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1 Objective 

This report is the outcome of the project ‘Nestor’, which, in general terms, aims to 

utilize an autonomous mobile robot navigation system for real world settings. The 

report has three aims: 

1. To outline the problem setting. 

2. To layout the related concepts 

3. To give the state of the art for dealing with these concepts. 

2 Introduction 

Before getting into the details about navigation, it is important to characterize the 

genera robot control problem. The following section describes the basics of this issue 

3 Robotic Paradigms 

A paradigm is a philosophy or set of assumptions or techniques which characterize an 

approach to a class of problems [1]. In this sense, the aim of a robotic paradigm is to 

organize the ‘intelligence’ of the system and control its actions.  

A robotic system has three main set functions: SENSE, PLAN and ACT.  SENSE functions 

gather information from robot’s sensors and produce a useful output for other 

functionalities. PLAN functions take these sorts of outputs or use robot’s own 

knowledge to produce a set of tasks for the robot to perform. ACT functions produce 

actuator commands to carry out physical embodiment with the environment.  

There are currently three paradigms in robot control, which are described by the 

relationship between these three primitive functionalities (Figure 1).  

 

3.1 Hierarchical paradigm 

Also called as the classical/traditional artificial intelligence paradigm, it is historically 

the oldest method of organizing intelligence in mainstream robotics [2].  Error! 

Reference source not found.Since the very first implementation [3], it has been a 

dominating way of controlling robots through a logical sequence of actions.   
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Figure 1, three robotic paradigms; (a) hierarchical, (b) reactive, (c) hybrid 

 

Under this paradigm, the robot basically senses the world, plans its action, and then 

acts. Therefore, at each step it explicitly plans the next move. This model tends to 

construct a database to gather a global world model based on the data flow from the 

sensors, such that the planner can use this single representation to route the tasks to 

actions. 

3.2 Reactive paradigm 

Reactive paradigm came out as a reaction to the hierarchical paradigm in 80s. 

Hierarchical approach was based on an introspective view of how people think in a 

top-down manner.  Reactive approach, on the other hand, utilized the findings of 

biology and cognitive physiology; which examined the living examples of intelligence 

[2].  

In this approach, sensing is directly coupled to actuation, and planning does not take 

place. There are multiple instances of SENSE-ACT couplings, which can be also called as 

behaviors. The resulting action of the robot is the combination of its behaviors.  
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Figure 2, hierarchical paradigm in detail 

 

Figure 3, a reactive control paradigm example 

Brooks, in his seminal paper [4], described the main difference between these two 

approaches as the way they decompose the tasks. According to him, reactive systems 

decompose tasks in layers. They start with generating basic survival behaviors and 

then evolve new ones that either use the existing ones or create parallel tracks of 

more advanced ones. If anything happens to the advanced ones, the lower behavior 

will still operate, ensuring the survival of the system. This is similar to the 

functionalities of human brain stem such as breathing, which continue independently 

from high level cognitive functions of the brain (i.e. talking), or even in case of 

cognitive hibernation (i.e. sleeping) 

Purely reactive systems showed the potential of the approach, but it was seen that it is 

not very suitable for general purpose applications without any planning. 

3.3 Hybrid Paradigm 

Hybrid approach was first exemplified by Arkin in 90s to address the shortcomings of 

the reactive approach [5]. In this approach planning occurs concurrently with the 
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sense-act couplings in such a way that tasks are decomposed to subtasks and 

behaviors are accordingly generated. Sensory information is routed to requesting 

behaviors, but it is also available to the planner for building a task oriented world 

model. Therefore, sensing is organized as a mixture of hierarchical and reactive styles; 

where planning is done at one step and sensing and acting are done together.  

The hybridization brought up several architectural challenges, such as how to 

distinguish reaction and deliberation, how to organize deliberation, or how the overall 

behavior will emerge.  Several architectures have been developed to tackle these 

issues, most of which mainly focused on behavioral management. It was found out 

that two primary ways of combining behaviors; subsumtion [4] and potential field 

summation [6] are rather limited, so other methods based on voting (DAMN) [7] , 

fuzzy logic (Saphira) [8] and filtering (SFX) [9] were introduced. The book ‘Behavior 

Based Robotics [10]’ is regarded as the most complete work on AI robotics, with a 

comprehensive list of such robot architectures explored in detail [2]. 

