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Technicolor with a 125 GeV Higgs boson

Christopher D. Carone*

Department of Physics, High Energy Theory Group, College of William and Mary, Williamsburg, Virginia, 23187-8795, USA
(Received 22 June 2012; published 11 September 2012)

Bosonic technicolor models accommodate fermion masses via a Higgs doublet that acquires a vacuum

expectation value when technifermions condense. We point out that these models are severely constrained

by vacuum stability if the Higgs boson mass is near 125 GeV, the value suggested by LHC data. The Higgs

quartic coupling in bosonic technicolor is typically smaller at the weak scale than in the standard model,

while the top quark Yukawa coupling is larger. We find that the running quartic coupling remains positive

below a reasonably defined cutoff only in a narrow region of the model’s parameter space. This region is

only slightly enlarged if one allows a metastable vacuum with a lifetime longer than the age of the

universe.

DOI: 10.1103/PhysRevD.86.055011 PACS numbers: 12.60.Fr, 12.60.Nz

I. INTRODUCTION

The simplest technicolor models achieve electroweak
symmetry breaking via a condensate of fermions that are
charged under a new, strong gauge group [1]. If the LHC
confirms the existence of a Higgs boson near 125 GeV [2]
with couplings similar to those expected in the standard
model, then the simplest technicolor models will be con-
clusively excluded, independent of the already powerful,
albeit indirect, constraints from precision electroweak
measurements [3].

This observation, however, does not preclude the possi-
bility that new strong dynamics might contribute in part to
the breaking of electroweak symmetry. Bosonic techni-
color models provide an example of this scenario [4–12].
These theories include both a Higgs doublet � and a
technicolor sector. Typically, the � squared mass is as-
sumed positive at the weak scale: the � field develops a
vacuum expectation value (vev) due to a linear term in the
Higgs potential that is induced when the technifermions
condense. In this sense, technicolor is the trigger of elec-
troweak symmetry breaking. Yukawa couplings between�
and the quarks and leptons lead to fermion masses in the
usual way. Since the scalar couplings to standard model
fermions are the same as in a two-Higgs-doublet model of
type I, flavor-changing neutral currents are not unaccept-
ably large. Moreover, it has been shown that ultraviolet
completions exist in which bosonic technicolor with a
composite Higgs doublet emerges as the low-energy effec-
tive theory [13,14]. We will remain agnostic in the present
work as to whether � is fundamental or composite.

Holographic constructions of bosonic technicolor mod-
els have shown that the constraints on the electroweak S
parameter can be satisfied [15,16]. (Other discussions of
the holographic calculation of the S parameter can be
found in Ref. [17].) In these models, the scales of chiral
symmetry breaking and confinement can be adjusted inde-

pendently. If the technicolor confinement scale is chosen
such that the technirho mass is kept above�1:5 TeV, then
one finds that the S parameter constraints are satisfied over
ranges of the technipion decay constant, f, that never
exceed f� 0:4v, where v ¼ 246 GeV is the electroweak
scale (see, for example, Fig. 3 in Ref. [16]). Hence, with
the confinement scale fixed, the problematic contributions
to S from the technicolor sector are kept under control by
limiting the amount of electroweak symmetry breaking
that originates from the technicolor condensate.
In this paper, we point out a generic consequence of a

125 GeV Higgs boson in bosonic technicolor models: the
quartic coupling in the Higgs potential can run to a nega-
tive value at scales that are not far above the TeV scale. As
we will show, the reason for this behavior is that the value
of the quartic coupling at the weak scale can be signifi-
cantly smaller in bosonic technicolor models than in the
standard model, assuming in both cases a 125 GeV Higgs
boson. Moreover, the top quark Yukawa coupling, which
drives the quartic coupling to smaller values in its renor-
malization group evolution, is larger in bosonic technicolor
than in the standard model. A negative quartic coupling
indicates that the potential is turning over and will fall
rapidly to values that are beneath the desired minimum. If
this happens before the cutoff � of the effective theory,
then the original vacuum state will no longer be stable. We
will show that only a narrow region of the model parameter
space is consistent with the requirement that the quartic
coupling remain positive up to a cutoff � ¼ 10 TeV: this
region becomes even smaller for larger values of the cutoff.
We also show that this parameter region is not substantially
enlarged if one allows the vacuum to be metastable with a
lifetime that is larger than the age of the universe. We
consider the implications of these results in light of the
other important phenomenological bounds on the parame-
ter space of the model.
Our paper is organized as follows. In the next section we

summarize the relevant effective theory. In Sec. III, we
discuss our procedure for determining the regions of model*cdcaro@wm.edu
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parameter space that are consistent with the vacuum stabil-
ity criteria, as well as the bounds from B0 � �B0 mixing,
light charged Higgs searches, and the requirement that
electroweak symmetry breaking occurs only when a non-
vanishing technicolor condensate is present. In Sec. IV,
we discuss our results and the range of validity of our
approximations. In the final section, we summarize our
conclusions.

