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ABSTRACT 

 

VP8 is an open source video compression format supported by a 

consortium of technology companies. This paper provides a 

technical overview of the format, with an emphasis on its unique 

features. The paper also discusses how these features benefit VP8 

in achieving high compression efficiency and low decoding 

complexity at the same time. 

 

Index Terms—VP8, WebM, Video Codec, Web Video 

 

1. INTRODUCTION 

 

In May 2010, Google announced the start of a new open media 

project “WebM”, which is dedicated to developing a high-quality, 

open media format for the web that is freely available to everyone. 

At the core of the project is a new open source video compression 

format, VP8. The VP8 format was originally developed by a small 

research team at On2 Technologies, Inc. as a successor of its VPx 

family of video codecs. Compared to other video coding formats, 

VP8 has many distinctive technical features that help it to achieve 

high compression efficiency and low computational complexity for 

decoding at the same time. Since the WebM announcement, not 

only has VP8 gained strong support from a long list of major 

industry players, but it has also started to attract broad interest in 

the video coding research community from both industry and 

academia.  

 This paper aims to provide a technical overview of the VP8 

compression format, with an emphasis on VP8’s unique features. 

Section 2 briefly reviews VP8’s design assumptions and overall 

architecture; section 3 to section 7 describes VP8’s key technical 

features: transform and quantization scheme, reference frame 

types, prediction techniques, adaptive loop filtering, entropy 

coding and parallel processing friendly data partitioning; section 8 

provides a short summary with experimental results and some 

thoughts on future work. 

 

2. DESIGN ASSUMPTIONS AND FEATURE HIGHLIGHTS 

 

From the very beginning of VP8’s development, the developers 

were focused on Internet/web-based video applications. This focus 

has led to a number of basic assumptions in VP8’s overall design:  

Low bandwidth requirement: One of the basic design 

assumptions is that for the foreseeable future, available network 

bandwidth will be limited. With this assumption, VP8 was 

specifically designed to operate mainly in a quality range from 

“watchable video” (~30dB in the PSNR metric) to “visually 

lossless” (~45dB).  

Heterogeneous client hardware: There is a broad spectrum of 

client hardware connected to the web, ranging from low power 

mobile and embedded devices to the most advanced desktop 

computers with many processor cores. It must, therefore, be 

possible to create efficient implementations for a wide range of 

client devices.  

Web video format: VP8 was designed to handle the image 

format used by the vast majority of web videos: 420 color 

sampling, 8 bit per channel color depth, progressive scan (not 

interlaced), and image dimensions up to a maximum of 

16383x16383 pixels.  

The push for compression efficiency and decoder simplicity 

under these design assumptions led to a number of distinctive 

technical features in VP8 [1], relative to other known video 

compression formats, such as MPEG-2 [2], H.263 [3] and 

H.264/AVC [4]. The following list highlights the technical 

innovations in VP8:  

Hybrid transform with adaptive quantization: VP8 uses 4x4 

block-based discrete cosine transform (DCT) for all luma and 

chroma residual signal. Depending on the prediction mode, the DC 

coefficients from a 16x16 macroblock may then undergo a 4x4 

Walsh-Hadamard transform.  

Flexible reference frames: VP8 uses three reference frames 

for inter prediction, but the scheme is somewhat different from the 

multiple reference motion compensation scheme seen in other 

formats. VP8’s design limits the buffer size requirement to three 

reference frame buffers and still achieves effective de-correlation 

in motion compensation.  

Efficient intra prediction and inter prediction: VP8 makes 

extensive uses of intra and inter prediction. VP8’s intra prediction 

features a new “TM_PRED” mode as one of the many simple and 

effective intra prediction methods. For inter prediction, VP8 

features a flexible “SPLITMV” mode capable of coding arbitrary 

block patterns within a macroblock.  

High performance sub-pixel interpolation: VP8’s motion 

compensation uses quarter-pixel accurate motion vectors for luma 

pixels and up to one-eighth pixel accurate motion vectors for 

chroma pixels. The sub-pixel interpolation of VP8 features a single 

stage interpolation process and a set of high performance six-tap 

interpolation filters.  

Adaptive in-loop deblocking filtering: VP8 has a highly 

adaptive in-loop deblocking filter. The type and strength of the 

filtering can be adjusted for different prediction modes and 

reference frame types.  

