
TECHNICAL OVERVIEW OF VP8, AN OPEN SOURCE VIDEO CODEC FOR THE WEB

Jim Bankoski, Paul Wilkins, Yaowu Xu

Google Inc. 1600 Amphitheatre Parkway, Mountain View, CA, USA

{jimbankoski, paulwilkins, yaowu}@google.com

ABSTRACT

VP8 is an open source video compression format supported by a

consortium of technology companies. This paper provides a

technical overview of the format, with an emphasis on its unique

features. The paper also discusses how these features benefit VP8

in achieving high compression efficiency and low decoding

complexity at the same time.

Index Terms—VP8, WebM, Video Codec, Web Video

1. INTRODUCTION

In May 2010, Google announced the start of a new open media

project “WebM”, which is dedicated to developing a high-quality,

open media format for the web that is freely available to everyone.

At the core of the project is a new open source video compression

format, VP8. The VP8 format was originally developed by a small

research team at On2 Technologies, Inc. as a successor of its VPx

family of video codecs. Compared to other video coding formats,

VP8 has many distinctive technical features that help it to achieve

high compression efficiency and low computational complexity for

decoding at the same time. Since the WebM announcement, not

only has VP8 gained strong support from a long list of major

industry players, but it has also started to attract broad interest in

the video coding research community from both industry and

academia.

 This paper aims to provide a technical overview of the VP8

compression format, with an emphasis on VP8’s unique features.

Section 2 briefly reviews VP8’s design assumptions and overall

architecture; section 3 to section 7 describes VP8’s key technical

features: transform and quantization scheme, reference frame

types, prediction techniques, adaptive loop filtering, entropy

coding and parallel processing friendly data partitioning; section 8

provides a short summary with experimental results and some

thoughts on future work.

2. DESIGN ASSUMPTIONS AND FEATURE HIGHLIGHTS

From the very beginning of VP8’s development, the developers

were focused on Internet/web-based video applications. This focus

has led to a number of basic assumptions in VP8’s overall design:

Low bandwidth requirement: One of the basic design

assumptions is that for the foreseeable future, available network

bandwidth will be limited. With this assumption, VP8 was

specifically designed to operate mainly in a quality range from

“watchable video” (~30dB in the PSNR metric) to “visually

lossless” (~45dB).

Heterogeneous client hardware: There is a broad spectrum of

client hardware connected to the web, ranging from low power

mobile and embedded devices to the most advanced desktop

computers with many processor cores. It must, therefore, be

possible to create efficient implementations for a wide range of

client devices.

Web video format: VP8 was designed to handle the image

format used by the vast majority of web videos: 420 color

sampling, 8 bit per channel color depth, progressive scan (not

interlaced), and image dimensions up to a maximum of

16383x16383 pixels.

The push for compression efficiency and decoder simplicity

under these design assumptions led to a number of distinctive

technical features in VP8 [1], relative to other known video

compression formats, such as MPEG-2 [2], H.263 [3] and

H.264/AVC [4]. The following list highlights the technical

innovations in VP8:

Hybrid transform with adaptive quantization: VP8 uses 4x4

block-based discrete cosine transform (DCT) for all luma and

chroma residual signal. Depending on the prediction mode, the DC

coefficients from a 16x16 macroblock may then undergo a 4x4

Walsh-Hadamard transform.

Flexible reference frames: VP8 uses three reference frames

for inter prediction, but the scheme is somewhat different from the

multiple reference motion compensation scheme seen in other

formats. VP8’s design limits the buffer size requirement to three

reference frame buffers and still achieves effective de-correlation

in motion compensation.

Efficient intra prediction and inter prediction: VP8 makes

extensive uses of intra and inter prediction. VP8’s intra prediction

features a new “TM_PRED” mode as one of the many simple and

effective intra prediction methods. For inter prediction, VP8

features a flexible “SPLITMV” mode capable of coding arbitrary

block patterns within a macroblock.

