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Strengthened Dantzig Cuts for Integer Programming
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In 1959, Dantzig proposed a particularly simple cut for integer programming.
However, in 1963, Gomory and Hoffman showed that, in general, this cut does
not provide a finite algorithm. In 1968, Bowman and Nemhauser showed
that a slightly modified version of the Dantzig cut does provide a finite pro-
cedure. We show how this latter cut can be strengthened through the use
of group-theoretic techniques.

“ ewgy

CONSIDER the integer program IP: max z=cz, subject to Az=b, 220 and
integer. We assume that all the components of A4, b, and ¢ are themselves
integers. Dropping the integrality requirements on x leaves the associated linear
program LP. Let B be the LP optimal basis. Partition A as (B, N), and ¢ and
x accordingly. Then Tucker’s optimal tableau is

—_ 1’N
z=csB ble,’BN —cy',
z=B""% |B”'N,
Ty = 0 —1I.

Denote the typical element of the tableau by y.,, =0, 1, - -+, m+n;5=0,1, -- -, n.
Let f:; ( =yi,—[yss]) be its fractional part. Let y; be the jth column of the tableau,
and f; its fractional part. The corresponding quantities in the new tableau result-
ing from a single pivot are denoted yi;, f15, ¥5, and f;.
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If this tableau is not feasible for IP, i.e., if at least one of the basic variables is
noninteger, then at least one of the nonbasic variables must be positive in any IP
optimal solution. Accordingly, the sum of the nonbasic variables must be at least
unity in such a solution. Thus, in 1959, DaNTzic proposed using the cut

2iTniz1, (1)

where zy; is the jth nonbasic variable.! We refer to (1) as the Dantzig cut.
Reference 4 gives no proof that an algorithm based solely on this cut would converge
to the IP optimum. In 1963, Gomory AND HoFFmaN proved that, in general, the
Dantzig cuts would not converge."

In (1), the summation is taken over all j. In 1961, CHARNES AND COOPER"
noted that, for any choice of ¢, the sum could be restricted to those j such that
4,570, and in 1962 BEN-IsRAEL AND CHARNES" remarked that the sum could be
further restricted to those j such that f,;70. Neither reference 1 nor reference 3
gave any results concerning the convergence of these modified Dantzig cuts and the
nonconvergence proof of reference 5 could not be applied here. In 1968, BowMmaN
ANp NEMHAUSER™ showed that the cuts of references 1 and 3 did yield convergent
algorithms. In this note we present two other modified Dantzig cuts that also
guarantee convergence, and that are stronger than the cut of reference 1.

Choose as ‘source row’ for the cut the first row such that f,,#0. Once a source
row has been chosen, the elements of this row can be used to deduce cuts similar
to, but stronger than (1). Let

o (L i fum0,
“=l0, if fi=0.

]

Then the cut of reference 1, which we refer to as the “MD1 cut,” is defined by
2o diza, 21 (2)

In reference 2, Bowman and Nemhauser show that the MD1 cut can be expressed
as the sum of two of Gomory’s Method-of-Integer-Forms (MIF) cuts. The MD1
cut is also related to the Gomory All-Integer (AI) cut. If the source row is used
to generate an MIF cut, and that cut is used to generate an Al cut with A=1,
the resulting AT cut is the NDI cut; the details of this may be found in references
6 and 9. While Gomory used the AI cuts only in an all-integer tableau, which is
certainly not the case here, the construction is, nonetheless, identical.

For an exact statement of the MD1 algorithin and a proof of its convergence, we
refer the reader to reference 2 Although convergent, the algorithm is quite slow.
To remedy this, we now develop two methods by which the MD1 cuts can be
strengthened.

It is well known that the slack in an MIF cut must also be an integer variable.
Thus the condition

Z, Jiszni=fi(mod 1) (3)

must hold for all 1=0,1, ---, m+n. Suppose that row ¢ is the first row with
f5%0. Suppose further that no f.;=fw forj=1, ---,n. Then DTy bani22isa
valid cut, because if only one zy; (for fi;30) is positive and if that zy,=1, the
left-hand side of (3) is fij, and fi,7f.w, 80 (3) is not satisfied. This new cut we
call the “MD2 cut.” It is clearly stronger than the MD1 cut.
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Suppose, on the other hand, that f;;, =i, and that no other f;;=fi. Scan the
Oth and jith columns. If there is some k such that fio>Ji;,, we may again conclude
that the MD2 cut is valid, since the nonbasic variables must sum to at least 2 in
order to satisfy (3) in both rows 7 and k. If there are several columns with f,;=
S, scan them all. If no one satisfies (3) for all =0, - - -, m+n, again we conclude
that the MD2 cut is valid.

The use of this cut gives us the MD2 algorithm, which differs from the MD1
algorithm in one respect: whenever the MD1 cut can be so strengthened, we use the
stronger MD2 cut in its place. A repetition of the proofs in reference 2 suffices to
show this result:

LeMMA 1. With the usual boundedness assumptions, the M D2 algorithm is finite.