Frame level adaptive entropy coding: VP8 uses binary 

arithmetic coding extensively for almost all data values except a 

few header bits. Entropy contexts are adaptive at the frame level, 

striking a balance between compression efficiency and 

computational complexity.  

Parallel processing friendly data partitioning: VP8 can pack 

entropy coded transform coefficients into multiple partitions, to 

facilitate parallel processing in decoders. This design improves 

decoder performance on multi-core processors, with close to zero 

impact to compression efficiency and no impact to decoding 

performance on single core processors.  

 



3. HYBRID TRANSFORM WITH ADAPTIVE 

QUANTIZATION 

 

Similarly to previous image and video coding schemes [2-4], VP8 

uses transform coding to code residue signal after intra or inter 

predictions. A typical video image frame is divided into 

macroblocks, each macroblock consists of one 16x16 block of 

luma pixels (Y) and two 8x8 blocks of chroma pixels (U, V). VP8 

further divides these luma and chroma blocks into 4x4 size blocks 

in the transform and quantization processes. A discrete cosine 

transform is applied on all 4x4 size luma and chroma blocks to 

convert the residue signal into transform coefficients. For 

macroblocks using 16x16 luma prediction modes, the DC 

coefficients from each of the 16 4x4 luma blocks within the 

macroblock are extracted and used to form a new 4x4 block, to 

which a 4x4 Walsh-Hadamard transform (WHT) is applied. Hence 

the 4x4 Walsh-Hadamard transform is used as a second order 

transform to further reduce the redundancy among the DC 

coefficients within the 16x16 luma area. 

 

3.1. DCT 

 

It is well known that the Karhunen Loeve Transform (KLT) 

approximates to achieve the optimal energy compaction, but its 

dependency on input content and its computational complexity 

make its application in video coding rather difficult [5]. On the 

other hand, the DCT is an orthogonal transform independent of 

input signal and proven to be only slightly worse in energy 

compaction than the KLT for natural video signals. In addition, the 

two dimensional (2-D) DCT is separable and has fast 

implementations. VP8 uses a 2-D DCT as the base for its transform 

coding and defines a 4x4 inverse 2-D DCT process as part of its bit 

stream format and decoding process. Essentially, the inverse 2-D 

DCT process defined in VP8 is a 4x4 variant of the LLM 

implementations as described in [6]. The signal flow graph of its 

one dimensional (1-D) portion is shown in Fig. 1.  

 
Fig. 1. VP8 inverse DCT’s 1-D signal graph 

 

On most modern processors with SIMD capability, the inverse 

DCT in VP8 can be implemented very efficiently. Provided that 

such implementations are possible, VP8’s transform scheme 

provides slightly better energy compaction than the multiplication-

less integer transform used in H.264/AVC [7], and is still 

computationally competitive. 

 

3.2. WHT 

 

The second order transform in VP8 is a 4x4 Walsh-Hadamard 

transform, which is designed to take advantage of the correlation 

among the first order DC coefficients of the 16 4x4 blocks within 

one macroblock. Similar to how the first order transform is defined, 

VP8 specifies the inverse transform in its decoding process. The 

inverse WHT used in VP8 can be described in matrix form as:  

       

Where X and Y are the 4x4 size input and output and H is defined 

as: 

   

    
      
      
      

  

And HT is the transpose of H.  

 

3.3. Adaptive Quantization 

 

The quantizer of VP8 is designed to operate mainly in a quality 

range from ~30dB to ~45dB. Within this range, VP8 defines 128 

quantization levels in its scalar quantization process. For each 

video frame, VP8 allows different quantization levels to be used 

for six frequency components: 1st order luma DC, 1st order luma 

AC, 2nd order luma DC, 2nd order luma AC, chroma DC and 

chroma AC. In addition, VP8’s design includes a simple and 

effective region adaptive quantization scheme, in which the 

bitstream provides the capability of classifying macroblocks within 

a frame into 4 different segments, with each segment having its 

own quantization parameter set.  

By carefully selecting appropriate scaling factors in transform 

and quantization design, VP8 can perform all the calculations 

using 16-bit operations in the full pipeline of transform, 

quantization, dequantization and inverse transform. 