High performance sub-pixel interpolation: VP8’s motion

compensation uses quarter-pixel accurate motion vectors for luma

pixels and up to one-eighth pixel accurate motion vectors for

chroma pixels. The sub-pixel interpolation of VP8 features a single

stage interpolation process and a set of high performance six-tap

interpolation filters.

Adaptive in-loop deblocking filtering: VP8 has a highly

adaptive in-loop deblocking filter. The type and strength of the

filtering can be adjusted for different prediction modes and

reference frame types.

Frame level adaptive entropy coding: VP8 uses binary

arithmetic coding extensively for almost all data values except a

few header bits. Entropy contexts are adaptive at the frame level,

striking a balance between compression efficiency and

computational complexity.

Parallel processing friendly data partitioning: VP8 can pack

entropy coded transform coefficients into multiple partitions, to

facilitate parallel processing in decoders. This design improves

decoder performance on multi-core processors, with close to zero

impact to compression efficiency and no impact to decoding

performance on single core processors.

3. HYBRID TRANSFORM WITH ADAPTIVE

QUANTIZATION

Similarly to previous image and video coding schemes [2-4], VP8

uses transform coding to code residue signal after intra or inter

predictions. A typical video image frame is divided into

macroblocks, each macroblock consists of one 16x16 block of

luma pixels (Y) and two 8x8 blocks of chroma pixels (U, V). VP8

further divides these luma and chroma blocks into 4x4 size blocks

in the transform and quantization processes. A discrete cosine

transform is applied on all 4x4 size luma and chroma blocks to

convert the residue signal into transform coefficients. For

macroblocks using 16x16 luma prediction modes, the DC

coefficients from each of the 16 4x4 luma blocks within the

macroblock are extracted and used to form a new 4x4 block, to

which a 4x4 Walsh-Hadamard transform (WHT) is applied. Hence

the 4x4 Walsh-Hadamard transform is used as a second order

transform to further reduce the redundancy among the DC

coefficients within the 16x16 luma area.

3.1. DCT

It is well known that the Karhunen Loeve Transform (KLT)

approximates to achieve the optimal energy compaction, but its

dependency on input content and its computational complexity

make its application in video coding rather difficult [5]. On the

other hand, the DCT is an orthogonal transform independent of

input signal and proven to be only slightly worse in energy

compaction than the KLT for natural video signals. In addition, the

two dimensional (2-D) DCT is separable and has fast

implementations. VP8 uses a 2-D DCT as the base for its transform

coding and defines a 4x4 inverse 2-D DCT process as part of its bit

stream format and decoding process. Essentially, the inverse 2-D

DCT process defined in VP8 is a 4x4 variant of the LLM

implementations as described in [6]. The signal flow graph of its

one dimensional (1-D) portion is shown in Fig. 1.

Fig. 1. VP8 inverse DCT’s 1-D signal graph

On most modern processors with SIMD capability, the inverse

DCT in VP8 can be implemented very efficiently. Provided that

such implementations are possible, VP8’s transform scheme

provides slightly better energy compaction than the multiplication-

less integer transform used in H.264/AVC [7], and is still

computationally competitive.

3.2. WHT

The second order transform in VP8 is a 4x4 Walsh-Hadamard

transform, which is designed to take advantage of the correlation

among the first order DC coefficients of the 16 4x4 blocks within

one macroblock. Similar to how the first order transform is defined,

VP8 specifies the inverse transform in its decoding process. The

inverse WHT used in VP8 can be described in matrix form as:

Where X and Y are the 4x4 size input and output and H is defined

as:

And HT is the transpose of H.

3.3. Adaptive Quantization

The quantizer of VP8 is designed to operate mainly in a quality

range from ~30dB to ~45dB. Within this range, VP8 defines 128

quantization levels in its scalar quantization process. For each

video frame, VP8 allows different quantization levels to be used

for six frequency components: 1st order luma DC, 1st order luma

AC, 2nd order luma DC, 2nd order luma AC, chroma DC and

chroma AC. In addition, VP8’s design includes a simple and

effective region adaptive quantization scheme, in which the

bitstream provides the capability of classifying macroblocks within

a frame into 4 different segments, with each segment having its

own quantization parameter set.

