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Abstract— This technical report is an extended version of
the paper ‘Cooperative Multi-Target Localization With Noisy
Sensors’ accepted to the 2013 IEEE International Conference
on Robotics and Automation (ICRA).

This paper addresses the task of searching for an unknown
number of static targets within a known obstacle map using
a team of mobile robots equipped with noisy, limited field-
of-view sensors. Such sensors may fail to detect a subset of
the visible targets or return false positive detections. These
measurement sets are used to localize the targets using the
Probability Hypothesis Density, or PHD, filter. Robots commu-
nicate with each other on a local peer-to-peer basis and with a
server or the cloud via access points, exchanging measurements
and poses to update their belief about the targets and plan
future actions. The server provides a mechanism to collect
and synthesize information from all robots and to share the
global, albeit time-delayed, belief state to robots near access
points. We design a decentralized control scheme that exploits
this communication architecture and the PHD representation
of the belief state. Specifically, robots move to maximize mutual
information between the target set and measurements, both self-
collected and those available by accessing the server, balancing
local exploration with sharing knowledge across the team.
Furthermore, robots coordinate their actions with other robots
exploring the same local region of the environment.

I. INTRODUCTION

Teams of mobile robots are often used to gather infor-
mation; to detect, localize and track targets; and to map
the environment. The presence of multiple robots allows for
simultaneous exploration of disjoint areas of the environment
and cooperative viewing of the same location from multiple
vantage points, but raises several key questions not present in
single-robot scenarios. Namely how should robots communi-
cate with each other and how should robots coordinate their
actions? This paper seeks to answer these questions by draw-
ing upon work in robot network architecture, information-
based control, and multi-target localization.

In particular we examine the problem of searching for an
unknown number of static targets within a known map. Ex-
amples of situations where such a task is applicable include
surveillance, security, and monitoring, all of which take place
in locations where there may be an existing communication
infrastructure, e.g., a wireless network or intermittent satellite
communication, that the team can leverage.

The need for a communication architecture is central to the
performance of a cooperative robotic team, yet must take
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Fig. 1. Diagram of the network structure. Robots (green squares) are able
to communicate on a peer-to-peer basis with nearby robots as well as access
the central server through access points (blue triangles). The communication
links originating from robots are all relatively low-bandwidth while the
downlink from the server may be higher bandwidth.

into account the limited capabilities (e.g., communication
range and bandwidth) of each robot while allowing robots
to exchange information in a consistent way. A centralized
approach will not work over large scale environments where
not all robots will be able to communicate with one another.
One common decentralized architecture is Decentralized
Data Fusion (DDF), first described by Grime and Durrant-
Whyte [4], in which each robot manages its own copy of
the joint belief and aggregates data from the other robots
through channel filters which only admit information that
is distinct from their current belief. The DDF framework is
particularly amenable to Gaussian beliefs as the information
form of the Kalman filter allows for efficient, low-bandwidth
updates. However, more complicated belief representations
often require overly conservative approaches to data fusion.

Our solution takes the best of each of these approaches,
allowing robots to communicate on a peer-to-peer basis in
a decentralized fashion while also including communication
with a centralized server or a cloud which robots may access
via the existing network infrastructure in the environment.
This idea of robots relying on information from a server has
been called cloud robotics and has recently generated quite
a bit of excitement [6], [7]. A similar idea was also used for
estimation and control of groups of robots by Michael, Fink,
and Kumar [10] where an Asymmetric Broadcast Control
(ABC) was used to synthesize locally derived information
and provide low-resolution global information to the group.
The asymmetry is in the communication between the robots
and the server. Uploads from robots are low-bandwidth by
nature but downloads involving global information may re-
quire higher bandwidth. Robots are not required to constantly
communicate with the central server or cloud, instead they
opportunistically upload and retrieve information based on
their physical proximity to access points. This is shown in



Fig. 1 where robots may have one or more communication
links and can trade off the benefits of accessing the server
compared to taking further local measurements.

One common approach to robot control for active estima-
tion is to maximize mutual information between the target
locations and the robots’ measurements. Both Grocholsky [5]
and Cole [1] consider information-theoretic control of robot
teams for exploration and tracking tasks using the DDF ar-
chitecture to handle inter-agent communication. In particular,
Cole [1] examines the scenario where the number of targets
is unknown, deriving equations similar to those of the PHD
filter but using a very conservative data fusion approach.
Stranders, et al [16] and Delle Fave, et al [3] use the max-
sum algorithm for decentralized control computations and
DDF to share beliefs about target locations.

When robots have noisy limited field-of-view sensors, it
is often necessary to use target models with non-parametric
distributions and to consider the possibility of false positive
detections and errors in data association. In our previous
work, we have developed control policies that use gradients
of mutual information to drive mobile robots with binary
sensors to search for targets without making assumptions on
data association or the underlying distribution [15], [2]. This
approach is based upon finite set statistics, the probabilistic
framework used to derive the Probability Hypothesis Density,
or PHD, filter. A brief overview of finite set statistics is
provided in Sec. III. However, most of this work considers
static sensors, with the only other papers dealing with control
for estimation by Ristic, et al [13], [14], who use Rényi
divergence, a generalization to mutual information, to drive
a single robot to search for targets. The Rényi divergence
is computed using Monte Carlo integration, while this paper
utilizes analytic approximations to mutual information.