 

4. REFERENCE FRAMES 

 

VP8 uses three types of reference frames for inter prediction: the 

“last frame”, a “golden frame” (one frame worth of decompressed 

data from the arbitrarily distant past) and an “alternate reference 

frame.” Overall, this design has a much smaller memory footprint 

on both encoder and decoder than designs with many more 

reference frames.  

 

4.1 Golden Reference Frame  

 

We have found experimentally that it is very rare for more than 

three reference frames to provide significant quality benefit, but 

the undesirable increase in memory footprint from the extra 

reference frames is substantial. And very often, the most beneficial 

reference frames are not the last three frames encoded. Depending 

on content, a frame from the distant past can be very beneficial in 

terms of inter prediction when objects re-appear after disappearing 

for a number of frames. Based on such observations, VP8 was 

designed to use one reference frame buffer to store a video frame 

from an arbitrary point in the past. This buffer is known as the 

“Golden Reference Frame.” The format also defines a number of 

flags in the bitstream to notify a decoder when and how to update 

this buffer.  

VP8 encoders can use the Golden Reference Frame in many 

ways to improve coding efficiency. It can be used to maintain a 

copy of the background when there are objects moving in the 

foreground, so that occluded regions can be easily and cheaply 

reconstructed when a foreground object moves away. Together 

with the last reference frame, the Golden Reference Frame may 

also be used to create a background sprite. Such an arrangement is 

helpful to compression efficiency in many video scenes. Another 

use of the golden frame is the coding of back and forth cut of two 

scenes, where the golden frame buffer can be used to maintain a 

copy of the second scene. Finally, the golden frame can also be 



used for error recovery in a real-time video conference, or even in 

a multi-party video conference for scalability [8].  

 

4.2 Alternate (Constructed) Reference Frame  

 

Unlike other types of reference frames used in video compression, 

which are always displayed to the user by the decoder, the VP8 

alternate reference frame is decoded normally but may or may not 

be shown in the decoder. It can be used solely as a reference to 

improve inter prediction for other coded frames. Because alternate 

reference frames have the option of not being displayed, VP8 

encoders can use them to transmit any data that is helpful to 

compression. For example, a VP8 encoder can construct one 

alternate reference frame from multiple source frames, or it can 

create an alternate reference frame using different macroblocks 

from many different video frames. The flexibility in VP8 

specification allows many types of usage of the alternate reference 

frame for improving coding efficiency. Here are two illustrative 

examples:  

Noise-Reduced Prediction: The alternate reference frame is 

transmitted and decoded similarly to other frames, hence its usage 

does not increase computational complexity in the decoder. 

However, in off-line applications the VP8 encoder is free to use 

more sophisticated processing to create them. One application of 

the alternate reference frame is for noise-reduced prediction. In this 

application, the VP8 encoder uses multiple input source frames to 

construct one reference frame through temporal or spatial noise 

filtering. This “noise-free” alternate reference frame is then used to 

improve prediction for encoding subsequent frames.  

Improving Prediction without B-Frames: The lack of B 

frames has led to discussion in the research community about 

VP8’s ability to achieve high compression efficiency. The VP8 

format, however, supports intelligent use of the golden reference 

and the alternate reference frames together to compensate for this. 

The VP8 encoder can choose to transmit an alternate reference 

frame assembled with content from many “future” frames using 

sophisticated filtering. Encoding of subsequent frames can then 

make use of information from the past (last frame and golden 

frame) and from the future (alternate reference frame). Effectively, 

this helps the encoder to achieve compression efficiency without 

requiring frame reordering in the decoder.  

 

5. PREDICTION TECHNIQUES 

 

VP8 uses two classes of prediction modes: Intra prediction uses 

data within a single video frame, and Inter prediction uses data 

from previously encoded frames.  

 

5.1 VP8 Intra Prediction Modes  

 

VP8 intra prediction modes are used with three types of blocks:  

● 4x4 luma  

● 16x16 luma  

● 8x8 chroma  

Four common intra prediction modes are shared by these blocks:  

● H_PRED (horizontal prediction): Fills each column of the 

block with a copy of the left column, L.  

● V_PRED (vertical prediction): Fills each row of the block 

with a copy of the above row, A.  