By carefully selecting appropriate scaling factors in transform

and quantization design, VP8 can perform all the calculations

using 16-bit operations in the full pipeline of transform,

quantization, dequantization and inverse transform.

4. REFERENCE FRAMES

VP8 uses three types of reference frames for inter prediction: the

“last frame”, a “golden frame” (one frame worth of decompressed

data from the arbitrarily distant past) and an “alternate reference

frame.” Overall, this design has a much smaller memory footprint

on both encoder and decoder than designs with many more

reference frames.

4.1 Golden Reference Frame

We have found experimentally that it is very rare for more than

three reference frames to provide significant quality benefit, but

the undesirable increase in memory footprint from the extra

reference frames is substantial. And very often, the most beneficial

reference frames are not the last three frames encoded. Depending

on content, a frame from the distant past can be very beneficial in

terms of inter prediction when objects re-appear after disappearing

for a number of frames. Based on such observations, VP8 was

designed to use one reference frame buffer to store a video frame

from an arbitrary point in the past. This buffer is known as the

“Golden Reference Frame.” The format also defines a number of

flags in the bitstream to notify a decoder when and how to update

this buffer.

VP8 encoders can use the Golden Reference Frame in many

ways to improve coding efficiency. It can be used to maintain a

copy of the background when there are objects moving in the

foreground, so that occluded regions can be easily and cheaply

reconstructed when a foreground object moves away. Together

with the last reference frame, the Golden Reference Frame may

also be used to create a background sprite. Such an arrangement is

helpful to compression efficiency in many video scenes. Another

use of the golden frame is the coding of back and forth cut of two

scenes, where the golden frame buffer can be used to maintain a

copy of the second scene. Finally, the golden frame can also be

used for error recovery in a real-time video conference, or even in

a multi-party video conference for scalability [8].

4.2 Alternate (Constructed) Reference Frame

Unlike other types of reference frames used in video compression,

which are always displayed to the user by the decoder, the VP8

alternate reference frame is decoded normally but may or may not

be shown in the decoder. It can be used solely as a reference to

improve inter prediction for other coded frames. Because alternate

reference frames have the option of not being displayed, VP8

encoders can use them to transmit any data that is helpful to

compression. For example, a VP8 encoder can construct one

alternate reference frame from multiple source frames, or it can

create an alternate reference frame using different macroblocks

from many different video frames. The flexibility in VP8

specification allows many types of usage of the alternate reference

frame for improving coding efficiency. Here are two illustrative

examples:

Noise-Reduced Prediction: The alternate reference frame is

transmitted and decoded similarly to other frames, hence its usage

does not increase computational complexity in the decoder.

However, in off-line applications the VP8 encoder is free to use

more sophisticated processing to create them. One application of

the alternate reference frame is for noise-reduced prediction. In this

application, the VP8 encoder uses multiple input source frames to

construct one reference frame through temporal or spatial noise

filtering. This “noise-free” alternate reference frame is then used to

improve prediction for encoding subsequent frames.

Improving Prediction without B-Frames: The lack of B

frames has led to discussion in the research community about

VP8’s ability to achieve high compression efficiency. The VP8

format, however, supports intelligent use of the golden reference

and the alternate reference frames together to compensate for this.

The VP8 encoder can choose to transmit an alternate reference

frame assembled with content from many “future” frames using

sophisticated filtering. Encoding of subsequent frames can then

make use of information from the past (last frame and golden

frame) and from the future (alternate reference frame). Effectively,

this helps the encoder to achieve compression efficiency without

requiring frame reordering in the decoder.