4 Autonomous Navigation 

Autonomous mobile robot navigation can be characterized by three questions [11]: 

• Where am I? 

• Where am I going? 

• How do I get there?  

 

In order to tackle these questions, the robot has to: 
 

• handle a map of its environment 

• Self localize itself in the environment 

• Plan a path from its location to a desired location 

 

Therefore the robot has to have a model of the environment, be able to perceive, 
estimate its relative state and finally plan and execute its movement.  

 

An autonomous robot navigation system has traditionally been hierarchical, and it 

consists of a dynamical control loop with four main elements: Perception, 
Mapping/localization, Cognition and Motor Control (Figure 4). 
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Figure 4, autonomous navigation problem 

This chapter aims to summarize these elements and give an overview of relevant 

problems to be addressed. 

 

4.1 Perception  

First action in the control loop is perception of the self and the environment, which is 

done through sensors. Proprioceptive sensors capture information about the self-state 

of the robot, whereas exoprioceptive sensors capture information about the 

environment. Types of sensors being used on mobile robots shows a big variety 

[12,13]. The most relevant ones can be briefly listed as: encoders, gyroscopes, 

accelerometers, sonars, laser range finders, beacon based sensors and vision sensors. 

In theory, navigation can be realized using only proprioceptive sensors, using 

odometry. It is basically calculating the robot position based on the rotation of wheels 

and/or calculating orientations using gyroscopes/accelerometers. But in real world 

settings, odometry performs poorly over time due to unbounded growth of integration 

errors caused by uncertainties. 

It is also possible to navigate using only exoprioceptive sensors. One such realization of 

this approach is the Global Positioning System (GPS); which is being successfully used 

in vehicle navigation systems. The problem with GPS and its upcoming, European 

counterpart Galileo [14] is that these systems require a direct line of sight to the 

satellites on earth orbit. Therefore these systems are especially inapplicable to indoor 

applications.  

Shortcomings of GPS system led researchers to several ground based approaches. 

Several alternatives have been developed based on i.e.: Radio beacons[15], Wireless 

Ethernet[16], GSM networks [17], Wireless Sensor Networks (WSN)[18] , RFID tags 

[19], barcodes [20] or laser reflectors [21].  Such methods can ease the problem of 

navigation, but they might require substantial amount of environmental modification.  
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This makes them inflexible and costly to install and maintain. Due to such reasons, 

many researches focused on solving the robot navigation problem in unmodified 

environments.  

Many of the state of the art techniques for navigation in unmodified environments 

uses combinations of proprioceptive and exoprioceptive sensors and fuse them using 

probabilistic techniques. Sonars, laser range finders and several kinds of vision sensors 

are used to capture information in such methods. 

4.1.1 Environmental Representation 

How the environment is represented is an important factor in navigation. It depends 

on several characteristics of the sensor and the data acquisition system, such as range 

and resolution, update speed, bandwidth. It also characterizes how it is stored in case 

of mapping or map handling.  

Simplest way of representing an environment is using raw sensor data. Information 

coming from sensors i.e. laser range scans, are sequentially stored in the same data 

type they are acquired. In such a generalized case, the problem is the low distinctness 

of the data. Also, it eventually results in a large volume of data with time, which brings 

up computational challenges. 

Alternatively, features can be used for modeling. Complexity level of features is an 

important factor for navigational purposes. Using low level features such as 

lines/circles will generate a smaller database compared to the previous approach, yet 

with a moderate amount of ambiguity associated. More complex features in the forms 

of i.e. patterns/objects can even decrease the size of the database with lesser 

ambiguities. But too much complexity, on the other hand, can have two adverse 

effects. First, it might yield difficulties in detection and require high computational 

resources. And secondly, it will result in very small databases, which might not entirely 

capture the characteristics of the environment.  

Range sensors have been the dominating choice for environmental sensing on robots. 

Early works extensively used sonar arrays for distance sensing, but the limitations with 

range and resolution of sonars severely affected functions of mapping and localization. 