● DC_PRED (DC prediction): Fills the block with a single 

value using the average of the pixels in the row above A and the 

column to the left of L.  

● TM_PRED (TrueMotion prediction): In addition to the 

row A and column L, TM_PRED uses the pixel C above and to the 

left of the block. Horizontal differences between pixels in A and 

vertical differences between pixels in L are propagated (starting 

from C) to form the prediction block.  

For 4x4 luma blocks, there are six additional intra modes 

corresponding to predicting pixels in different directions. As 

mentioned above, the TM_PRED mode is unique to VP8. Fig. 2 

uses a 4x4 block as example to illustrate how the TM_PRED mode 

works:  

 
Fig. 2. Illustration of intra prediction mode TM_PRED 

 

In Fig. 2, C, A and L represent reconstructed pixel values from 

previously coded blocks, and X00 through X33 represent predicted 

values for the current block. TM_PRED uses the following 

equation to calculate Xij:  

Xij = Li + Aj - C (i, j=0, 1, 2, 3) 

The TM_PRED prediction mode for 8x8 and 16x16 blocks works 

in a similar fashion. Among all the intra prediction modes, 

TM_PRED is one of the more frequently used modes in VP8. For 

natural video sequences, it is typically used by 20% to 45% of all 

intra coded blocks. Together, these intra prediction modes help 

VP8 to achieve high compression efficiency, especially for key 

frames, which can only use intra modes.  

 

5.2 VP8 Inter Prediction Modes  

 

In VP8, inter prediction modes are used on inter frames (non-key 

frames). For any VP8 inter frame, there are typically three 

previously coded reference frames that can be used for prediction. 

A typical inter prediction block is constructed using a motion 

vector to copy a block from one of the three frames. The motion 

vector points to the location of a pixel block to be copied. In video 

compression schemes, a good portion of the bits is spent on 

encoding motion vectors; the portion can be especially large for 

video encoded at lower data rates. VP8 provides efficient motion 

vector coding by reusing vectors from neighboring macroblocks. 

For example, the prediction modes “NEAREST” and “NEAR” 

make use of last and second-to-last, non-zero motion vectors from 

neighboring macroblocks. These inter prediction modes can be 

used in combination with any of the three different reference 

frames.  

In addition, VP8 has a sophisticated, flexible inter prediction 

mode called SPLITMV. This mode was designed to enable flexible 

partitioning of a macroblock into sub-blocks to achieve better inter 

prediction. SPLITMV is useful when objects within a macroblock 

have different motion characteristics. Within a macroblock coded 

using the SPLITMV mode, each sub-block can have its own 

motion vector. Similar to the strategy of reusing without 

transmitting motion vectors at the macroblock level, a sub-block 

can also use motion vectors from neighboring sub-blocks above or 

left of the current block without transmitting the motion vectors. 

This strategy is very flexible and can encode any shape of sub-

macroblock partitioning. Fig. 3 (a) shows an example of a 



macroblock with 16x16 luma pixels that is partitioned to 16 4x4 

blocks:  

       
(a)                                            (b) 

Fig. 3. Illustration of VP8 inter prediction mode SPLITMV 

 

In Fig. 3 (a), New represents a 4x4 bock coded with a new motion 

vector, and Left and Above represent a 4x4 block coded using the 

motion vector from the left and above, respectively. This example 

effectively partitions the 16x16 macroblock into three different 

segments with three different motion vectors (represented by 1, 2 

and 3), as seen in Fig. 3 (b).  

 

5.3 Sub-pixel Interpolation  

 

VP8’s motion compensation uses quarter pixel accurate motion 

vectors for luma pixels. The sub-pixel interpolation of VP8 

features a single-stage interpolation process and a set of high 

performance six-tap interpolation filters. The filter taps used for 

the six tap filters are:  

[3, -16, 77, 77, -16, 3]/128 for ½ pixel positions  

[2, -11, 108, 36, -8, 1]/128 for ¼ pixel positions  

[1, -8, 36, 108, -11, 2]/128 for ¾ pixel positions  

Chroma motion vectors in VP8 are calculated from their luma 

counterparts by averaging motion vectors within a macroblock, and 

have up to one eighth pixel accuracy. VP8 uses four-tap bicubic 

filters for the 1/8, 3/8, 5/8 and 7/8 pixel positions. Overall, the VP8 

interpolation filtering process achieves optimal frequency response 

with high computation efficiency.  