5. PREDICTION TECHNIQUES

VP8 uses two classes of prediction modes: Intra prediction uses

data within a single video frame, and Inter prediction uses data

from previously encoded frames.

5.1 VP8 Intra Prediction Modes

VP8 intra prediction modes are used with three types of blocks:

● 4x4 luma

● 16x16 luma

● 8x8 chroma

Four common intra prediction modes are shared by these blocks:

● H_PRED (horizontal prediction): Fills each column of the

block with a copy of the left column, L.

● V_PRED (vertical prediction): Fills each row of the block

with a copy of the above row, A.

● DC_PRED (DC prediction): Fills the block with a single

value using the average of the pixels in the row above A and the

column to the left of L.

● TM_PRED (TrueMotion prediction): In addition to the

row A and column L, TM_PRED uses the pixel C above and to the

left of the block. Horizontal differences between pixels in A and

vertical differences between pixels in L are propagated (starting

from C) to form the prediction block.

For 4x4 luma blocks, there are six additional intra modes

corresponding to predicting pixels in different directions. As

mentioned above, the TM_PRED mode is unique to VP8. Fig. 2

uses a 4x4 block as example to illustrate how the TM_PRED mode

works:

Fig. 2. Illustration of intra prediction mode TM_PRED

In Fig. 2, C, A and L represent reconstructed pixel values from

previously coded blocks, and X00 through X33 represent predicted

values for the current block. TM_PRED uses the following

equation to calculate Xij:

Xij = Li + Aj - C (i, j=0, 1, 2, 3)

The TM_PRED prediction mode for 8x8 and 16x16 blocks works

in a similar fashion. Among all the intra prediction modes,

TM_PRED is one of the more frequently used modes in VP8. For

natural video sequences, it is typically used by 20% to 45% of all

intra coded blocks. Together, these intra prediction modes help

VP8 to achieve high compression efficiency, especially for key

frames, which can only use intra modes.

5.2 VP8 Inter Prediction Modes

In VP8, inter prediction modes are used on inter frames (non-key

frames). For any VP8 inter frame, there are typically three

previously coded reference frames that can be used for prediction.

A typical inter prediction block is constructed using a motion

vector to copy a block from one of the three frames. The motion

vector points to the location of a pixel block to be copied. In video

compression schemes, a good portion of the bits is spent on

encoding motion vectors; the portion can be especially large for

video encoded at lower data rates. VP8 provides efficient motion

vector coding by reusing vectors from neighboring macroblocks.

For example, the prediction modes “NEAREST” and “NEAR”

make use of last and second-to-last, non-zero motion vectors from

neighboring macroblocks. These inter prediction modes can be

used in combination with any of the three different reference

frames.

In addition, VP8 has a sophisticated, flexible inter prediction

mode called SPLITMV. This mode was designed to enable flexible

partitioning of a macroblock into sub-blocks to achieve better inter

prediction. SPLITMV is useful when objects within a macroblock

have different motion characteristics. Within a macroblock coded

using the SPLITMV mode, each sub-block can have its own

motion vector. Similar to the strategy of reusing without

transmitting motion vectors at the macroblock level, a sub-block

can also use motion vectors from neighboring sub-blocks above or

left of the current block without transmitting the motion vectors.

This strategy is very flexible and can encode any shape of sub-

macroblock partitioning. Fig. 3 (a) shows an example of a

macroblock with 16x16 luma pixels that is partitioned to 16 4x4

blocks:

(a) (b)

Fig. 3. Illustration of VP8 inter prediction mode SPLITMV

In Fig. 3 (a), New represents a 4x4 bock coded with a new motion

vector, and Left and Above represent a 4x4 block coded using the

motion vector from the left and above, respectively. This example

effectively partitions the 16x16 macroblock into three different

segments with three different motion vectors (represented by 1, 2

and 3), as seen in Fig. 3 (b).

