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Technical Notes

The EOQ Model under Stochastic Lead Time

MATTHEW J. LIBERATORE
FMC Corporation, Princeton, New Jersey
(Received May 1976; accepted January 1978)

We consider a continuous deterministic-demand, stochastic lead-time inven-
tory model such that the individual unit demands are non-interchangeable.
We derive equations that define the optimal values of the two decision
variables: order size and timing This model is shown to be a stochastic lead-
time generalization of the EOQ model with backlogging of demand. An
illustrative example is presented Finally, a lower bound, which 1s independent
of the order size, is developed for the optimal ordering time.

WELL-KNOWN stochastic extension of the classical economic order
A quantity (EOQ) inventory model bases the reorder decision on the
stock level. This is the familiar (R, @) model: When the stock level
reaches R (in continuous time), @ units are ordered (see Hadley and
Whitin [2], Wagner [4]). To achieve mathematical tractability, it is
necessary to assume that there is at most one replenishment order
outstanding at any instant.

When lead times are stochastic and independently distributed, it is not
always possible to establish that there is at most one outstanding order.
However, the “interval between placing orders is usually large enough so
that there is essentially no interaction between orders” [2, p. 203] or the
probability of crossover is small enough to be ignored.

Another approach was taken by Washburn [5], who formulated and
solved a continuous-review inventory problem. Demand is assumed de-
terministic while lead times are stochastic. His decision variables are the
amount of demand time satisfied by each order and the time to order
(see Figure 1). To circumvent the crossover problem, Washburn assumes
the unit demands are non-interchangeable. That is, each unit is a “special
order.” If demands are in fact interchangeable, errors occur to the extent
that orders are likely to cross, as in the Hadley-Whitin approach.

Washburn’s model formulation differs from the mainstream of tradi-
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tional EOQ modeling in several respects. First, all costs are subject to
continuous time discounting, and the inventory holding costs are not
stated explicitly but are merged into the time discount rate. Second, the
lead-time probability distribution, G(7) is permitted to have a “defect”,
lim._..G(r)=1. This allows the possibility that an order may never arrive.
Finally, although the model has a continuous time orientation, the
inventory shortage cost is expressed as dollars/unit arrived late (or never
arrived) in consonance with the previous assumption. This particular set
of assumptions complicates the search for the optimal values of the
decision variables and may yield non-unique solutions. The purpose of
this note is to formulate and solve a stochastic lead-time generalization
of the EOQ model with backlogging of demand under the non-inter-
changeable parts of assumption. This approach unifies the EOQ literature

Potential Arrival Times
(Random Event)

Time Shipment
1s Imhated «— — >

Demand Interval Satisfied
by Given Shipment

Figure 1. Time scale for one cycle in the steady-state continuous
demand model.

and yields optimality equations that are easily solved and uniquely define
the decision variables (see also Liberatore [3], Chapter 6).

1. THE MODEL

Define

D = constant demand rate (units/unit time demanded);

q number of time units of demand satisfied by each order;

¢t = time differential between placing an order and the start of the ¢

time units that will be satisfied by the given order (see Figure 1).

The ordering costs are K+vgq for g>0, 0 otherwise. The inventory holding
and backlogging costs are ci, ¢, respectively, expressed in dollars/
unit/unit time. Define g(r) as the lead-time probability mass or density
function, with distribution function G(-). The expected total cost of each

order is
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t
ETC(t, 9)=K+vg+ j {e1Dq(t—7)+c1Dq’/2) g(7)dr
1]

t+q
+ f {e:D(r~t)*/2+c:D(t+q~1)2/2) g(r)dr (1)

+ j {c2Dg?/2+c:Dg(r—t—q)) g(r)dr.
t+q

Our objective is to minimize EAC(t, ¢)=ETC(t, q)/q, the expected total
cost per unit time.

THEOREM. Let D, q and t be defined as previously stated. Then the
following equations

t*+g*

2K/(c1+c2) D+ J' (1—t*)’g(r)dr

t*

t*+qg*
=(q*)2{ f g(T)dT—02/(01+6‘2)} (2)
0

J’ (-r—t*)g(r)d*r=q*{J’ g(7)d7—02/(cl+02)} (3)
e 0

define the unique global minima for t and q.
Proof. Dividing (1) by ¢ and taking the first partial derivatives with
respect to ¢ and ¢ yield:

t

aEAC(t, ¢)/9q= —K/q’+(c1D/2) J’ glr)dr
t+q
+ f {(=c:D(r—t)*/2¢%) (4)
+(ch/2)(1—[(T—t)2/q2])}g(f)d“r—(02D/2)f g(r)dr
t+q

t t+q
AEAC(¢, q)/at=chJ' g(7)d*r+f {(—c:D(1—0t)/q)

[}

(5)

©

+alD(t+q—71)/q} g(’T)dT—Csz g(r)dr.

t+q

Setting the first derivative equations equal to 0 and solving will yield

Copyright © 2001 All Rights Reserved
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unique global minima for ¢ and ¢ if the EAC function is strictly convex
over the relevant domains. A sufficient condition for strict convexity is
positive diagonal elements and a positive determinant of the Hessian
matrix (see, e.g., Zangwill [6]). These conditions can be expressed as

FEAC(t, q)/8q°, FEAC(t, q)/38>0 (6a)
(FEAC(L, q)/d¢*FPEAC(L, q)/08)—[FEAC(t, q)/0gat>0. (6b)
The second partials are

FPEAC(L, q)/9q" ={K+(a+c)D J (r—t)’g(r)dr} /¢’
t+q

FEAC(, q)/ot ={(ci+c2)D J g(r)dr} /q and

t
t+q

FEAC(t, q)/9qat={(c1+c2)D f (r—t)g(r)dr} /.

t

Inequality (6a) follows since the integrals in both expressions are
strictly positive. By using the above and simplifying, (6b) becomes

t+q t+q
[K/(01+C2)D+J (T—t)2g(1)d7:\[f g(*r)d'r:l>[J'

Since K/(c1+¢2)D>0, it is sufficient to show that

t+q

2
(T—t)g("r)d”r] .