II. THE MODEL

The technicolor sector of the model consists of two
flavors, p and m, that transform in the N-dimensional
representation of the technicolor gauge group GTC. We
assume GTC is asymptotically free and confining. Under
the standard model gauge symmetry, SUð3ÞC � SUð2ÞW �
Uð1ÞY , the left-handed technifermions transform as an
SUð2ÞW doublet and the right-handed components as
singlets,

�L � p
m

� �
L
; pR; mR: (2.1)

Given the hypercharge assignments Yð�LÞ ¼ 0, YðpRÞ ¼
1=2, and YðmRÞ ¼ �1=2, the technicolor sector is free
of gauge anomalies. We assume that N is even to avoid
an SU(2) Witten anomaly.

The technifermions form a condensate that spontane-
ously breaks the global SUð2ÞL � SUð2ÞR symmetry of the
technicolor sector:

h �ppþ �mmi � 0: (2.2)

A subgroup of the global chiral symmetry is gauged,
corresponding to the SUð2ÞW � Uð1ÞY gauge symmetry
of the standard model: SUð2ÞW is identified with SUð2ÞL,
while Uð1ÞY is identified with the third generator of
SUð2ÞR. The condensate in Eq. (2.2) breaks SUð2ÞW �
Uð1ÞY to Uð1ÞEM, generating masses for the W and Z
bosons. In extended technicolor models [18], one would
assume at this point that additional gauge interactions,
spontaneously broken at a higher scale, provide
dimension-six operators that couple the condensate in
Eq. (2.2) to the standard model fermions. These operators
generate ordinary fermion masses, but quite generally
produce large flavor-changing neutral current effects as
well. In contrast, bosonic technicolor models include a
scalar field� that has the quantum numbers of the standard
model Higgs field, i.e., an SUð2ÞW doublet with hyper-
charge Yð�Þ ¼ 1=2. This choice allows Yukawa couplings
of � to the technifermions,

L �T ¼ � ��L
~�hþpR � ��L�h�mR þ H:c:; (2.3)

and the ordinary fermions,

L �f ¼ � �LL�hlER � �QL
~�hUUR � �QL�hDDR þ H:c:;

(2.4)

where ~� ¼ i�2��. While the squared mass of �, which
we will call M2, can have any sign, bosonic technicolor
models typically assumeM2 > 0; in this case, electroweak
symmetry breaking does not occur in the absence of the
technicolor condensate. By Eq. (2.3), the condensate pro-
duces a term linear in � in the scalar potential, so that �
develops a vacuum expectation value. Masses for the stan-
dard model fermions are then generated via the Yukawa
couplings in Eq. (2.4).
We study this model using an electroweak chiral

Lagrangian, which employs a nonlinear representation of
the Goldstone boson fields. We let

� ¼ expð2i�=fÞ; � ¼ �0=2 �þ=
ffiffiffi
2

p

��=
ffiffiffi
2

p ��0=2

 !
;

(2.5)

where � represents an isotriplet of technipions, and f is
the technipion decay constant. Under the SUð2ÞL �
SUð2ÞR chiral symmetry, the � field transforms as

� ! L�Ry: (2.6)

We may consistently include the scalar doublet � in the
effective theory using the matrix representation

� ¼
��0 �þ

��� �0

 !
; (2.7)

where the columns correspond to the components of the

doublets ~� ¼ ð ��0;���ÞT and � ¼ ð�þ; �0ÞT , respec-
tively, with superscripts indicating the electric charges.
The technifermion Yukawa couplings can be written as

��L

��0 �þ

��� �0

 !
hþ 0

0 h�

 !
�R � ��L�H�R; (2.8)

where �R is the column vector ðpR;mRÞT . If the product
�H transformed as

ð�HÞ ! Lð�HÞRy; (2.9)

then Eq. (2.8) would be SUð2ÞL � SUð2ÞR-invariant. This
implies that one may correctly include�H in the effective
chiral Lagrangian as a spurion with this transformation
rule. The lowest-order term involving �H is

L H ¼ c14�f
3Trð�H�yÞ þ H:c: (2.10)