5.3 Sub-pixel Interpolation

VP8’s motion compensation uses quarter pixel accurate motion

vectors for luma pixels. The sub-pixel interpolation of VP8

features a single-stage interpolation process and a set of high

performance six-tap interpolation filters. The filter taps used for

the six tap filters are:

[3, -16, 77, 77, -16, 3]/128 for ½ pixel positions

[2, -11, 108, 36, -8, 1]/128 for ¼ pixel positions

[1, -8, 36, 108, -11, 2]/128 for ¾ pixel positions

Chroma motion vectors in VP8 are calculated from their luma

counterparts by averaging motion vectors within a macroblock, and

have up to one eighth pixel accuracy. VP8 uses four-tap bicubic

filters for the 1/8, 3/8, 5/8 and 7/8 pixel positions. Overall, the VP8

interpolation filtering process achieves optimal frequency response

with high computation efficiency.

6. ADAPTIVE LOOP FILTERING

Loop filtering is a process of removing blocking artifacts

introduced by quantization of the DCT coefficients from block

transforms. VP8 brings several loop-filtering innovations that

speed up decoding by not applying any loop filter at all in some

situations. VP8 also supports a method of implicit segmentation

where different loop filter strengths can be applied for different

parts of the image, according to the prediction modes or reference

frames used to encode each macroblock. For example it would be

possible to apply stronger filtering to intra-coded blocks and at the

same time specify that inter coded blocks that use the Golden

Frame as a reference and are coded using a (0,0) motion vector

should use a weaker filter. The choice of loop filter strengths in a

variety of situations is fully adjustable on a frame-by-frame basis,

so the encoder can adapt the filtering strategy in order to get the

best possible results. In addition, similar to the region-based

adaptive quantization in section 3, VP8 supports the adjustment of

loop filter strength for each segment. Fig. 4 shows an example

where the encoder can adapt the filtering strength based on content.

7. ENTROPY CODING AND DATA PARTITIONING

Except for very few header bits that are coded directly as raw

values, the majority of compressed VP8 data values are coded

using a boolean arithmetic coder. The boolean arithmetic coder

encodes one boolean value (0/1) at a time. It is used to losslessly

compress a sequence of bools for which the probability of their

being 0 or 1 can be well-estimated.

Fig. 4. Loop filter strength adaptive to image content

Most symbol values in VP8 are binarized into a series of

boolean values using a pseudo Huffman Tree scheme. In such a

scheme, a binary tree is first created for a set of symbols similarly

to how a Huffman coding tree is created, and any symbol in the set

can be represented by a series of binary values generated by

traversing the binary tree from the root node to the corresponding

leaf node. Each non-leaf node in the binary tree has a probability

assigned based on the likelihood of taking the left (0) branch for

traversing. Through such a binarization scheme and storing data in

pseudo Huffman tree structures, the encoding/decoding style in

VP8 is very consistent for all the values in the bitstream, such as

macroblock coding modes, reference frame types, motion vectors,

quantized coefficients, and so on. Such a scheme improves module

reusability in both hardware and software implementations of VP8

entropy encoder or decoder.

7.1 Frame Adaptive Entropy Context

VP8 uses conditional probability distribution to model the context

used for entropy coding of information such as macroblock coding

modes, motion vectors, and quantized transform coefficients, and

so on. For the purpose of decoding simplicity, VP8 keeps the

probability distributions for entropy coding stable within one frame,

and supports distribution updates on a per-frame basis. On a key

frame, all probability distributions are reset to the default baseline,

and then on each subsequent frame, these probabilities are

combined with individual updates for use in coefficient coding

within the frame. The bitstream also has mechanisms to signal how

the updated probabilities affect the baseline distributions for

decoding the subsequent frames. On the one hand, the combined

probability distributions may become the new baseline for

decoding of subsequent frame; on the other hand, the probability

updates can also be discarded after decoding of the current frame

and the baseline probability distributions prior to the updates are

then used for decoding of subsequent frames. Compared to

context-based binary arithmetic coding in H.264/AVC [9], the

design of frame-level adaptive entropy context achieves lower

complexity in decoder implementations, and also allows better

error recovery in decoders.