This paper presents a decentralized control architecture
founded upon the ideas of information gathering, synthesis,
and dissemination. Gathering is done using a team of mobile
sensors, the only strong assumption being that robots are
able to localize themselves and navigate without noise. The
data is then incorporated into the robot’s belief through the
PHD filter, making no additional assumptions on the targets’
spatial or cardinality distributions. The synthesis of peer-
to-peer and cloud information is done in a principled way,
synchronizing the beliefs of robots and ensuring no data is
double counted as it is exchanged. Mutual information is
used to balance the benefits of obtaining information by
direct observation of the environment or by downloading
from the server, merging the objectives of gathering and
disseminating information into a single control law.

II. MODELLING

In this work a team of N autonomous robots explore a
closed environment E ⊂ R2. A list of symbols is given
in Table I. The robots seek to localize a set of J stationary
targets X , where both the cardinality (|X| = J) and locations
x of the targets are unknown a priori. The notation | · |
indicates the size of a set.

qi ∈ E Position of robot i in environment
x ∈ X Target location in target set
pd(x; q) Probability of a robot at q detecting a target at x
Fi Sensor footprint of robot i

z ∈ Z Measurement in measurement set
g(z | x; q) Single-target measurement model
κ(z), µ Clutter PHD, expected cardinality
D(x), λ Target PHD, expected cardinality
C Coalition of robots

TABLE I
TABLE OF SYMBOLS

A. Sensing

Each robot is equipped with a noisy sensor that returns a
set of measurements Zt at each time step t, which is then
used to update the estimate of the target set. There is also the
possibility that some targets are missed due to sensor failure
(i.e., false negatives) and that measurements may be due to
clutter within the environment (i.e., false positives).

Use of the PHD filter (see Sec. III) requires probabilistic
models of the probability of detecting true targets, a single-
target measurement model, and the clutter detection proba-
bilities. The probability of a robot at q detecting a target at
x, pd(x; q), depends upon the robot position though we will
often omit the dependence of q for notational compactness.
Robot i may only detect targets within its sensor footprint
Fi, i.e., pd(x) = 0 ∀x /∈ Fi.

If a target at x is detected within the footprint, then a
measurement is returned according to the model g(z | x, q),
though again the dependence on q is omitted. Note that in
this work the term measurement refers to a high-level reading
rather than the raw sensor data, e.g., the output of a target
classifier over an image instead of the image itself.

Finally, we must take into account the possibility of re-
turning false positive measurements. In particular, we assume
that the clutter detections are well modelled by a Poisson
random finite set so we need only the PHD κ(z), where
µ ,

∫
κ(z) dz is the expected cardinality. In the absence of

a priori information about likely clutter locations let κ(z) be
piecewise constant such that κ(z) = 0 for all z that could
not have originated from a target within the sensor footprint.

B. Communication

As robots explore the environment, they store a local
history of messages, where messages consist of (position,
measurement set) pairs. This history will be shared with other
robots directly over peer-to-peer links, and indirectly through
the central server, to aid in exploration. The central server
has A stationary access points located in the environment at
s1, . . . sA, at which robots upload messages and download
the latest PHD from the server, Ds(·).

Robot-server communication, as previously noted [10],
is asymmetric in the bandwidth. When a robot is within
communication range of an access point, the robot uploads its
message history since the last check-in, waits while the server
uses these messages to update its PHD Ds, and receives the
resulting PHD from the server. This PHD Ds replaces the
robot’s PHD as it includes all of the robot’s own message



history as well as all information uploaded by other robots
prior to the current time.

On the other hand, robot-robot communication is sym-
metric. Here robots form coalitions, which are connected
components of a communication graph with edges between
robots that are able to communicate. Robots then simply
exchange their most recent messages with all other robots
in the coalition. These messages are then used to update the
PHD. This framework allows robots to jointly explore the
environment while not double-counting any information, as
communication with the central server overwrites the peer-
to-peer updates.

III. ESTIMATION

In this work we will use an estimation method based on
finite set statistics, a probabilistic framework that deals with
uncertainty in both the cardinality and positions of targets in
a principled fashion.

A. Background

Finite set statistics (FISST) was first applied to engineering
problems by Mahler [8] where he considered radar-based
tracking of an unknown number of mobile target and has
recently been adopted in the robotics community for feature-
based mapping and SLAM by Mullane, et al [12], [11]. The
key distinction between FISST and traditional estimation
methodologies is that FISST is based on the concept of a
random finite set (RFS), a set containing a randomly varying
number of random vectors. In the context of target tracking, a
realization of the RFS gives the number (i.e., set cardinality)
and position (i.e., vectors in the set) of the targets.

It is also important to note that sets do not provide
any label or ordering to the targets, as sets are equivalent
under permutation of the elements. This allows FISST to
avoid one issue that arises in multitarget tracking, that of
data association, i.e., matching measurements to individual
targets, by averaging over all possible data associations.

One issue that arises is that there is no notion of addition
with sets, so care must be taken when performing integration
over a RFS. To this end, Mahler defines the set integral∫

f(X) δX ,
∞∑
n=0

1

n!