 

6. ADAPTIVE LOOP FILTERING 

 

Loop filtering is a process of removing blocking artifacts 

introduced by quantization of the DCT coefficients from block 

transforms. VP8 brings several loop-filtering innovations that 

speed up decoding by not applying any loop filter at all in some 

situations. VP8 also supports a method of implicit segmentation 

where different loop filter strengths can be applied for different 

parts of the image, according to the prediction modes or reference 

frames used to encode each macroblock. For example it would be 

possible to apply stronger filtering to intra-coded blocks and at the 

same time specify that inter coded blocks that use the Golden 

Frame as a reference and are coded using a (0,0) motion vector 

should use a weaker filter. The choice of loop filter strengths in a 

variety of situations is fully adjustable on a frame-by-frame basis, 

so the encoder can adapt the filtering strategy in order to get the 

best possible results. In addition, similar to the region-based 

adaptive quantization in section 3, VP8 supports the adjustment of 

loop filter strength for each segment. Fig. 4 shows an example 

where the encoder can adapt the filtering strength based on content.  

 

7. ENTROPY CODING AND DATA PARTITIONING 

 

Except for very few header bits that are coded directly as raw 

values, the majority of compressed VP8 data values are coded 

using a boolean arithmetic coder. The boolean arithmetic coder 

encodes one boolean value (0/1) at a time. It is used to losslessly 

compress a sequence of bools for which the probability of their 

being 0 or 1 can be well-estimated.  

 
Fig. 4. Loop filter strength adaptive to image content 

Most symbol values in VP8 are binarized into a series of 

boolean values using a pseudo Huffman Tree scheme. In such a 

scheme, a binary tree is first created for a set of symbols similarly 

to how a Huffman coding tree is created, and any symbol in the set 

can be represented by a series of binary values generated by 

traversing the binary tree from the root node to the corresponding 

leaf node. Each non-leaf node in the binary tree has a probability 

assigned based on the likelihood of taking the left (0) branch for 

traversing. Through such a binarization scheme and storing data in 

pseudo Huffman tree structures, the encoding/decoding style in 

VP8 is very consistent for all the values in the bitstream, such as 

macroblock coding modes, reference frame types, motion vectors, 

quantized coefficients, and so on. Such a scheme improves module 

reusability in both hardware and software implementations of VP8 

entropy encoder or decoder.  
 

7.1 Frame Adaptive Entropy Context  

 

VP8 uses conditional probability distribution to model the context 

used for entropy coding of information such as macroblock coding 

modes, motion vectors, and quantized transform coefficients, and 

so on. For the purpose of decoding simplicity, VP8 keeps the 

probability distributions for entropy coding stable within one frame, 

and supports distribution updates on a per-frame basis. On a key 

frame, all probability distributions are reset to the default baseline, 

and then on each subsequent frame, these probabilities are 

combined with individual updates for use in coefficient coding 

within the frame. The bitstream also has mechanisms to signal how 

the updated probabilities affect the baseline distributions for 

decoding the subsequent frames. On the one hand, the combined 

probability distributions may become the new baseline for 

decoding of subsequent frame; on the other hand, the probability 

updates can also be discarded after decoding of the current frame 

and the baseline probability distributions prior to the updates are 

then used for decoding of subsequent frames. Compared to 

context-based binary arithmetic coding in H.264/AVC [9], the 

design of frame-level adaptive entropy context achieves lower 

complexity in decoder implementations, and also allows better 

error recovery in decoders.  



7.2 Parallel Processing-Friendly Coefficient Partitioning  

 

One of the recent trends in micro-processor development is 

processors having multiple “cores.” To make effective use of the 

computational power of multi-core processors, VP8 has data 

partitioning features that support parallel processing. In essence, 

the VP8 bitstream first separates the compressed data into two 

categories, one for macroblock coding modes and motion vectors 

and one for quantized transform coefficients. In addition, VP8 

allows transform coefficients to be packed into more than one 

partition without changing the inter macroblock dependency in 

coding. For example, in the FOUR_TOKEN_PARTITION mode, 

transform coefficients from macroblock row 0, 4, 8, …, are packed 

into the first coefficient partition; coefficients from macroblock 

row 1, 5, 9, …, are packed into the second coefficient partition, and 

so on. Though the transform coefficients are packed into different 

partitions, the entropy contexts used to encoding them are the same 

as the case where all transform coefficients are packed into a single 

partition with all macroblocks coded in raster scan order.  