7.2 Parallel Processing-Friendly Coefficient Partitioning

One of the recent trends in micro-processor development is

processors having multiple “cores.” To make effective use of the

computational power of multi-core processors, VP8 has data

partitioning features that support parallel processing. In essence,

the VP8 bitstream first separates the compressed data into two

categories, one for macroblock coding modes and motion vectors

and one for quantized transform coefficients. In addition, VP8

allows transform coefficients to be packed into more than one

partition without changing the inter macroblock dependency in

coding. For example, in the FOUR_TOKEN_PARTITION mode,

transform coefficients from macroblock row 0, 4, 8, …, are packed

into the first coefficient partition; coefficients from macroblock

row 1, 5, 9, …, are packed into the second coefficient partition, and

so on. Though the transform coefficients are packed into different

partitions, the entropy contexts used to encoding them are the same

as the case where all transform coefficients are packed into a single

partition with all macroblocks coded in raster scan order.

Hence, VP8 allows decoders to make efficient use of multiple

cores to decode several macroblock rows at the same time. The

separation of mode/motion vector data from the transform

coefficients allow reference data prefetching in many hardware

platforms and the coefficient data partitioning in VP8 supports the

parallel decoding of more than one macroblock rows. VP8

supports up to eight token partitions in any given frame, which

enables a decoder to efficiently use as many as eight cores. The

number eight is not an arbitrary number, but based on research into

technology trends and predictions by leading micro-processor

vendors, the vast majority of processors in the coming decade will

have no more than eight cores.

Fig. 5. VP8 coefficients partitioning and parallel decoding

8. CONCLUSIONS AND FUTURE WORK

As a result of the many advanced coding features, VP8 can make

the best use of computation power in modern hardware for

improving compression efficiency while maintaining fast decoding

speed on majority devices connected to the web.

Figure 6 shows the decoding speed test results on two different

hardware platforms for video files encoded in VP8 and H.264

(high profile) at similar bitrates. The WebM Project libvpx

reference encoder and x264 software encoder were used to produce

the VP8 and H.264 files, respectively. For decoding, the latest

FFmpeg decoder software (version SVN-r264000) with libavcodec

(version 52.108.0) was used for both VP8 and H.264 in the test. By

using the same software decoder, one can expect the level of

optimization for performance to be similar for both VP8 and H.264;

therefore the decoding speeds may reflect the intrinsic decoding

complexity. As shown in Fig. 6, the decoding speeds of VP8

encoded files are consistently faster, average around 30%, than

those of H.264 encoded files at a similar bitrate across the two

different hardware platforms.

(a) Intel Core i7 3.2GHz

(b) Intel Atom N270 1.66GHz

Fig. 6. Decoding speed test results

Fig. 7 shows the results of encoding quality comparison between

VP8 and H.264 (high profile) on a number of standard video test

clips. For VP8, the encoder software used was the libvpx software

from the WebM Project. For H.264 high profile, the encoder

software used was the latest x264 encoder software, which is

arguably the best encoder implementation for H.264/AVC. The

H.264 encoding setting used was recommended by x264

developers and tuned to produce the best possible PSNR results.

The x264 encoder used options:
--preset=veryslow --tune psnr

The WebM VP8 encoder used options:
-p 2 --best --auto-alt-ref=1 --minsection-pct=0
--maxsection-pct=800 --lag-in-frames=25 --kf-min-dist=0
--kf-max-dist=99999 --static-thresh=0 --min-q=0
--max-q=63 --drop-frame=0 --bias-pct=50 --psnr
--arnr-maxframes=7 --arnr-strength=6 --arnr-type=3

Please refer to the respective project websites for detailed

description of the options used above. As shown in Fig. 7, the

reference encoder implementation of VP8 achieves very

competitive quality results against the H.264/AVC encoder.