The MD2 algorithm may still be quite slow. This is easily shown. Suppose
that ye=98/100 and that each y,,=1/100. Then it will require exactly 49 MD2
cuts to drive yg to 0, whereas exactly one MIF cut would have sufficed to do the
same thing. On the other hand, if yp=2/100 and each y,,=98/100, one MD2
cut will drive ye to —194/100, whereas one MIF cut would drive yg only to O.
It would thus seem desirable to have a mixed MIF-MD2 algorithm, which always
considered each of the two cuts and actually added the one that produced the great-
est lexicographic decrease in the vector y,. This can be determined very easily.
Ties may be broken arbitrarily, or else preference may be given to the MIF cut,
since it will reduce D, the determinant of the current basis.

We cannot show that the mixed MIF-AMD2 algorithm is uniformly stronger (in
terms of the number of cuts required before convergence) than either pure algo-
rithm, but we suspect that it is a reasonable computational heuristic. Moreover,
minor revisions to the proof of Lemma 1 show that the mixed algorithm is finite.

For a further strengthening of the modified Dantzig cuts, we consider Gomory’s
asymptotic algorithm'” with the Dantzig cut as objective. Here we solve the
problem

minY_; 8,;on, subject to D ;f.iZxi=fr(mod 1), r=0,1, - -, m+n,

and zy20 and integer.

Let k be this minimum value. Then the “MDk cut” is 2., 8;,2zv,2k. The
MDk algorithm is identical to the MD1 algorithm, except that it uses the MDk
cut. In addition, this algorithm may locate feasible solutions to IP in the course
of solving the asymptotic problems that yield the cuts. Keeping track of the best
integer solution found to date will allow for termination at any point where it is
felt that possible improvement is not sufficient to justify further calculations.

In general, we expect the MDE cuts to be stronger than the MDI cuts, i.e., we
expect to have k>1. Of course, some of the MDk cuts may be identical to the MD1
cuts. The smaller the values of k, the weaker the cuts and hence the slower the
algorithm. We have the following negative result in that direction.

Let row 7 be the source row, j* be the pivot column, and A= {jif,;=0}. After
the pivot, let row ¢’ be the next source row and A" = |7} fu,70}. It will often be the
case that A’ A. In particular, this will happen if rows 0,1, ---,i—1 are all
integer, and if the new tableau is primal feasible.

THEOREM 1. Let the M Dk cut be ZM zx,2k. Let ry’ be the solution to the group
problem that produced the mumber k. If A'C A, then the next MDk cut will be
Z,w zN,-gk’, where k' does not exceed k—zyp— EM_N,,-,.;- Zv,
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Proof. The tableau after the pivot is given by: yo' =yo—kyse; ¥ 5i=yi—¥s
jed, j#5*; ¥, =y,, jeA or j=;*. Taking fractional parts we get: fo'=fo—kf,;
i =fi—1m jeb, §%5*; fi =S, jeA or 3=j%, where all congruences are modulo 1.
To get the next cut, we must solve

min Y, Zv; subject to  fo'= D 2t [ zny zy2 0 and integer. (4)
To prove the theorem, it suffices to show that ', defined by

-Fllv ={va,, if J;éJ:r
o, if g=j7,
is feasible for (4).
Now zy' is certainly a nonnegative integer vector. Also

- 7 1 1 1
1TSS 2= g (i S0 ) Bt 2osen fonytfptn
- 1
= 2 ST SN, =S 2o et et T
=2=1 f:lgu_’f:‘vai"‘f:'znd.:m‘ ‘51‘:11

= Z::rfing—fJ‘ZnA I?V:Efl)"kfﬁzfol-

The thrust of the theorem is that, the longer we retain row ¢ as the source row
and hence have A'C A, the weaker the MDk cuts will tend to get in the sense that
the constants k will tend to decrease. Thus, if D is large and jfo is close to one, we
might expect to require many cuts to drive fy to zero, and, in general, we cannot
expect to get a strong MD type cut by repeatedly using the asymptotic algorithm.
Analogous to the mixed MIF-MD2 algorithm, we propose a mixed MIF-MDk
algorithm in which we compute the MDk cut, compare it to the MIF cut, and use
whichever one is stronger. This guarantees that ¢ will remain the source row only
if at least one of the variables yao, %10, - - -, ¥1-1,0 decreases below its current integer
part. In thisfashion we will be able to avoid the difficulty established in Theorem 1.

We have had no large-scale computational experience with these algorithms.
We do know, for example, that the problem max(5.,+8z:+6xs) subject to 92,4+
623+ 101;< 14, 202,+632,+10r;<110, 220 and integer, requires 52 MIF cuts;
but only 9 mixed MIF-MD#E cuts before converging. However, what is gained in
terms of the number of cuts may be lost in terms of the additional calculation neces-
sary to obtain the stronger cuts. The schemes presently available for solving the
asymptotic problem'”® are computationally impractical when the determinant of
the basis matrix is large. The development of schemes that can solve large asymp-
totic problems efficiently will greatly enhance the attractiveness of the algorithms
we have presented.
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It has been shown that the zero-one linear integer programming problem can
be formulated as a minimization of a concave quadratic objective function sub-
ject to linear constraints. This note extends the concept to a broad class of
concave objective functions.

ARECENT paper by RacravacHARIM (who attributes this also to Whinston)
shows that the zero-one integer programming problem:

min z=cz, subjectto Az=<h, z;=0, 1 (7=1,---,n) (P1)

can be reformulated as minimizing the following problem consisting of a concave
quadratic objective function subject to linear constraints:

min z=cz+Mz'(e—z), subjectto A4zgh O=Zz<e,
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