Here c1 is an unknown, dimensionless coefficient. One
would expect c1 to be no smaller than Oð1Þ by naive
dimensional analysis [19]. As in Refs. [15,16], we simplify
the parameter space by assuming that hþ ¼ h� � h, so
that there is no explicit violation of custodial isospin from a
technifermion mass splitting.
We choose to decompose � into its isosinglet and iso-

triplet components, � and �0 respectively, using a non-
linear field redefinition similar to Eq. (2.5):
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� ¼ �þ f0ffiffiffi
2

p �0; �0 ¼ expð2i�0=f0Þ: (2.11)

Here f0 represents the � vev. The kinetic terms for the
scalar fields may then be expressed as

L KE ¼ 1

2
@��@

��þ f2

4
TrðD��

yD��Þ

þ ð�þ f0Þ2
4

TrðD��
0yD��0Þ; (2.12)

where the covariant derivative is

D�� ¼ @��� igW�
a
�a

2
�þ ig0B��

�3

2
: (2.13)

Terms in Eq. (2.12) that mix the gauge fields with deriva-
tives of scalar fields allow us to identify the unphysical
linear combination,

�a ¼ f�þ f0�0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2 þ f02

p ; (2.14)

which is eliminated in unitary gauge. The orthogonal linear
combination,

�p ¼ �f0�þ f�0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2 þ f02

p ; (2.15)

is physical and remains in the low-energy theory. The mass
of this multiplet follows from Eq. (2.10):

m2
� ¼ 8

ffiffiffi
2

p
�c1h

f

f0
v2: (2.16)

The masses of theW and Z bosons follow from Eq. (2.12):

m2
W ¼ 1

4
g2v2; m2

Z ¼ 1

4
ðg2 þ g02Þv2; (2.17)

where v ¼ 246 GeV is the electroweak scale and

v2 � f2 þ f02: (2.18)

The coupling of the � field to quarks is given by

L��qq ¼ � �c L�
hU 0
0 VCKMhD

� �
c R þ H:c:; (2.19)

where c L ¼ ðUL; VCKMDLÞ, c R ¼ ðUR;DRÞ, hU ¼
diagðhu; hc; htÞ, and hD ¼ diagðhd; hs; hbÞ, or using
Eq. (2.11),

L��qq ¼ ��þ f0ffiffiffi
2

p �c L�
0 hU 0

0 VCKMhD

� �
c R þ H:c:

(2.20)

The dependence of this expression on f0 rather than v
indicates that the Yukawa couplings shown are numerically
larger than in the standard model. In addition, Eq. (2.20)
allows one to extract the �q�0q vertex, from which one can
deduce the coupling of the physical pions �p to quarks.

This will be used in our subsequent phenomenological
analysis.

III. CONSTRAINTS

In this section, we describe our approach to studying the
parameter space of the model. We first note that specifying
f0=v determines the technipion decay constant via
Eq. (2.18) and, hence, the mixing angles that appear in
Eqs. (2.14) and (2.15). The bounds following from the
virtual exchange or the real production of charged techni-
pions (relevant later in this section) are then completely
determined when m� is specified. Moreover, if the techni-
pion Yukawa coupling h is not too large, then the unknown
parameters c1 and h appear at leading order in our vacuum
stability analysis only via their product, which can be
replaced by m� using Eq. (2.16). We therefore find it
convenient to describe the model in terms of a two-
dimensional parameter space, the f0=v�m� plane. After
discussing the relevant phenomenology below, our results
are presented in Sec. IV.

A. Vacuum stability

The form of the scalar potential in bosonic technicolor
models suggests that the requirement of vacuum stability
may yield a meaningful constraint. (For a general review of
vacuum stability bounds, see Ref. [20]). Consider the
potential

Vð�Þ ¼ 1

2
M2�2 þ 1

8
��4 � f2f0

v2
m2

��

� 3

64�2
h4t �

4

�
ln

�
h2t �

2

2m2
Z

�
� 3

2

�
; (3.1)

renormalized at the scale mZ in the MS scheme. The first
two terms represent the tree-level potential of the standard
model. The third term originates from the coupling of the
Higgs boson to the technifermion condensate in Eq. (2.10)
and has been expressed in terms of the technipion mass.
The final term is the largest radiative correction, from a top
quark loop. We have checked that the radiative corrections
that we omit from Eq. (3.1) have a negligible effect on our
numerical results, provided that h is not too large. We
generally assume that h2 � h2t : we discuss this approxi-
mation further in Sec. IV.
The conditions V 0

0ðf0Þ ¼ 0 and V 00
0 ðf0Þ ¼ m2

�, where m�

is the running Higgs boson mass, allow us to solve for the
Higgs quartic coupling � and the Lagrangian Higgs
squared mass M2:

M2 ¼ � 1

2
m2

� � 3

16�2
h4t f

02 þ 3

2

f2

v2
m2

�; (3.2)