∫
f({x1, . . . , xn}) dx1 . . . dxn (1)

where f(X) = f(π(X)) for any permutation π of a set X .
The PHD is the first statistical moment of the distribution

over RFSs. It takes the form of a target density function over
the environment with the property that the integral over any
region gives the expected number of targets in that region.
Note that this is not a probability density function.

B. PHD Filter

The PHD filter is a set of computationally tractable
recursive equations to update the probability hypothesis
density, which is the first statistical moment of a distribution
over RFSs. In general the PHD filter makes the following
assumptions about the targets and robots:
• targets move and generate measurements independently

• new and surviving targets are independent
• the clutter RFS is Poisson and independent of measure-

ments generated by true targets
• the predicted target RFS is Poisson.

Here the term clutter is synonymous with false positive
detections. Under these assumptions, the optimal Poisson
approximation (a RFS is said to be Poisson if the number
of targets is Poisson and target locations are i.i.d.) of the
multitarget density is

p(X) = e−λ
∏
x∈X

D(x) (2)

where D(·) is the PHD and λ ,
∫
D(x) dx is the parameter

of the Poisson distribution. This comes from Theorem 4 by
Mahler [8], who goes on to derive the PHD prediction step

Dt|t−1(x) = γ(x) +

∫
ps(ξ)f(x | ξ)Dt−1|t−1(ξ) dξ (3)

where ps(x) is the probability of a target surviving between
time steps, f(x | ξ) is the target motion model, and γ(x) is
the PHD of new targets entering the environment, and the
PHD update step:

Dt|t(x) =L(x, Zt, Dt|t−1)Dt|t−1(x) (4)

L(x, Z,D) = pd(x) +
∑
z∈Z

pd(x)g(z | x)
κ(z) +

∫
pd(ξ)g(z | ξ)D(ξ) dξ

.

(5)

The · notation will be used throughout to indicate the additive
complement of a probability (e.g., pd(x) = 1 − pd(x)) and
superscript t to represent the time index.

C. Further Assumptions

We focus on the case of stationary targets so that ps = 1,
f(x | ξ) = δ(x, ξ) is the identity map (where δ(x, ξ) is the
Dirac delta), and γ = 0. Note that (3) then simplifies to
Dt|t−1(·) = Dt−1|t−1(·) so we adopt the shorthand notation
Dt(·) , Dt|t(·) and only (4) is needed to update the belief.

The PHD is often represented as a mixture of Gaussians
or as a weighted particle set, as was done by Vo and Ma
[17] and Vo, Singh, and Doucet [18], respectively. We elect
to take the latter approach, representing the PHD as a set of
stationary weighted particles. In other words, the PHD is

D(x) ≈
P∑
p=1

wpδ(x, xp) (6)

where wp is the weight of the particle at position xp, xp does
not depend on time, and P is the number of particles. There
may also be an asymmetry in the robot and server PHDs,
with the robots having a coarser resolution due to limited
computational resources.

This framework was extended to consider arbitrary distri-
butions over target number by Mahler [9] and all results in
this work may be easily extended to this model. We use the
standard PHD filter, as novel estimation methods are not the
focus of the work.



IV. CONTROL

In order to quickly localize the unknown target set, robots
move in such a way as to maximize mutual information
between sensor readings and the target set. Mutual infor-
mation is an information theoretic quantity which quantifies
the amount of information that may be gained about one
random variable (e.g., target locations) by observing another
(e.g., measurements).

In contrast to work in POMDPs and SLAM, we assume
that robots are able to accurately localize themselves within
the environment and have no uncertainty in the execution of
actions. We also restrict the motion of robots to a discrete set
of points within the environment, described by the nodes of
a graph G. Edges connect nodes that are reachable within
a single time step from the current location, based upon
the kinematic restrictions of the robots, and the construction
of the graph depends upon the type of sensor being used.
For example, robots equipped with a directional camera will
have to search over a larger set of actions than robots with
radio range sensors because cameras have an orientation to
them. An example of such a graph is shown in Fig. 2a.
Since the map, and thus the graph, are known a priori, it
is advantageous to use the Floyd-Warshall algorithm to pre-
compute the all-pairs shortest paths between nodes on the
graph to allow for fast online look-up of distances and paths.

(a) Example control graph G for an omni-
directional robot in a small environment.
Nodes are denoted with circles and the
shaded nodes are neighbors of the boxed
nodes.

Check-in Explore

Exploit

(b) Finite state machine of
the three control modes.

Fig. 2. Visualizations of control graph G and control mode transitions.

A. Binary Sensor Model

Due to prohibitively expensive control computations, we
must use a simplified sensor model as compared to that used
in the PHD updates. In particular we consider a binary sensor
modality which returns 0 when the measurement set is empty
and 1 otherwise. The intuition behind this choice is that the
robots will move to locations which have a high likelihood
of detecting targets, thus gaining information.

The derivation of the sensor model is straightforward. Note
that the only way to have an empty measurement set is to
not see all targets and to not have any false positives, so

pb(z = 0 | X) = pK(0)
∏
x∈X

pd(x) = e−µ
∏
x∈X

pd(x) (7)

where pK(n) = e−µµn/n! is the probability of n clutter
readings and the subscript b denotes the use of the binary
model. Then pb(z = 1 | X) = pb(z = 0 | X).