Hence, VP8 allows decoders to make efficient use of multiple 

cores to decode several macroblock rows at the same time. The 

separation of mode/motion vector data from the transform 

coefficients allow reference data prefetching in many hardware 

platforms and the coefficient data partitioning in VP8 supports the 

parallel decoding of more than one macroblock rows. VP8 

supports up to eight token partitions in any given frame, which 

enables a decoder to efficiently use as many as eight cores. The 

number eight is not an arbitrary number, but based on research into 

technology trends and predictions by leading micro-processor 

vendors, the vast majority of processors in the coming decade will 

have no more than eight cores.  

 
Fig. 5. VP8 coefficients partitioning and parallel decoding  

 

8. CONCLUSIONS AND FUTURE WORK 

 

As a result of the many advanced coding features, VP8 can make 

the best use of computation power in modern hardware for 

improving compression efficiency while maintaining fast decoding 

speed on majority devices connected to the web.  

Figure 6 shows the decoding speed test results on two different 

hardware platforms for video files encoded in VP8 and H.264 

(high profile) at similar bitrates. The WebM Project libvpx 

reference encoder and x264 software encoder were used to produce 

the VP8 and H.264 files, respectively. For decoding, the latest 

FFmpeg decoder software (version SVN-r264000) with libavcodec 

(version 52.108.0) was used for both VP8 and H.264 in the test. By 

using the same software decoder, one can expect the level of 

optimization for performance to be similar for both VP8 and H.264; 

therefore the decoding speeds may reflect the intrinsic decoding 

complexity. As shown in Fig. 6, the decoding speeds of VP8 

encoded files are consistently faster, average around 30%, than 

those of H.264 encoded files at a similar bitrate across the two 

different hardware platforms.  

 
(a) Intel Core i7 3.2GHz 

 
(b) Intel Atom N270 1.66GHz 

Fig. 6. Decoding speed test results 
 

Fig. 7 shows the results of encoding quality comparison between 

VP8 and H.264 (high profile) on a number of standard video test 

clips. For VP8, the encoder software used was the libvpx software 

from the WebM Project. For H.264 high profile, the encoder 

software used was the latest x264 encoder software, which is 

arguably the best encoder implementation for H.264/AVC. The 

H.264 encoding setting used was recommended by x264 

developers and tuned to produce the best possible PSNR results. 

The x264 encoder used options: 
--preset=veryslow --tune psnr  

The WebM VP8 encoder used options: 
-p 2 --best --auto-alt-ref=1 --minsection-pct=0  
--maxsection-pct=800 --lag-in-frames=25 --kf-min-dist=0  
--kf-max-dist=99999 --static-thresh=0 --min-q=0  
--max-q=63 --drop-frame=0 --bias-pct=50 --psnr 
--arnr-maxframes=7 --arnr-strength=6 --arnr-type=3  

Please refer to the respective project websites for detailed 

description of the options used above. As shown in Fig. 7, the 

reference encoder implementation of VP8 achieves very 

competitive quality results against the H.264/AVC encoder.  

It is not difficult to conclude from the test results that, in the 

designed operating range of web video, VP8 can achieve 

compression efficiency that is competitive to the best H.264/AVC  
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(b) Highway 

 
(c)  Pamphlet 
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Fig. 7. Encoding quality test results 

encoder available. At the same time, however, the low complexity 

design of the VP8 format enables decoder implementations to 

achieve much faster decoding speeds than H.264/AVC on various 

platforms.  

The VP8 reference encoder implementation from the WebM 

Project is not yet making full use of all the VP8 features described 

in this paper. In addition, many techniques used in other modern 

video encoders, such as advanced rate control strategies, rate 

distortion optimization methods, motion estimation methods and so 

on, are directly applicable to VP8. As a result, there is great 

potential for innovations in future versions of VP8 encoder and 

decoder.  
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