� ¼ m2
�

f02
þ 3

8�2
h4t ln

�
h2t f

02

2m2
Z

�
� f2

f02
m2

�

v2
: (3.3)
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Notice that the effect of the linear term in Eq. (3.1) is to
reduce � in Eq. (3.3) relative to its value in the standard
model. In fact, this reduction is most pronounced when one
requiresM2 > 0, since Eq. (3.2) then implies that f2m2

�=v
2

must be non-negligible. In any case, the running of � to
higher scales is affected most strongly by the top quark
Yukawa coupling,

ht ¼
ffiffiffi
2

p mt

f0
; (3.4)

which is larger than in the standard model, since f0 < v:
the top quark Yukawa coupling drives �ð�Þ to smaller
values in its renormalization group running, where �
is the renormalization scale. Since �ð�Þ is smaller at
� ¼ mZ and the running of � is faster, one generically
expects stronger vacuum stability constraints in bosonic
technicolor than in the standard model.

We consider two possible criteria for establishing the
vacuum stability of the model. We first consider the re-
quirement that the quartic coupling � remain non-negative
below a specified cutoff for the low-energy effective
theory, i.e.,

�ð�Þ � 0 for � � �: (3.5)

Just beyond the scale at which � becomes negative, one
expects the potential to turn over and drop to values below
the minimum at v 	 246 GeV. If this occurs for �>�,
one can assume that new physics becomes relevant above
the cutoff scale and alters the theory so that a deeper
minimum in the potential is not obtained. In our numerical
analysis, we first consider the implications of this assump-
tion for� ¼ 10, 100 and 1000 TeV. Since the LHC center-
of-mass energy will not exceed 14 TeV, and the energies
available for parton-level processes are only a fraction of
this, our smallest choice for � is still sufficient to assure
that the effective theory defined in Sec. II is the appropriate
description of the physics that is relevant at LHC energies.

Alternatively, one might require that the maximum of
the potential occur before the cutoff of the effective theory,
since the potential drops precipitously afterwards. Above
the technicolor confinement scale, we assume the potential
is given by Eq. (3.1) without the linear term (since the
technifermions have not yet condensed). As discussed in
the context of the standard model in Ref. [21], the maxi-

mum is reached when the quantity ~�� 0, where

~� ¼ �� 1

16�2

�
6h4t

�
ln
h2t
2
� 1

�
� 3

4
g4
�
ln
g2

4
� 1

3

�

� 3

8
ðg2 þ g02Þ2

�
ln
ðg2 þ g02Þ

4
� 1

3

��
; (3.6)

where g and g0 and the standard model SUð2ÞW and Uð1ÞY
gauge couplings. We determine the model parameter space
in which the vacuum is stable following from the criterion

~�ð�Þ � 0 for � � �; (3.7)

and compare to the results that follow from Eq. (3.5).
Finally, we consider the possibility that the potential

does fall to a value lower than the desired minimum, but
that the lifetime of the false vacuum decay is longer than
the age of the universe. In this case, the lowest point in the
potential occurs at� ¼ �, where new physics at the cutoff
may produce a second local minimum. The requirement
that the quantum tunneling rate at zero temperature is
sufficiently small may be approximated [22]:

e409 max
�ð�Þ<0

��
�

v

�
4
exp

�
� 16�2

3j�ð�Þj
��

& 1; (3.8)

where we have rewritten the condition given in Ref. [22] in
terms of our definition of the quartic coupling. The quantity
in brackets is maximized when� ¼ �, where �ð�Þ is most
negative. We will see that the model parameter space con-
sistent with Eq. (3.8) is slightly larger than what one obtains
assuming Eq. (3.7). Note that true vacuum bubbles may also
nucleate due to thermal excitation, which typically leads to
constraints intermediate between Eqs. (3.7) and (3.8): since
the difference is not large in the present model, we will not
consider this issue further here.
Let us now summarize the fixed input parameters

that are used in our analysis. In solving for M2 and �,
Eqs. (3.2) and (3.3), we require the Higgs boson running
mass m�ð�Þ and the top quark Yukawa coupling htð�Þ,
both evaluated at the scale mZ. The relationship between
the physical Higgs boson mass m0 and the running mass is
given by [21]

m2
0 ¼ m2

�ðmZÞ þ Re½�ðp2 ¼ m2
0Þ ��ðp2 ¼ 0Þ
; (3.9)

where �ðp2Þ is the renormalized self-energy of the Higgs
boson; in our analysis, we include only the largest effects
proportional to h2t , consistent with our previous approxi-
mations. Explicit expressions for these self-energies can be
found in Ref. [23]. We takem0 ¼ 125 GeV in determining
m2