B. Control Law

There are three possible motion modalities for the sensors,
the choice of which depends upon the recent history of the
robot actions: Explore, Check-in, and Exploit. A finite state
machine, Fig. 2b, shows the possible mode transitions. For
both the Explore and Check-in modes, robots select a goal
node g ∈ G and look up the pre-computed shortest path to g
from the current location qti . In general these paths require
many individual motions due to the limitations on speed, so
that robots collect measurements along the way but do not
react on them.

Explore: In this mode, robots seek out promising areas
to search for targets. This can be done in many ways,
both deterministically (e.g., lawnmower pattern or maximal
coverage) or stochastically. We opt for the latter, driving
robots to a random location within the environment if they
have become “stuck”, i.e., when it has not left a small
neighborhood U ⊂ E for a certain number of time steps TS .
This typically happens if a robot has spent many time steps
exploring the same region so that there is little uncertainty
in the local belief.

Check-in: In order to keep the belief in the server
(which may be monitored by a human operator) up-to-date
and the robots’ beliefs somewhat synchronized, robots are
required to check-in with the server at least every TC time
steps. This behavior may be removed by setting TC =∞.

Exploit: If a robot enters the Exploit mode, it will look
for nearby robots so that they may coordinate their actions
and explore more quickly. To this end, we redefine a coalition
to be a connected component of the control graph, where
edges indicate that robots can communicate and their sensor
footprints overlap, i.e., Fi ∩ Fj 6= ∅ ⇒ i, j ∈ C. Each
coalition then elects as its leader the robot that has most
recently checked in with the server as the leader. The leader
then plans the joint action of all robots in that coalition using
its own PHD, which in general differs from that of other
robot’s, in order to reduce redundancies robot motions.

To plan such an action, the robot maximizes the sum of
two components of mutual information in (8). One due to the
measurements taken in the local region of the environment
by members of the coalition and the other for measurements
uploaded to the server since the last check-in time. Let QtC
be the current joint configuration of robots in a generic
coalition C, then Qt+1

C ∈ Gt+1
C =

∏
j∈C G

t+1
j , where

Gt+1
i ⊇ N(qti) 3 qti and N(qti) are the neighbors of qti in G.

The control law is given by

Qt+1
Ci

= argmax
Q∈Gt+1

Ci

I[X,ZCi
;Q] + I[X,Zs; qi] (8)

where ZCi
is the set of binary measurements for coalition

Ci, Zs is the set of measurements available at the server, and
the semicolon denotes the dependence of information upon
the robots’ positions. Robot i then moves to qt+1

i ∈ Qt+1
Ci

.
We have derived closed form expressions for the mutual
information shown in (8), though for brevity only the results
are shown here. The derivation for a single robot may be
found in Appendix I and for multiple robots in Appendix II.



The mutual information due to the local measurements is:

I[X,ZCi
;Q] = H[ZCi

]−H[ZCi
| X] (9)

H[ZCi
] = −

∑
Z∈{0,1}|Ci|

pb(Z) log pb(Z) (10)

H[ZCi
| X] =

∑
j∈C

H[Zj | X] (11)

H[Zj | X] = −
∑

zj∈{0,1}

∫
pb(zj , X) log pb(zj | X) δX.

(12)
Note that (11) comes from the conditional independence
of measurements between robots while the remainder are
standard definitions of mutual information (I) and entropy
(H). The expression for p(Z) is

p(Z) =
∑

C′⊆C1

(−1)|C
′|e−(λ−α(C

0∪C′)+µ|C0∪C′|) (13)

where Cz = {j ∈ C | zj = z} (i.e., Cz is the subset of
robots in coalition C with measurement z) and

α(C) =

∫ ∏
j∈C

pd(x; qj)D(x) dx. (14)

Finally, the conditional entropy is given by

H[Zj | X] = e−(λ−α(j)+µ)(µ+ β)−
∞∑
`=1

c`e
−(λ−α(j`)+`µ)

(15)
where c1 = −1, c` = 1/(`(` − 1)), j` is the set containing
` copies of j, and:

β = −
∫
pd(x)D(x) log pd(x) dx. (16)

The summation and coefficients c` in (15) are due to taking
a Taylor series of log about 0. Note that truncating this
to a finite sum means that (9) is no longer bounded from
below by zero (a standard property of mutual information).
However, we have noticed through empirical simulations that
the number of terms used beyond ` = 20 has minimal
effect on the control decision made, so we truncate there
to minimize computational cost.

The mutual information due to possible measurements in
the server is more difficult to model, as the number of such
measurements and the locations at which they were taken are
unknown until the robot has reached an access point. For this
reason we assume pd to be independent of the target position.
Let the nominal value be the fraction of the environment
covered by the other N − 1 sensors, which when |F | � |E|
we have (N − 1)|F |/|E|. This is then discounted by some
monotonically decreasing function, h, of the distance from
the robot from the nearest access point such that h(0) = 1,
h(∞) ≥ 0, and

pd(q) = (N − 1)
|F |
|E|

h

(
min

a∈{1,...A}
dG(q, ga)

)
(17)

where ga ∈ G is the node closest to the access point at sa
and dG(q, g) is the distance along the graph between q, g.