Time-of-flight laser scanners later became widely applicable to mobile robotics, but 

their scanning field is restricted to a horizontal plane, which in turn yields to poor 

world representation [22].  This limitation was tackled by using oscillating the laser 

scanners [23][24][25] or multiple  lasers with complementary placements[26] to 

achieve higher dimensionality in range sensing . Yet, these systems are rather 

expensive and complex to utilize in a real world robotic application. Finally, different 



9 

 

vision based approaches has been emerged in the last decade to extract metric 

information from the environment using imaging sensors.  Stereo systems have been 

long investigated for 3D range sensing, whereas a big amount of recent work is based 

on monocular systems that can extract metric information from the optical flow 

detected by the camera.  

 

4.1.2 Maps Used in Mobile Robot Navigation 

Idea of using maps for mobile robot navigation has been existed for quite some time, 

and roboticists have developed several types of maps for different needs based on 

how they can represent the environment.  Buschka [27] classifies existing map types as 

follows: 

Metric Maps: Maps that carry distance information that corresponds to actual 

distances in the environment. Such a map can give a distance of a path or size 

of an object. 

Topological Maps: Maps where the environment is modeled according to its 

structure and connectivity, and often represented as a connectivity graph. 

Sensor Level Maps: Maps that are derived directly from the interpretation of 

the sensor inputs from the current position.  (i.e. [28]) 

Appearance Based Maps: Maps that functionally describe a position from 

sensor data. (i.e. [29]) 

Semantic Maps: Maps which are oriented for high level decision making, and 

contain information about objects and their relationships with the 

environment. (i.e. [30-32]) 

Hybrid Maps: A combination of different types of maps. Hybrid maps also need 

to glue elements that represent the same part of the environment in combined 

maps.   

Following section elaborate on metric, topological and hybrid maps, with are the most 

commonly used types in mobile robotics. 

4.1.2.1 Metric Maps:  

From the control perspective, metric maps are useful when metric accuracy is 

necessary for i.e. precise localization or optimal path planning. Depending on the 
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researches such as rooms or corridors as nodes and doors or passageways as edges. 

Thrun [41] preferred to use places with ‘significant features’ as nodes.  Fabrizi [42] 

defined a node as a ‘large open space’. Duckett [43] proposed a system where a new 

node is placed after robot has travelled far away from the previous one. 

Topological maps, such as reactive control paradigm, were inspired by biological 

studies of insects and animals. It can be also claimed that a topological map will be the 

best suitable for a behavior based navigation system. 

 

 

Figure 6, a topological map: S-tog network in Copenhagen 

4.1.2.3 Hybrid maps: 

Since metric and topological maps are of fundamentally different types, both have 

advantages over each other. Table 1 summarizes this comparison.  

It is clear to see that what is an advantage for one approach is a disadvantage to the 

other, which constituted the motivation to develop hybrid maps.  The idea came to the 
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scene as early as 1978 [44], but it has only been a decade that such maps emerged in 

an increasing number. 

Table 1, Comparison of Metric and Topological maps [27] 

 Metric Maps Topological Maps 

Pros • High accuracy for localization 

and path planning 

• Possibility to make optimal 

routes 

• Easy to build, represent and 
maintain for small 

environments 

• Layout is easily readable for 

humans 

• Easy to scale up for large 

environments 

• Very suitable for planning 

• Sensor precision and reliability is not 

as important 

• No need for precise position 

estimation for map building 

• Good interface to symbolic problem 

solvers 

Cons • Difficult to scale up for large 

environments 

• Costly path planning 

• Need for reliable sensors 

• Need for precise position 

estimate for map building. 

• Low accuracy 

• Possible suboptimal paths 

• Difficult to build and maintain 

 

Two types of hybrid maps are parallel maps and patchwork maps. A parallel map 

constitutes of at least two different maps that represent the same area in an 

environment. Most parallel maps are constructed automatically by extracting a 

topological map from a metric one. Thrun utilized Voronoi diagrams in the empty parts 

of a grid map in [41]. A similar approach was carried in [42] by using image processing. 

The opposite approach, extracting metric maps from topological nodes had also been 

presented [45]. An interesting multi-layered hierarchical parallel map representation is 

developed in [46,47] where the main focus was efficient localization. The map is called 

‘Annotated Hierarchical graph’ and it consists of hierarchically ordered topological 

maps, supported with local metric patches in the lowest layer.  Nieto also developed a 

novel kind of parallel map, which consisted of an augmentation of a feature based 

metric map and a grid based metric map [48]. While the first were used for 

localization, the latter was used for optimal route planning.  