�ðmZÞ. The running top quark mass at mt is related to the
top quark pole mass mt0 ¼ 172 GeV by

mt0 ¼
�
1þ 4

3

�3ðmt0Þ
�

�
mtðmt0Þ; (3.10)

where we have taken into account the largest, QCD
corrections [21]. With mtðmt0Þ determined from this ex-
pression, one uses Eq. (3.4) to determine the running top
quark Yukawa coupling evaluated at the same scale,
htðmt0Þ. We then use the renormalization group equations
(RGEs) to determine htðmZÞ, so that we may evaluate
Eqs. (3.2) and (3.3) at the same scale.
With �ðmZÞ thus determined, we may solve the

coupled one-loop RGEs for �, ht and the standard model
gauge couplings to determine whether the criteria in
Eqs. (3.5), (3.7), and (3.8) are met. We use the standard
model RGEs given in the appendix of Ref. [24]. We
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have estimated the effect of the technicolor sector on
the RGE running by comparing our results to those
obtained when including the perturbatively calculated
one-technifermion-loop contribution to the standard
model gauge coupling beta functions. (All effects pro-
portional to the technifermion Yukawa coupling h are
suppressed given our assumption that h2 � h2t ). We find
that this exercise produces no noticeable effect on our
results.

B. B0 � �B0 mixing

It is well known that B0 � �B0 mixing provides a useful
constraint on two-Higgs-doublet models [25]. Box dia-
gram contributions from charged technipion exchange
have also been studied in the context of bosonic techni-
color models in the past (for example, in Refs. [5–7,10]).
Using results available in the literature on two-Higgs-
doublet models, we evaluate the charged technipion
contribution to B0 � �B0 mixing, taking into account next-
to-leading-order (NLO) QCD corrections. We will see in
the next section that the importance of this analysis is that
the combined constraints from vacuum stability and
B0 � �B0 mixing eliminate substantial regions of the mod-
el’s parameter space in which f0 is not close to v.

Extracting the charged technipion couplings to quarks
from Eq. (2.20), one finds

L ¼ i
gffiffiffi
2

p
mW

f

f0
�þ

p

X
ij

½ �uiRmi
uVijd

j
L � �uiLVijm

j
dd

j
R
 þ H:c:;

(3.11)

where Vij is the Cabibbo-Kobayashi-Maskawa matrix and

the fields are given in the mass eigenstate basis. Since we
retain only effects proportional to powers of the top quark
Yukawa coupling, the term proportional to md can be
ignored. Then the �þ coupling can be matched to the
charged Higgs coupling in a two-Higgs-doublet model of
either Type I or II with the identification

tan� � f0

f
; (3.12)

where tan� generally represents the ratio of the vev of the
Higgs field that couples to the top quark to the vev of the
Higgs field that doesn’t. In comparing the �� vertex in
Eq. (3.11) to the corresponding charged Higgs coupling in
a two-Higgs-doublet model, an overall phase difference is
irrelevant here since the diagrams of interest always con-
nect each �þ vertex to a �� vertex with a technipion
propagator. At leading order (LO), one finds that the neu-
tral B meson mass splitting is given by

�mLO
B ¼ GF

6�2
m2

W jVtdV
�
tbj2f2B

� B̂Bd
mBðIWWþcot2�IW�þcot4�I��Þ; (3.13)

where fB is the B meson decay constant, B̂Bd
is the bag

factor, and the Iab are given by [26]

IWW ¼ x

4

�
1þ 9

ð1� xÞ �
6

ð1� xÞ2 �
6

x

�
x

1� x

�
3
lnx

�
;

IW� ¼ xy

4

�
� 8� 2x

ð1� xÞð1� yÞ þ
6z lnx

ð1� xÞ2ð1� zÞ
þ ð2z� 8Þ lny

ð1� yÞ2ð1� zÞ
�
;

I�� ¼ xy

4

� ð1þ yÞ
ð1� yÞ2 þ

2y lny

ð1� yÞ3
�
; (3.14)

where x ¼ m2
t =m

2
W , y ¼ m2

t =m
2
� and z ¼ x=y ¼ m2

�=m
2
W .