Since robots do not know the locations at which measure-
ments were taken, we assume that measurements are inde-
pendent of one another (which is true provided that sensor
footprints do not overlap). In this case, mutual information
may be written as

I[X,Zs; qi] = E[m]I[X,Z; qi] (18)

where E[m] is the expected number of messages in the
server and I[X,Z; qi] is the information for a single message.
Using (9) one can find I[X,Z; qi], noting that αC = p

|C|
d λ

and β = λpd log pd since pd does not depend on x.
It only remains to model the expected number of new

measurements available in the server. Assuming that there
is an average rate of return, ρ ≈ 1/TC , then a geometric
distribution models the discrete waiting time between events.
The number of messages in the server will be equal to τi−k,
where τi is the number of time steps since the robot under
consideration last communicated with the server (i.e., the
length of the local message history) and k is the number of
time steps for another robot. Finally, assuming robots move
independently, since there are N − 1 other robots we have:

E[m] = (N − 1)

τi∑
k=0

(τi − k)(1− ρ)kρ. (19)

C. Computation Complexity

While aspects of the computational complexity of the
algorithm have been hinted at, we formally address the issue
here. As written, the complexity of the mutual information
computations in (8) for a single robot in coalition C is
O(P 2|C|

∏
i∈C |Gi|), where P is the number of particles

used to represent the PHD, the factor of 2|C| comes from
the possible binary measurement vectors, and the remaining
term is for the possible coalition configurations. Note that
this is exponential in the size of the coalition both through
measurements and actions, which motivates the use of both
the binary measurement model and the control graph G to
keep the computations tractable.

V. RESULTS

The example scenario considered here involves a team of
four mobile robots searching for targets within a large indoor
office environment, as shown in Fig. 3. Robots are equipped
with omnidirectional sensors with circular footprints (of
radius rd) and probability of detection given by

pd(x; qi) =

{
pd,0e

−|x−qi|2/σ2
d if |x− qi| ≤ rd

0 if |x− qi| > rd
(20)

where pd,0 = 0.8, σd = 2 m, and rd = 5 m. The
measurement model is given by

g(z | x) = x+ η (21)

where η ∼ N (0, σ2
g) is Gaussian white noise with σg = 1 m.

The expected number of clutter points in the footprint is
µ = 0.3 and κ(z) = µ/|F | is uniform over the footprint.

Nodes in the control graph G form a uniform grid with
1 m spacing. We assume minimal kinematic restrictions and



say that robots may move up to 2 m in any direction in a
single time step, so the graph is 12-connected. The PHD is
represented by a set of uniformly spaced particles in a 1 m
grid on the robots and a 0.2 m grid on the server and λ is
initially set to 20.
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Fig. 3. Example environment with four robots (green squares) shown
with their sensor footprints (green circles). There are five targets (orange
diamonds) and five access points (blue triangles), which have limited
communication range (dashed blue circles), within the environment.

There are five access points within the environment and
we use a simple disk model for communication, with access
points and robots having a range of 10 m. The check-in
time, TC , is set to 40 time steps, well above the minimum
number of motions, 23, required to reach any point in the
environment from its nearest access point.

Using this setup we simulate the system for 1000 time
steps, with the team often finding all the targets and local-
izing them to within 0.5 m accuracy. To extract the final
target estimate from the PHD, we use a simple thresholding
and clustering scheme. First, any point with PHD smaller
than some wmin � 1 (we use 0.02) is ignored. From the
remaining points we find clusters with total weight above 0.5,
where nodes are connected if they are within an 8-connected
neighborhood of one another. Finally, the expected locations
are the weighted mean of the particles in each cluster. From
a typical trial, the errors in localizing true targets were
{0.09, 0.21, 0.29, 0.33, 0.88} m, all less than both the grid
size and the standard deviation of the sensor noise. In the
same trial there was one false positive target, due to clutter
detections while a robot was passing through the hallway in
Explore mode with no robot returning to investigate before
the simulation ended. Fig. 5a shows the time evolution of
the control modes for each robot.

A. Key System Parameters

There are several key parameters that influence the behav-
ior of the robot team. Namely, the number of robots N , the
characteristic length of the sensors RS , the maximum robot
velocity V , the number of access points A, the communica-
tion range RC , the check-in time TC , and the characteristic
length of the environment L.

The fraction of information retrieved per time step de-
creases with the size of the environment, L, but it can
be explored more quickly by using more robots, N , or

increasing the visible area per robot, RS . To investigate the
effects of N and RS/L on the rate of information retrieval,
we conducted a series of simulations using between 1 and
4 robots and two footprint radii, 5 and 10 m, with 10 trials
for each set of parameters. The resulting time-evolution of
the average entropy (a measure of uncertainty) of the server
PHD is shown in Fig. 4. As is expected, a higher number of
robots and a larger sensing radius both lead to a higher rate
of information gathering, as evidenced by the lower entropy.
The entropy of a Poisson random finite is given by

H[X] = λ
(
1− log λ−H[d(x)]

)
(22)

where d(x) = λ−1D(x) is the normalized PHD. See Ap-
pendix III for the derivation.