A patchwork map is a representation, where the environment is globally symbolized 

by a topological map and a set of metric map patches. This kind of maps can be easily 

scaled up, thus representing really large environments; yet perform fine metric 

localization due to the patches.  
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Several patchwork maps simply connect small sized metric maps based on topology 

[49]. Thus nodes do not correspond to any particular environmental structure. More 

elaborate patchworks used openings between i.e. rooms and corridors as the node 

features [50]. In [51,52] similar approach is used for node selection, and the rest of the 

topology is completed using ‘Reduced Generalized Voronoi Graph’. Aguirre developed 

a complex patchwork map in [53], where two kinds of metric maps where used in each 

room, which acted as nodes in the topology. 

 

Figure 7, a hybrid map: Global metric map is extracted from the ‘signatures’ of topological 

nodes [45] 

 

4.2 Mapping and Localization 

4.2.1 Mapping 

A mobile robot requires a representation of the environment for autonomous 

navigation in the form of a map. Based on the environment characteristics and the 

type of the map, it is possible to build robot maps using existing maps by other means. 

But in most of the cases, the robot needs to build a map of the environment in a 

subsequent training phase.  

Metric grid maps are the most commonly used types of maps in mobile robot 

navigation.  Building metric maps basically requires estimating the initial position of 
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the robot, and updating the cells of the map as the new sensory information is 

acquired.  The most trivial approach is to use odometry for position estimation. As 

explained previously, estimation error accumulates by time in odometrical systems. 

The apparent idea [54] to address this problem is to use the map, which is being built 

at that moment, for correcting the estimation, which is now coined as Simultaneous 

Localization and Mapping – SLAM. 

Particularly difficult part of the SLAM problem with the grid maps is that the cell 

positions in a grid map are static. Therefore, if a robot recognizes a place it has already 

been during mapping (loop closure), it might see that its position is off and needs to be 

corrected. On the other hand, to correct the grid map, the entire map should be 

traced back and recalculated based on the new information.  

An evident method is to build the map sequentially by first localizing and then 

rebuilding the map based on adjusted positions [55].  Genetic algorithms are also used 

for mapping. Duckett developed a method [56] where several maps are generated 

with slightly altering paths, and then a genetic algorithm is used to select the best 

maps and combine new paths to test. In [57], a new grid map representation is 

generated where the cells are able to hold multiple hypotheses about the map. The 

least probable hypotheses are later removed in a map update stage. Rao-Blackwellized 

particle filters, introduced in [58] became a popular choice for building grid maps. In 

this approach, a number of maps based on single particles are being carried and 

updated simultaneously. Recent improvements on this method permitted to reduce 

the number of particles to still get good results [59-61]. 

Feature maps differ from grid maps in the sense that sensor data is used to extract 

features before the mapping stage. These features are then compared to the ones in 

the map so that either the new feature is added to the map or the existing features in 

the map are updated accordingly, or used for correcting the position estimation. Many 

of the solutions are based on the approach presented in [62]. The most significant 

developments around this method are based on how the Kalman filter is utilized for 

position update. Information filter is introduced to ease the computation burden in 

[63,64]. Also unscented filter is used in [65,66] to cope with the nonlinearities. 

Building topological maps can be done in two different ways; by using sensor data or 

by using another type of map. Choset used a generalized Voronoi graph as a map in 

[51]. The map is constructed my moving the robot in the environment to construct the 

nodes of the map, and visited nodes are detected by matching their “signatures” to 

the previously acquired ones. Thrun et.al used the latter technique in [52], where they 

preprocessed the grip maps to threshold the occupancy probabilities to further 
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generate Voronoi diagrams on the empty areas of the map. Local minima found in the 

Voronoi graph are used to partition the grid map into nodes.  

4.2.2 Localization 

Localization is the task of finding the position of a mobile robot in an environment, 

based on its representation.  

4.2.2.1 Metric localization 

Localization can be defined as the task of estimating the robot’s pose in the world, 

given a-priori map. The estimate, also referred as belief, is often augmented with some 

measure of uncertainty that can arise from several factors.  The belief is updated when 

the robot performs an action or makes an observation. A robot action (i.e. movement) 

increases the uncertainty (due to integration errors), whereas observations often 

reduce the uncertainty of the robot pose.  