The NLO form for �mB takes into account running from
the scale at which the effective �B ¼ 2 four-fermion
operators are generated, conventionally taken to be mW ,
down to the B meson mass scale. The NLO expression for
�mB is lengthy and can be found in Ref. [26]. We evaluate
the NLO prediction assuming the lattice QCD estimate

fB

ffiffiffiffiffiffi
B̂d

q
¼ 216� 15 MeV [27], which represents the larg-

est source of theoretical uncertainty.
The standard approach to obtaining charged Higgs

bounds from �mB is to fix the Cabibbo-Kobayashi-
Maskawa elements to the values obtained in a standard
model global fit. Since such fits are consistent with the
experimental data, one then requires that the NLO predic-
tion from �mB not deviate by more than two standard
deviations from the experimental value. More precisely,
we define

	2 ¼ ð�mB � �mexp
B Þ2

�2
; (3.15)

and require that the 	2 not exceed 3.84 to determine the
95% confidence level (C.L.) bound. The error � includes
both the theory and experimental errors added in quadrature.
We take �mexp

B ¼ ð3:337� 0:033Þ � 10�10 MeV [28].

C. Charged Higgs searches

Charged Higgs searches at colliders can potentially ex-
clude some regions of the f0=v�m� plane. Most of the
existing analyses make specific (and often simplified) as-
sumptions about the charged Higgs decay modes and
branching fractions that do not apply to bosonic techni-
color models. As the LHC extends its reach, a dedicated
analysis is required to reliably determine the bounds on
charged technipions in the present model. However, for
technipion masses belowmW the situation is much simpler:
only decays to standard model quarks (excluding the top
quark) and leptons are kinematically available. Given that
the charged technipion couplings are proportional to fer-
mion masses, as in Eq. (3.11), the dominant decay channels
are �þ ! �þ
 and �þ ! c�s. The LEP working group for
Higgs boson searches has established a bound on charged
Higgs bosons predicted in two-doublet extensions of the
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standard model, produced via eþe� ! HþH� [29]. The
coupling of the technipions to the photon and Z boson
follow from Eq. (2.12):

L ¼�i

�
eA� þ e

2swcw
ðc2w � s2wÞZ�

�

� ð�þ
p @��

�
p ���

p @��
þ
p Þ; (3.16)

where sw (cw) represents the sine (cosine) of the weak
mixing angle. Equation (3.16) is the same as in a generic
two-Higgs-doublet model (with the convention that e is a
negative quantity). Hence, the production cross section for
physical technipions in bosonic technicolor is consistent
with the assumptions of the LEP analysis. Moreover, this
analysis assumes �
 and c�s decays only, with arbitrary
branching fractions, consistent with the present model
when m� <mW . Hence, the LEP lower bound of
78.6 GeV (95% C.L.) directly applies. We take this into
account in the following section.

IV. RESULTS

The various regions of the model parameter space
are displayed in Fig. 1, for the choice of cutoff � ¼
10 TeV. Neither of the vacuum stability criteria given in
Eqs. (3.5) and (3.7) are satisfied above the solid line on the
right of the figure (the line that asymptotes to f0=v� 0:98).
The condition �ð�Þ � 0 for � � � is not satisfied above
the dotted line that closely tracks this boundary.

Comparing the two vacuum stability criteria, the solid
~�ð�Þ ¼ 0 line gives a slightly weaker bound on the model
parameter space. This is consistent with the observation
made in Ref. [21], in the context of the standard model, that

the cutoff scale associated with vanishing ~� is somewhat
higher than the one associated with vanishing �. The shape
of the region excluded by the vacuum stability constraint is
also consistent with one’s expectations based on Eq. (3.3):
for fixed f0, there will be some m� that will be sufficiently
large such that the last term in Eq. (3.3) drives �ðmZÞ to an
unacceptably small initial value. Since this last term is
proportional to f=f0, one expects that the bound becomes
weaker as f0 approaches v. Although the cutoff of � ¼
10 TeV is low, the vacuum stability constraint remains
significant since the Eq. (3.3) can lead to negative �ðmZÞ,
before any RGE running, if the third term in Eq. (3.3) is
sufficiently large.
The region below the solid line toward the left side of

Fig. 1 is excluded by B0 � �B0 mixing. For fixed f0 of
intermediate size, reducing the charged technipion mass
enhances the new physics contribution to �mB until
Eq. (3.15) exceeds its 95% C.L. value. However, one can
see from Eq. (3.11) that the charged technipion coupling to
quarks is suppressed by f=f0: the new physics contribution
becomes irrelevant as f0 approaches v. From Fig. 1, one
can see that the technipion contribution to �mB becomes
irrelevant, given the total theoretical and experimental
uncertainties, when f0 exceeds �0:9. If one chooses to
impose the requirement of exact vacuum stability, then the
B0 � �B0 constraints forces f0=v * 0:84: only a relatively
small fraction of electroweak symmetry breaking can
originate from the technicolor condensate. For a fixed
technicolor confinement scale, this is the same limit in
which the technicolor contribution to the electroweak S
parameter was found to be under control in Ref. [15].
The LEP bound on the charged technipions, discussed in