Time step

Se
rv

er
 P

H
D

 E
n

tr
op

y 
[n

at
s]

0 250 500 750 1000
0

50

100

150

200

N = 1, RS = 5

N = 1, RS = 10

N = 2, RS = 5

N = 2, RS = 10

N = 3, RS = 5

N = 3, RS = 10

N = 4, RS = 5

N = 4, RS = 10

Fig. 4. Time evolution of the entropy of the target RFS for a variety of
team sizes and footprint radii.

As the environment grows in size, the time between
uploads to the server, TC , must increase so that robots are
able to reach more distant locations. Conversely, robots are
able to reach an access point more quickly as the access point
density A/L2, communication range RC , and robot speed
V all increase. To investigate the effects of this exploration
time on the system behavior, we ran a series of simulations
varying TC from 10 to 50 time steps by increments of 5,
with 10 trials for each rate. The average fraction of the
total simulation time spent in each control mode is shown
in Fig. 5b. For obvious reasons, it is desirable for the
fraction of time spent in the Exploit mode to be as high
as possible because this means the robots do not spend large
amounts of time driving to access points or getting stuck.
Not surprisingly, as the check-in rate decreases, the fraction
of the total time spent in Check-in mode also decreases. On
the other hand, as the ratio of TC to TS increases the robot
gets stuck more often so it spends more time in Explore
mode. The surprising thing is that these two effects appear
to cancel one another out, with the total fraction of the times
spent exploring at around 0.55 for every value of TC except
TC = 10.

B. Cooperation

One obvious question to ask is how much benefit leader
election within a coalition provides, as opposed to allowing
each robot to redundantly plan the coalition action based
on its own PHD. In other words, does having different
PHDs among the coalition members hurt the performance
of the team. To explore this issue we ran another series
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Fig. 6. Plots showing the time evolution of the number of true targets (blue)
and false targets (red). The mean over 90 separate trials is shown by the
solid line and the shaded regions correspond show one standard deviation.

of simulations where robots did not run the leader election
policy. Instead each robot redundantly planned the action of
the coalition, effectively acting as the leader but not sharing
these plans with other robots.

The major difference between the two modes was the rate
at which false positive targets arise, as shown in Fig. 6.
While the mean value and standard deviation of true targets
are quite similar, the team without the leader election policy
has a significantly higher rate of false positive targets. This
indicates that one of the primary benefits of leader election is
for error mitigation: robots tend to get in each others way or
not move in complementary directions when they plan based
on different PHDs.

Finally, we return to the issue of computational complexity
from Sec. IV-C. In our simulations, run in Matlab on a
laptop with a 2.27 GHz Intel Core i3 with 4 GB of RAM,
mutual information for coalition of a single robot took an
average of 0.014 s to compute, of two robots an average of
0.484 s, and of three robots an average of 11.829 s. Real-
time implementation of this system was not the subject of this
work, with these numbers meant to indicate the feasibility,
for example using C++ could likely reduce the computation
time by an order of magnitude and using a GPU could
reduce it significantly more, as mutual information is highly
parallelizable. Implementation of the system in hardware will
be the study of future work.

VI. CONCLUSION

In this paper we propose a cooperative exploration strategy
for multi-target localization with noisy sensors. Estimation is
done using the PHD filter, allowing the inclusion of false

positive and false negative detections, high sensor noise,
and unknown data association in a principled way. We also
describe a network architecture wherein robots exchange
information on a peer-to-peer basis as well as communicate
with a central server. The server allows information to be
shared with robots potentially exploring disjoint regions of
the environment, synchronizes the belief across the team,
and potentially allows the robots access to cloud services.
Our proposed control law is based on maximizing mutual
information between the target set and sensor measurements,
both from on-board sensors of robots in the coalition and
the expected measurements uploaded to the server by other
robots, combining the goals of information collection and
dissemination into a single objective function. To the authors’
best knowledge, no such expressions for mutual information
based upon the PHD filter have previously appeared in the
literature. Furthermore, robots in the same region of the
environment form coalitions and plan joint actions in order to
cooperatively localize targets. Finally, we present extensive
simulation results in a complex, indoor environment, study-
ing the effects of varying multiple system parameters on the
performance of the team and demonstrating the potential for
real-time implementation.

APPENDIX I
MUTUAL INFORMATION OF A SIGNLE BINARY

MEASUREMENT AND A POISSON RFS

From the definition of mutual information, in (9) to (15),
there are two main terms of interest the entropy and condi-
tional entropy. Here we consider the single-robot case and
extend this to multiple robots in Appendix II. Let us first
look at the entropy

H[Z] = −
∑

z={0,1}

pb(z) log pb(z). (10)

This only requires us to calculate pb(z = 0) since pb(z =
1) = pb(z = 0). From the definition of the measurement
model and the target distribution, we have

pb(z = 0) =

∫
pb(z = 0 | X)p(X) δX (23)

=

∞∑
k=0

1

k!

