7] on 09 August 2022, at 23:30 . For personal use only, all rights reserved.

Published in Operations Research on April 01, 1977 as DOI: 10.1287/opre.25.2.346.
This article has not been copyedited or formatted. The final version may differ from this version.

Kenneth E. Kendall and Stanley Zionts 351

is not farfetched. Even though multi-preeision requires more than onc
computer word per coefficient, the storage requircments for the coefficients
of the aggregate constraint will be much less than the storage require-
ments for all of the constraints of the original problem. Such a program
would be particularly valuable to a user who is restricted by the amount of
available core storage. This method would allow a person using a time-
sharing (and consequently ‘‘core-sharing”) system or a limited memory
mini-computer to solve rcasonably large problems that are impossible to
solve using the integer programming codes currently available.

ACKNOWLEDGMENT
The authors wish to thank the referees for their helpful comments.

REFERENCES

1. J. M. A~xTHONISSE, “A Note on Reducing a System to a Single Equation,
Preliminary Report,” Stichting Mathematisch Centrum, Amsterdam, De-
cember 1970.
2. J. M. AnTHONISSE, “A Note on Equivalent Systems of Linear Diophantine
Equations,” Opns. Res. 17, 187-177 (1973).
3. E. Baras, “An Additive Algorithm for Solving Linear Programs with Zero-
One Variables,” Opns. Res. 18, 517-546 (1985).
4. G. H. BrabiEY, “Heuristic Solution Methods and Transformed Integer Li-
near Programming Problems,” Report No. 43, Department of Administra-
tive Sciences, Yale University, New Haven, Conn., March 1971.
5. G. H. BrapLEy, “Transformation of Integer Programs to Knapsack Problems,”
Discrete Math. 1, 2045 (1971).
6. 8. E. EzmaauraBY AND M. K. Wiq, “On the Treatment of Stock Cutting
Problems as Diophantine Programs,” Report No. 61, North Carolina Uni-
versity and Corning Glass Research Center, Chapel Hill, N.C., May 1970.
7. F. GLovER, “New Results for Reducing Integer Linear Programs to Knapsack
Problems,” University of Colorado, Management Science Report Series
No. 72-7, Boulder, Col., April 1972.

F. Grover aND R. E. WooLsEy, “Aggregating Diophantine Constraints,”
Z. Opna. Res. 16, 1-10 (1972).

9. P. L. HaMMER AND S. RUpDEANU, Boolean AMethods in Operalions Research
and Related Areas, Berlin, Springer Verlag, 1968.

10. G. B. MatrEWS, “On the Partition of Numbers,” Proc. London Math. Soc.
28, 486490 (1896).

11. M. W. PapBErg, “Equivalent Knapsack-type Formulations of Bounded
Integer Linear Programs: An Alternative Approach,” Naval Res. Log. Quart.
19, 699708 (1972).

12. 8. ZionTs, “Generalized Implicit Enumeration Using Bounds on Variables for
Solving Linear Programs with Zero-One Variables,” Naval Res. Log. Quart.
19, 165-181 (1972).

Downloaded from informs.org by [106.51.226.7] on 09 August 2022, at 23:30 . For personal use only, all rights reserved.

Published in Operations Research on April 01, 1977 as DOI: 10.1287/opre.25.2.346.
This article has not been copyedited or formatted. The final version may differ from this version.

Copyright 1977, by INFORMS, all rights reserved. Copyright of Operations Research
is the property of INFORMS: Institute for Operations Research and its content may not
be copied or emailed to multiple sites or posted to a listserv without the copyright
holder's express written permission. However, users may print, download, or email
articles for individual use.