the previous section, is also displayed in Fig. 1. The
boundary of the stable vacuum region and the solid exclu-
sion lines leave a roughly triangular region, above m� ¼
78:6 GeV and on the far right side of the plot. However,
within this region the Lagrangian squared mass for the
Higgs doublet, M2, can have any sign. Of course, there is
nothing physically inconsistent with electroweak symme-
try breaking originating in part from a Higgs doublet field
with a negative squared mass and in part from a fermion
condensate. We know of no argument that would preclude
such a possibility from emerging from some ultraviolet
completion. Nevertheless, bosonic technicolor models
have typically assumed that the Higgs doublet has a posi-
tive squared mass, so that electroweak symmetry breaking
does not occur without the presence of the technifermion
condensate. Defining the theory strictly in this way, we can
exclude regions of parameter space in which M2 < 0, as
determined from Eq. (3.2): the excluded region lies below
the dashed line in Fig. 1. In this case, only a narrow strip of
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FIG. 1 (color online). The model parameter space, assuming a
125 GeV Higgs boson. In the region above the solid [dotted] line
on the right, ~�ð�Þ< 0 [�ð�Þ< 0] for � � �. The region below
the solid line on the left is excluded by B0 � �B0 mixing. The
region below the horizontal solid line is excluded by the LEP
charged Higgs bound. The Higgs doublet squared mass is
positive above the dashed line.
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parameter space lies within the stable vacuum region and
above the dashed line at which M2 changes sign. In this
region, f0=v * 0:9 and the role of the technicolor conden-
sate in electroweak symmetry breaking is even more
limited.

Larger values of the cutoff lead to more limited regions
of parameter space in which Eqs. (3.5) and (3.7) are sat-
isfied. In Fig. 2, we show how Fig. 1 changes as the
cutoff is increased from 10 to 100 to 1000 TeV. For the
higher choices of cutoff, the entire region in which
M2 > 0 becomes disjoint with the regions in which
Eqs. (3.5) and (3.7) are satisfied. One might argue that
flavor-changing higher-dimension operators generated di-
rectly at the cutoff scale could present phenomenological
problems if this scale is much below 100–1000 TeV.
However, without knowing what operators are actually
generated when matching the effective theory to the ultra-
violet completion at �, one cannot draw a definite con-
clusion on the size of � based on this argument.

In the preceding discussion, we have been careful not to
describe the region in which Eq. (3.7) is violated as
‘‘excluded’’. As discussed in Sec. III, the model could be
viable in parts of this region where the vacuum is meta-
stable with a lifetime that is longer than the age of the
universe. In Fig. 3, we show the regions in which an
acceptable metastable vacuum is obtained, following
from Eq. (3.8), for � ¼ 10, 100 and 1000 TeV. For each
choice of�, the boundary between the given region and the

one of exactly stable vacua is given by the ~�ð�Þ ¼ 0 line
discussed earlier. While the excluded parameter space is
somewhat smaller than the areas of Figs. 1 and 2 in which

the vacuum stability criteria are violated, these regions are
not wildly different. The combined constraints from
B0 � �B0 mixing and exact vacuum stability implied before
that f0=v * 0:84: allowing for a long-lived metastable
vacuum changes this inequality to f0=v * 0:825.
Requiring that M2 > 0 and exact vacuum stability implied
before that f0=v * 0:9: allowing for a long-lived meta-
stable vacuum changes this to f0=v * 0:835.
Given the allowed regions of model parameter space that

we have found thus far, one may wonder whether Higgs
boson searches at the LHC in the b �b and �þ�� channels
lead to additional bounds on the neutral technipion, over
the range of masses where these decays are important. It is
important to keep in mind that the production cross section
for the neutral technipion is of the same form as that of the
pseudoscalar Higgs in a two-Higgs-doublet model of
Type I and is thus proportional to cot2� ¼ f2=f02. The
allowed regions of Figs. 1–3, however, correspond to cot�
less than one, which tends to reduce the production rate. In
most of the allowed region, we find that the �0 production
cross section is smaller than that of a standard model Higgs
boson of the same mass. More generally, we have checked
numerically that the ratio of the production cross section of
the�0 to the standard model Higgs is never large enough in
the allowed region of our figures to exceed the most recent
ATLAS and CMS 95% C.L. upper bounds in the b �b and
�þ�� channels [30]. Given the cot2� suppression factor,
this result might be anticipated since the upper bounds on
the ratio of the cross sections in these specific channels
to those of the standard model have not yet reached
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meaning as in Fig. 1.
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unity [30]. As the LHC continues to accumulate data,
however, searches for Higgs bosons decaying to bottom
and tau pairs are likely to provide useful bounds on the
neutral technipions in the future. For technipions heavier
than twice the top quark mass, the neutral technipion will
decay predominantly to top pairs. However, the LHC
searches for Higgs bosons in this heavier mass region focus
on the ZZ modes, which do not exist for a pseudoscalar
Higgs; hence, we obtain no further bounds from the recent
LHC Higgs search data. It is also worth noting that the
portion of the allowed region in which the technipion
masses is larger than twice the top mass is also one in
which f0=v > 0:96 and the cot2� suppression in the
pseudoscalar production rate is more severe.