∫
pK(0)e−λ

×
k∏
j=1

pd(xj)D(xj) dx1 . . . dxk

= pK(0)e−λ
∞∑
k=0

1

k!

k∏
j=1

∫
pd(xj)D(xj) dxj︸ ︷︷ ︸

α

= e−µe−λeα
∞∑
k=0

1

k!
e−ααk

= e−(λ−α+µ)

since the sum is simply the total probability mass of a Pois-
son random variable with parameter α, which is identically
1. Note that this is guaranteed to be a probability since α ≤ λ



so the exponent is non-negative. Then using the additive
complement, pb(1) = 1− e−(λ−α+µ).

Note the definitions of λ and α are very similar, with α
being the same as λ weighted by the probability of no de-
tection at each location. This leads to the nice interpretation
of λ − α as the expected number of detected targets while
µ is the expected number of false positive detections.

Next we look at the conditional entropy computations.

H[Z | X] = −
∑

z∈{0,1}

∫
pb(z,X) log pb(z | X) δX. (12)

Beginning with the z = 0 term of the conditional entropy,∫
pb(z = 0 | X)p(X) log pb(z = 0 | X) δX

=

∞∑
k=0

1

k!

∫
pK(0)e−λ

k∏
j=1

pd(xj)D(xj)

× log pK(0)

k∏
i=1

pd(xi) dx1 . . . dxk

= e−µe−λ
∞∑
k=0

1

k!

∫ k∏
j=1

pd(xj)D(xj)

×
[
log e−µ +

k∑
i=1

log pd(xi)

]
dx1 . . . dxk

= e−(λ+µ)
∞∑
k=0

1

k!

[
− µαk

+ kαk−1
∫
pd(x)D(x) log pd(x) dx︸ ︷︷ ︸

−β

]

= −e−(λ−α+µ)
(
β + µ

) ∞∑
k=0

e−α
1

k!
αk

= −e−(λ−α+µ)
(
β + µ

)
(24)

where we again note that we have the total probability mass
of a Poisson random variable.

The final term is the only one that does not have a
nice, closed-form solution like the previous ones, due to the
presence of a sum inside the log term:

∫
pb(z = 1 | X)p(X) log pb(z = 1 | X) δX

=

∫
(1−pb(z = 0 | X))p(X) log(1−pb(z = 0 | X)) δX.

To get around this, we take the Taylor series of log(1− p0)
about p0 = 0, where p0 = pb(z = 0 | X) for compactness,
so:

log(1− p0) ≈ −p0 −
1

2
p20 −

1

3
p30 + . . .

Substituting this into the integral, we have∫
pb(z = 1 | X)p(X) log pb(z = 1 | X) δX

≈
∫
(1− p0)(−p0 −

1

2
p20 −

1

3
p30 + . . .)p(X) δX

=

∞∑
`=1

c`

∫
p`0p(X) δX

where c` are the coefficients, which are c` = 1/(`(` − 1))
for ` > 1 and c1 = −1. We can now plug in the definitions
of p0 and p(X) to get∫

pb(z = 1 | X)p(X) log pb(z = 1 | X) δX

≈
∞∑
`=1

c`

∞∑
k=0

1

k!

∫
pK(0)`e−λ

×
k∏
j=1

pd(xj)
`D(xj) dx1 . . . dxk

≈
∞∑
`=1

c`e
−`µe−(λ−α(1

`))
∞∑
k=0

1

k!
e−α(1

`)(α(1`))k

≈
∞∑
`=1

c`e
−(λ−α(1`)+`µ) (25)

where 1` = {1, . . . , 1} is a set containing ` copies of 1 and
α(1`) =

∫
pd(x)

`D(x) dx. Then we can see that (15) is the
sum of (24) and (25).

APPENDIX II
MUTUAL INFORMATION OF MULTIPLE BINARY

MEASUREMENTS AND A POISSON RFS

The approach from Appendix I can be easily extended to
work with multiple robots, assuming conditional indepen-
dence of sensor measurements given the environment. This
conditional independence results in the conditional entropy
of the team simply being the sum of the conditional entropies
of each robot. This allows us to simply write (11) from (12).

The entropy terms do not decouple as nicely, and the
computational complexity will be exponential in the number
of robots. Here we must compute pb(Z) for each random
vector Z of sensor measurements. Let the robots under
consideration be in coalition C and let C0 = {j ∈ C | zj =
0} be all the robots without a detection and C1 = {j ∈ C |
zj = 1} = C \ C0 be all the robots with a detection. Then,
letting pi(0) = pb(zi = 0 | X), we get

pb(Z) =

∫ ∏
i∈C

pi(z) p(X) δX

=

∫ ∏
i∈C0

pi(0)
∏
j∈C1

(1− pj(0)) p(X) δX

=

∫ ∏
i∈C0

pi(0)
∑

C′⊆C1

(−1)|C
′|
∏
j∈C′

pj(0) p(X) δX

where the last equality comes from expanding the product
over C1. Plugging in the definitions of the measurement



models and target distributions, we have an integral of the
same form as (23). Through identical arguments to those in
Appendix I, we get:

pb(Z) =
∑

C′⊆C1

(−1)|C
′|e−(λ+µ|C

0∪C′|−α(C0∪C′)). (13)

APPENDIX III
ENTROPY OF POISSON RFS

We wish to find an expression for the entropy of the target
set, given the likelihood function:

p(X) = e−λ
∏
x∈X

D(x). (2)

Plugging this into the standard formula, we get:

H[X ] = −
∫
p(X) log p(X) δX

= −
∫
e−λ

∏
x∈X

D(x) log

[
e−λ

∏
x∈X

D(x)

]
δX

= −e−λ
∞∑
k=0

1

k!