2

t+g t+q t+q
|:J' ('r—t)zg('r)d'r:l[J g(‘r)d'r]é[f (‘r—t)g(*r)df] .

But the above equation is a special case of the Cauchy-Schwarz inequal-
ity. Thus, unique global minima for ¢ and ¢ can be found by setting (4)
and (5) (the first derivative equations) equal to 0. After simplifying, they
can be expressed as in (2) and (3).

2. RELATIONSHIPS WITH THE EOQ MODEL

In an attempt to unify these results and traditional inventory theory,
we consider the following special case of our steady-state model. Suppose
that lead time is no longer stochastic but deterministic. To accomplish
this transition, we represent the lead-time density function as a Dirac
Delta function (all probability concentrated at a single point). Equations
(2) and (3) become

2K/ (c1+c2) D+ (1o—t*)’=(q*)’[c1/ (c1+¢2)] (7
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and (To~t*)=q*[01/(01+c_>)]. (8)

Solving (7) and (8) yields g*=[2K(ci+¢2)/cic.D]"* and ro—t*=[2Kc,/
ca(ci+¢2)D]'? so that the optimal order quantity is @*=Dg*=[2KD(c,
+ca)/c102]V%. Define s*=q*—(ro—t*). Remembering that 7o—¢* is the ar-
rival time of each order, the amount of stock on hand immediately after
satisfying the backlogged demand is Ds*=[2KDc;/c,(ci+¢5)]"/? and the
fraction of time no shortages exist is f*=s*/g*=c,/(c,+cs). But these
results are identical to those obtained for the EOQ model with backlog-
ging of demand (see, e.g., [4], p. 819, or [2], pp. 42-46, where [1=0). Thus,
our steady-state model is a stochastic lead-time generalization of the
EOQ model with backlogging of demand.
Example. Suppose lead times are uniformly distributed:

1/(b—a), if a<r<b
0, otherwise.

gu(T;a,b)={

Combining (4) and (5) leads to
t*+g*
2K/(cl+cz)D+j

I

t+q*
(T—t*)z/(b—a)d'r=q*[ (r—t*)/(b—a)dr

which easily gives ¢*=[12K(b—a)/(ci+c.)D]'". Solving (3) for * and
remembering that —/* is the optimal ordering time yields —t*=
(g*/2)=[(c1a+c:b) /(1 +¢2)].

3. SOME COMPUTATIONAL CONSIDERATIONS

If the cumulative probability distribution function cannot be expressed
in closed form, numerical methods (such as Newton-Raphson) must be
used to iteratively solve (2) and (3). The success of such methods depends
largely on the starting value of the search. We now show that G ey
(e1+c2)) provides an upper bound, and therefore a good initial guess, for
t*.

The left-hand side (LHS) of (3) is non-negative, implying that G(¢*+q*)
is non-negative. Subtracting g* [G(t*+g*)—G(t*)] from both sides of
equation (3) and noting that the LHS of the resulting equation is non-
positive, yield G(t*)=cs/(c:+c.), proving the assertion. For gamma-dis-
tributed lead times, Cantley’s method [1] allows G (co/(c1+c2)) to be
computed within a tolerance of 10™ in one or two iterations.
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Average Costs in a Continuous Review (s,S)
Inventory System with Exponentially Distributed
Lead Time

J. WIUNGAARD and E. G. F. VAN WINKEL

Unuwersity of Technology, Eindhoven, The Netherlands
(Received January 1977; accepted March 1978)

We describe a very elementary direct numerical method to find the average
number of backorders, costs and related quantities in a continuous review
(s,S) inventory system with exponentially distributed lead time. This method
can also be used In the study of E/M/C queues with state-dependent service
and arrival rates.

N 1959 Galliher, Morse and Simond [2] investigated the steady-state
behavior of an inventory system with Poisson arrival and negative
exponential leadtime under the assumption that an (s,q)-ordering policy
is used. They derived explicit expressions for the steady-state probabili-
ties. These probabilities can be used to calculate the average number of
backorders, the average inventory costs, and the average ordering costs.
We consider the same inventory model but allow the arrival and service
to be state dependent. A very elementary direct numerical method is
described to find the above-mentioned quantities. For the non-state-
dependent case we compared this direct method with the calculation of
the explicit expressions of [2] and found about the same computing times.
Various types of continuous time (s,S) inventory models have been
considered by Feeney and Sherbrooke [1], Gross and Harris [3][4], Higa,
Feyerherm and Machado [5], Rose [6], Sherbrooke [7], Tijms [8], and
Van der Genugten [9]. The leadtime in most of these models is constant
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