Before concluding this section, we comment on the
range of validity of the approximations that were assumed
in this analysis. In our treatment of vacuum stability, we
assumed h2 � h2t . In this case, we do not have to worry
about the effect ofOðh4Þ terms in the effective potential, or
Oðh2�Þ terms in the RGE for the quartic coupling. In the
regime where such terms are important, one would expect
that the technifermion Yukawa coupling, like ht, should
further drive the Higgs quartic coupling toward negative
values. However, a reliable numerical analysis is not pos-
sible (at least in the present approach) since it also depends
on the running of h: this is affected by the technicolor
gauge coupling, which is nonperturbative at the TeV scale.
Hence, we do not consider this limit in the present analysis.
One might worry that if h is bounded from above (e.g.,
h & 1=3 would likely be sufficient for the present pur-
poses), it might not be possible to achieve the range in
technipion masses displayed in Figs. 1 and 2. However, the
technipion mass depends on the product of the unknown
coefficient c1 times h, as shown in Eq. (2.16): one may
increase m� with h held fixed by increasing c1. This is
consistent with naive dimensional analysis, which only
requires that c1 not be significantly smaller than Oð1Þ if
no fine-tuning against radiative corrections is present in the
effective theory [19]. In the holographic construction of the
model, one can compute c1 directly and verify that it can be
large. This fact was illustrated in Ref. [15] were �1 TeV
physical technipion masses were obtained even with
h� 0:01. Of course, this does not imply that c1 can be
made arbitrarily large. Equation (2.10) contains a �4

p ver-

tex that is proportional to c1h. Requiring, for example, that
the �þ2

p ��2
p =4 coupling remain perturbative (<16�2) pla-

ces an upper bound on c1h, or equivalently m�, which we
find to be

m� < 2
ffiffiffi
6

p
�v

�
f0

v

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f02

v2

s
: (4.1)

For example, for f0=v of (0.9,0.99,0.999) one finds that m�

must be less than (1485,528,169) GeV. Hence, the portions
of the Figs. 1–3 that are restricted by this perturbativity

bound are at the far right edge of each plot and are
extremely small.

V. CONCLUSIONS

In previous studies of bosonic technicolor models, the
Higgs boson mass has been an undetermined parameter.
Here, we have considered the consequences of fixing the
Higgs boson mass at the value suggested by data from
the 2011 LHC run. We have shown that minimization of
the scalar potential in bosonic technicolor models leads to
smaller values of the Higgs boson quartic coupling at the
weak scale than in the standard model: upon renormaliza-
tion group running, the quartic coupling can become nega-
tive before the cutoff of the low-energy effective theory,
which we have chosen to range from � ¼ 10 to 1000 TeV.
Even with a cutoff as low as 10 TeV, we find that vacuum
stability is obtained in only a limited region of the model
parameter space. For a fixed choice of technicolor conden-
sate, vacuum stability places an upper bound on the physi-
cal technipion mass, since larger technipion masses
correlate with smaller values of the Higgs boson quartic
coupling at the weak scale. Allowing for a metastable
vacuum with a lifetime longer than the age of the universe
only slightly relaxes this constraint. On the other hand,
B0 � �B0 mixing and searches for charged scalars at
LEP place lower bounds on the technipion mass. The
parameter space that survives can be further reduced if
one requires a positive Lagrangian squared mass of the
Higgs doublet, corresponding to the scenario in which
electroweak symmetry breaking occurs only when trig-
gered by the existence of a technicolor condensate. In
any case, one finds no allowed region in which the Higgs
vev is less than �0:82v, where v ¼ 246 GeV defines the
electroweak scale.
More generally, the present analysis demonstrates that

electroweak symmetry breaking could include some con-
tribution from strong dynamics, even if the LHC Higgs
boson signal is confirmed. However, we have shown that
coupling a new strongly interacting sector to the Higgs
potential can affect the stability of the vacuum, leading to
meaningful constraints on the allowed parameter space of
such models.
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