∫ k∏
i=1

D(xi)

×
[
− λ+

k∑
j=1

logD(xj)

]
dx1 . . . dxk

= −e−λ
∞∑
k=0

1

k!

[
− λ
(∫

D(x) dx

)k
+ k

(∫
D(x) dx

)k−1(∫
D(x) logD(x) dx

)]
=

(
λ−

∫
D(x) logD(x) dx

) ∞∑
k=0

1

k!
λke−λ

= λ−
∫
D(x) logD(x) dx.

This may also be written in terms of the normalized density
d(x) = λ−1D(x),

H[X ] = λ− λ
∫
d(x)[log λ+ log d(x)] dx

= λ− λ log λ− λ
∫
d(x) log d(x) dx

= λ(1− log λ+H[d(x)]). (22)

REFERENCES

[1] D. Cole. A cooperative uas architecture for information-theoretic
search and track. PhD thesis, University of Sydney, 2009.

[2] P. Dames, M. Schwager, V. Kumar, and D. Rus. A decentralized
control policy for adaptive information gathering in hazardous envi-
ronments. In IEEE Conf. Decision and Control (CDC), Dec. 2012.

[3] F. Delle Fave, A. Rogers, Z. Xu, S. Sukkarieh, and N. Jennings.
Deploying the max-sum algorithm for decentralised coordination and
task allocation of unmanned aerial vehicles for live aerial imagery
collection. In IEEE Int. Conf. Robotics and Automation (ICRA), pages
469–476. IEEE, 2012.

[4] S. Grime and H. Durrant-Whyte. Data fusion in decentralized sensor
networks. Control engineering practice, 2(5):849–863, 1994.

[5] B. Grocholsky. Information-theoretic control of multiple sensor
platforms. PhD thesis, University of Sydney, 2002.

[6] E. Guizzo. Cloud robotics: Connected to the cloud, robots get smarter.
IEEE Spectrum. Available via http://spectrum. ieee. org/automaton/
robotics/robotics-software/cloud-robotics, 2011.

[7] E. Guizzo. Robots with their heads in the clouds. IEEE Spectrum,
48(3):16–18, 2011.

[8] R. Mahler. Multitarget bayes filtering via first-order multitarget
moments. IEEE Trans. Aerosp. Electron. Syst., 39(4):1152–1178,
2003.

[9] R. Mahler. Phd filters of higher order in target number. IEEE Trans.
Aerosp. Electron. Syst., 43(4):1523–1543, 2007.

[10] N. Michael, J. Fink, S. Loizou, and V. Kumar. Architecture,
abstractions, and algorithms for controlling large teams of robots:
Experimental testbed and results. Int. J. Robotics Research, pages
409–419, 2011.

[11] J. Mullane, B.N. Vo, M. Adams, and B.T. Vo. A random-finite-set
approach to bayesian slam. IEEE Trans. Robotics, 27(2):268–282,
2011.

[12] J. Mullane, B.N. Vo, M. Adams, and B.T. Vo. Random finite sets for
robot mapping and slam. Springer Tracts in Advanced Robotics, 2011.

[13] B. Ristic and B.N. Vo. Sensor control for multi-object state-space
estimation using random finite sets. Automatica, 46(11):1812–1818,
2010.

[14] B. Ristic, B.N. Vo, and D. Clark. A note on the reward function for
phd filters with sensor control. IEEE Trans. Aerosp. Electron. Syst.,
47(2):1521–1529, 2011.

[15] M. Schwager, P. Dames, D. Rus, and V. Kumar. A multi-robot control
policy for information gathering in the presence of unknown hazards.
In Int. Symposium on Robotics Research (ISRR), Aug. 2011.

[16] R. Stranders, A. Farinelli, A. Rogers, and N. Jennings. Decentralised
coordination of mobile sensors using the max-sum algorithm. In Int.
Joint Conf. on AI (IJCAI), pages 299–304, 2009.

[17] B.N. Vo and W.K. Ma. The gaussian mixture probability hypothesis
density filter. IEEE Trans. Signal Process., 54(11):4091–4104, 2006.

[18] B.N. Vo, S. Singh, and A. Doucet. Sequential monte carlo imple-
mentation of the phd filter for multi-target tracking. In Int. Conf.
Information Fusion, pages 792–799, 2003.


	Introduction
	Modelling
	Sensing
	Communication

	Estimation
	Background
	PHD Filter
	Further Assumptions

	Control
	Binary Sensor Model
	Control Law
	Computation Complexity

	Results
	Key System Parameters
	Cooperation

	Conclusion
	Appendix I: Mutual Information of a Signle Binary Measurement and a Poisson RFS
	Appendix II: Mutual Information of Multiple Binary Measurements and a Poisson RFS
	Appendix III: Entropy of Poisson RFS
	References