Localization is tightly coupled to how belief is represented and estimated. Most of the 

robotic systems use planar maps. The main reason for that is to decrease the 

complexity of the problem by reducing dimensionality of the robot pose vector from 6-

D (x, y, z, pitch, roll, yaw) to 3-D (x, y, yaw). 

One approach to solve the problem is position tracking, where the belief of the robot 

is reduced to a single pose. The position is estimated in a single hypothesis, and 

whenever an action or observation occurs, the hypothesis is updated. Therefore, the 

initial position of the robot must be known to be able to track the position. Kalman 

filter [67], and its variants are widely used in position tracking. In [68] sonars range 

finders are used for line extraction and a Kalman filter is used for matching.   In [69], 

an extended Kalman Filter is used to match raw sensor data with a feature based 

metric map. Fuzzy logic is also used for representing uncertainty in position tracking in 

[70]. 

Position tracking problem deals with a single pose, therefore representation is simple, 

and update calculations are computationally cheap. But this technique requires that 

the initial position is known. In addition, if the measurements become vague, the 

position can be lost.  

The alternative solution to position tracking is to represent multiple hypotheses of the 

pose, which is often called as global position estimation. In this approach, the initial 

position is not needed to be known, but due to the high degrees of uncertainities 

imposed by multiple hypotheses about the pose of the robot, position estimation is 

computationally expensive. 
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In [71] several position candidates are tracked using Kalman filters. The number of 

hypotheses adapts the uncertainty of the localization. Safiotti et. al. used fuzzy sets to 

represent uncertainities to carry out multi-hypothesis tracking in [72]. In [73] Markov 

localization is introduced, where each cell of a grid map holds a belief of how much the 

actual position of the robot is in that cell. In this approach, the localization grid map 

represents a probably density function (pdf) of the belief of localization. As the robot 

moves or observes, cells are updated using Bayesian updating. In [74] , the method is 

further modified to overcome the heavy computational cost of the approach. An 

alternative is proposed in [75], where the updating is based on fuzzy logic instead of 

Bayesian inference.  In [76] pdf used in localization belief is represented as a set of 

samples. This approach reduced the number of calculations compared to Markov 

localization, while it is still possible to perform global localization. This approach is 

called Monte Carlo localization, and further improved in [77-79] to decrease the 

number of samples needed. 

4.2.2.2 Topological Localization 

A topological map is consisted of nodes and edges. Therefore, topological localization 

is the task of finding in which edge or node the robot is. Apart from the environmental 

representation (i.e. how the edged and nodes are defined), topological localization 

requires reliable place recognition and detection of edge traversal. In [80], nodes are 

defined based on the sudden changes in the behavior pattern of the robot.  For 

instance, if the robot is following a wall, and after a while it encounters an obstacle so 

it as to perform another action, that particular place is defined as nodes. Nodes are 

identified using features such as distance travelled since the last node and the 

‘signature’ of the node given by sonar sensors. In [81], the nodes are recognized using 

a similar signature approach, and then these signature are learned using a growing 

neural network. Localization is then performed using signature matching and 

odometry. In [82], a local topological map is built and then compared to a global one, 

to obtain the most likely position. In [83], an omnidirectional camera is used for 

performing topological localization. Queried images are compared to images stored in 

the map. Image histograms are used as global features for image representation, thus 

the amount of information stored is highly reduced. 

4.3 Cognition and Path planning 

Robot cognition very much depends on the general use of the robot.  In the context of 

this report, problem setting is defined as autonomous mobile robot navigation. 

Therefore, the discussion is focused on path planning for navigation. 
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Path planning can be defined as searching a suitable path in a map from one place to 

another. Depending on the map type, it is possible to follow different strategies for 

planning paths. 

Metric maps are useful for planning precise paths. Due to metric information 

associated, it is possible to find nearly-optimal paths using metric maps [27]. There 

exists several different methods for path planning, but they are based on a few 

general approaches. Latombe classifies these approaches in [84]as follows: 

Road map: a road map is a collision free set of path between a starting position 

and an ending position. Therefore, they describe the connectivity of robot free 

space on the map. One method to construct road map is based on visibility 

graphs [85]. In this method, path is incremented from one point to other points 

that are visible from the first point. Another method is to construct a Voronoi 

graph, which tries to maximize the clearances between the robot and obstacles 

[86]. 