It is not difficult to conclude from the test results that, in the

designed operating range of web video, VP8 can achieve

compression efficiency that is competitive to the best H.264/AVC

100

120

140

160

180

200

220

240

260

280

Night 720p

2000kbps

Sheriff 720p

2000kbps

Tulip 720p

2000kbps

D
e
o

c
d

in
g

 s
p

e
e
d

 i
n

 F
r
a

m
e
/s

ec
o

n
d

VP8

H.264 High Profile

20

25

30

35

40

45

Night 720p

2000kbps

Sheriff 720p

2000kbps

Tulip 720

2000kbps

D
e
c
o

d
in

g
 S

p
e
e
d

 i
n

 F
r
a

m
e
s/

S
e
c
o

n
d

VP8

H.264 High Profile

(a) Hall Monitor

(b) Highway

(c) Pamphlet

(d) Deadline

Fig. 7. Encoding quality test results

encoder available. At the same time, however, the low complexity

design of the VP8 format enables decoder implementations to

achieve much faster decoding speeds than H.264/AVC on various

platforms.

The VP8 reference encoder implementation from the WebM

Project is not yet making full use of all the VP8 features described

in this paper. In addition, many techniques used in other modern

video encoders, such as advanced rate control strategies, rate

distortion optimization methods, motion estimation methods and so

on, are directly applicable to VP8. As a result, there is great

potential for innovations in future versions of VP8 encoder and

decoder.

ACKNOWLEDGEMENTS

The authors would like to thank Prof. Bastiaan Kleijn at the School

of Electrical Engineering at KTH (the Royal Institute of

Technology) in Stockholm, Sweden for reviewing early drafts, the

paper has benefited a great deal from his valuable feedback. This

paper has also benefited from helpful comments by our colleagues

at Google, Dr. Pascal Massimino and Mr. John Luther, as well as

insightful comments from four anonymous reviewers.

REFERENCE

[1] J. Bankoski, P. Wilkins, Y. Xu, “VP8 Data Format and

Decoding Guide,” http://www.ietf.org/internet-drafts/draft-

bankoski-vp8-bitstream-01.txt, Jan 2011.

[2] “Generic Coding of Moving Pictures and Associated Audio

Information- Part 2: Video,” ITU-T and ISO/IEC JTC 1, ITU-

T Recommendation H.262 and ISO/IEC 13 818-2 (MPEG-2),

1994.

[3] “Video Coding for Low Bit Rate Communication,” ITU-T,

ITU-T Recommendation H.263 version 1, 1995.

[4] “Advanced Video Coding for Generic Audiovisual Services,”

ITU-T, ITU-T Recommendation H.264, November 2007.

[5] J. Saghri, A. Tescher, and J. Reagan, “Practical transform

coding of multispectral imagery,” Signal Processing

Magazine, IEEE, pp. 32–43, 2005.

[6] C. Loeffler, A. Ligtenberg, and G. S. Moschytz, “Practical

fast 1-D DCT algorithms with 11 multiplications,”

Proceedings of the IEEE International Conference on

Acoustics, Speech, and Signal Processing (ICASSP '89), vol.

2, pp. 988–991, Glasgow, UK, May 1989.

[7] H. S. Malvar, A. Hallapuro, M. Karczewicz, L. Kerofsky,

“Low-complexity Transform and Quantization in

H.264/AVC,” IEEE Transactions on Circuit and Systems for

Video Technology, Vol. 13, No. 7, pp. 598-603, July 2003.

[8] J. Bankoski, “On2’s Truemotion VP7 video codec and golden

frames”, EE Times, Jul 2008.

[9] D. Marpe, T. Wiegand, “Context-Based Adaptive Binary

Arithmetic Coding in the H.264/AVC Video Compression

Standard,” IEEE Transactions on Circuit and Systems for

Video Technology, Vol. 13, No. 7, pp. 620-635, July 2003