Cell decomposition: free space in the map is divided into non-overlapping cells, 

and a connectivity graph describes how the cells are connected to each other. 

The result is a chain of cells, which also describes the path. Therefore, 

formation of cells plays an important role in planning the path. In [84], 

trapezoidal decomposition is used, where a polygonal map is divided into 

trapezoidal cells by generating vertical line segments at each corner of every 

polygon. In [87] qualitative spatial reasoning is used for path planning, which is 

inspired of the way humans find their paths with imprecise knowledge. Cell 

decomposition is also a suitable method for area coverage, where the planner 

breaks down the target area into cells to be all traversed. Applications of this 

approach can be listed as i.e. lawn moving, snow removal or floor cleaning [88] 

Potential field: A potential field function is defined an applied over the free 

space on the map, where the goal acts as an attractive potential (sink) and the 

obstacles act as repulsive potentials (sources). The path is then derived based 

on the derivative of the potential field, where the steepest direction is 

followed. This approach was first developed for online collision avoidance in 

[89]. It is combined with a graph search technique in [84] for path planning. 

Topological maps are well suited for planning paths. Graph search algorithms, such as 

A* [90] or D*[91], can be used the plan the shortest path on a topological map. In 

most of the cases, the number of edges and nodes are moderate, so the path planning 

can be performed very quickly. Path finding time is even further shortened in [92] by 
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preprocessing all paths and storing them in a lookup table. In [82] wave-front 

algorithm is used for both path planning and collision avoidance. In [93,94], planning 

on very large maps is described in  the context of hierarchical topological maps.  

4.4 Motion Control 

Motion control is the final phase in the robot control loop, where the high level plans 

generated in the previous phase are translated into robot movements. Therefore, this 

level processes abstract motion commands and produces low level commands for 

controlling motor speeds. 

Obstacle avoidance is of particular interest, and it can be classified under motion 

control. It is one of the key issues to successful mobile robot applications, as it ensures 

the safety of both robot and surrounding entities. Obstacle avoidance strategies range 

from primitive algorithms that just stop the robot when an obstacle is detected; to 

complex ones that enable robot detour the obstacles.  

Borenstein introduced vector field histogram (vfh) algorithms fro obstacle avoidance 

tasks in [39], based on local potential fields. In this approach, first the range data is 

continuously sampled, and a two dimensional local grid is generated to represent the 

environment. In the next stage, one dimensional polar histogram is extracted from the 

local grid in terms of angular sectors with particular widths. Finally, this one 

dimensional histogram is threshold and the angular sector with the highest density is 

selected as the direction. Sped of the robot is also adjusted in correlation with the 

distance from the obstacle. In [95], the algorithm is improved by incorporating the 

kinematics of the robot as the original algorithm assumes that the robot is able to 

change its direction instantaneously (named as vfh+). The algorithm is further 

improved and coined as vfh* in [96]. In contrast to vfh and vfh+, which are purely local 

algorithms based on current sensor readings, vfh* incorporated A* graph search 

algorithm to consider more than immediate surroundings of the robot.  

In [97], dynamic window approach is introduced as an obstacle avoidance method. 

Kinematic constraints of a Synchro drive robot are taken into account by directly 

searching the velocity space of the robot. The search space is further reduced to a 

dynamic window, which contains those velocities that can be achieved by the robot, 

given its velocity and acceleration. Finally, this window is searched for a velocity, 

which aligns with the target direction of the robot. In [98], the method is adapted to 

holonomic robots, which allowed high speed obstacle avoidance with high 

maneuverability. 
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Finally, nearness diagram is introduced in [99], which is based on heuristic rules that 

are inferred from possible high and low safety situations that the robot can end up. 

Based on five rules (two low and three high safety situations), five behaviors are 

defined, where robot compares its current situation to these predefined ones and 

executes the appropriate behavior. It is shown in [100] that this reactive approach can 

perform well in cluttered environments with narrow passages, as compared to 

previous approaches.  
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