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A new procedure for calculating the nonlinear energy transfer and linear growth/damping rate of
fully developed turbulence is derived. It avoids the unphysically large damping rates typically
obtained using the predecessor method of Ritz@Ch. P. Ritz, E. J. Powers, and R. D. Bengtson, Phys.
Fluids B1, 153~1989!#. It enforces stationarity of the turbulence to reduce the effects of noise and
fluctuations not described by the basic governing equation, and includes the fourth-order moment to
avoid the closure approximation. The new procedure has been implemented and tested on simulated,
fully developed two-dimensional~2-D! turbulence data from a 2-D trapped-particle fluid code, and
has been shown to give excellent reconstructions of the input growth rate and nonlinear coupling
coefficients with good noise rejection. However, in the experimentally important case where only a
one-dimensional~1-D! averaged representation of the underlying 2-D turbulence is available, this
technique does not, in general, give acceptable results. A new 1-D algorithm has thus been
developed for analysis of 1-D measurements of intrinsically 2-D turbulence. This new 1-D
algorithm includes the nonresonant wave numbers in calculating the bispectra, and generally gives
useful results when the width of the radial wave number spectrum is comparable to or less than that
of the poloidal spectrum. ©1996 American Institute of Physics.@S1070-664X~96!03811-6#

I. INTRODUCTION

The characterization and identification of the type of
mode associated with the anomalous transport of heat and
particles in high-temperature tokamak plasmas are topics of
considerable interest since they might provide insight into
ways of reducing the anomalous losses. Recently, bispectral
analysis has emerged as a way to experimentally estimate the
linear growth rate and nonlinear energy transfer1–8 in fully
developed plasma turbulence, and thereby provide a more
direct tool for mode identification compared to early trans-
port experiments, which relied on indirect comparisons to
theoretical expectations.3

Bispectral analysis, which measures the amount of phase
correlation between three spectral components, is used to
investigate nonlinear wave–wave interactions. Although
there have been many experimental studies that used digital
bispectral analysis in fluids and plasmas to demonstrate that
nonlinear energy transfer by three-wave coupling processes
is important,4–8 the use of this analysis technique was typi-
cally limited to qualitative applications. In the late 1980’s
Ritz et al. developed an analysis method that uses experi-
mental turbulence data and enables one to make a quantita-
tive estimation of the nonlinear coupling coefficients and the
resulting amount of energy cascading between waves in a
fully developed turbulent system.1–3However, application of
Ritz’s method suffered from the appearance of nonphysical
behavior of the derived linear growth rate due to nonideal
power, here defined as noise, systematic errors, higher-order
coupling, wave–particle coupling, etc.

In this work, a new procedure based on Ritz’s approach3

for calculating the nonlinear energy transfer and linear

growth rate of fully developed turbulence is presented. It
enforces a stationarity condition to eliminate nonideal power
and utilizes the fourth-order moment to avoid errors arising
from the closure approximation. The validity of the proce-
dure is examined numerically with data generated from a
turbulence model. This computational experiment estimates
how well the procedure can extract relevant physical results
from raw fluctuation data and tests the validity of its appli-
cation to analysis of one-dimensional~1-D! experimental
measurements of intrinsically two-dimensional~2-D! turbu-
lence.

The remainder of this paper is organized as follows. In
Sec. II, the nonlinear drift wave coupling equation is pre-
sented as the governing equation. In Sec. III we describe how
to make a quantitative estimation of the linear growth rate
and of the amount of energy cascading between waves for a
fully turbulent system. Furthermore, the problems associated
with the Ritz method are identified and the modified Ritz
method that overcomes these problems is developed and dis-
cussed. In Sec. IV, we apply these procedures to pure 1-D
and 2-D simulated turbulence data, and discuss how well the
procedure reconstructs the input variables of the simulation
data. In Sec. V, we discuss the practically important case
where only 1-D radially averaged data is available rather
than a complete 2-D characterization of the plasma turbu-
lence. In this case, it is found that, in general, it is not pos-
sible to completely reconstruct the linear growth rate and
nonlinear coupling coefficients. However, techniques are dis-
cussed that can derive a useful, partial characterization of the
fluctuations. The summary and conclusion of this work are
presented in Sec. VI.

3998 Phys. Plasmas 3 (11), November 1996 1070-664X/96/3(11)/3998/12/$10.00 © 1996 American Institute of Physics

Downloaded¬07¬Mar¬2007¬to¬128.104.198.190.¬Redistribution¬subject¬to¬AIP¬license¬or¬copyright,¬see¬http://pop.aip.org/pop/copyright.jsp



II. ANALYSIS MODEL

In the late 1980s, new fluctuation diagnostics such as
beam emission spectroscopy9,10 ~BES!, heavy ion beam
probe11 ~HIBP!, and correlation reflectrometry12 ~CR!
showed that core density fluctuations have a broad wave
number spectrum that is strongly peaked at long wave-
lengths,^ku&rs<0.1.13 The broad spectrum appears to indi-
cate a strongly turbulent state, in that the interaction between
the separate waves broadens out the frequency spectrum,
which means a linear analysis is unable to fully characterize
the turbulent spectrum. Recently, many experiments have
used bispectral analysis to demonstrate that three-wave cou-
pling processes are important in fluids14,15 and plasmas.1–8

This three-wave coupling term can be theoretically derived
from the convective derivative@i.e., ~yW–“!yW , whereyW is the
flow velocity# in neutral fluids or the polarization drift and
Ẽ3B drift convection in plasmas.3

To make quantitative estimates of the linear growth rate
and the energy cascade rate between waves for fully devel-
oped turbulence, we consider the nonlinear drift wave cou-
pling equation written in the form3

]w~k,t !

]t
5Lk

Lw~k,t !1
1

2 (
k1 ,k2

k5k11k2

Lk
Q~k1 ,k2!

3w~k1 ,t !w~k2 ,t !

5Lk
Lw~k,t !1 (

k1>k2
k5k11k2

Lk
Q~k1 ,k2!

3w~k1 ,t !w~k2 ,t !, ~1!

wherew(k,t) is the density fluctuation at wave numberk
defined byw(x,t)5(kw(k,t)e

ikx, Lk
L is the linear transfer

function, andLk
Q is the nonlinear transfer function. This

single-field drift wave model, which assumes a linear phase
relation between fields~such as density, potential, ion tem-
perature, etc.!, reproduces many, but not all, features of drift
wave turbulence.

The governing equation~1!, which is appropriate to de-
scribe turbulence that is dominated by three-wave coupling,
shows that the rate of change of the spatial Fourier spectrum
of the fluctuating field is determined only by linear and qua-
dratic nonlinear interactions. The linear transfer functionLk

L

encompasses linear damping and growth, spectral broaden-
ing ~linear dispersion!, the diamagnetic driving term, etc.
The nonlinear transfer functionLk

Q gives the strength of
mode coupling due to the convective derivative terms such
as the nonlinear polarization drift andẼ3B advection of
density in the drift wave model.

To get the energy cascade and linear growth rate of
modes at givenk, the time derivative in Eq.~1! is replaced
by a finite difference and ensemble averaged over many sta-
tistically similar realizations to make Eq.~1! statistically
meaningful.

If the spectrumw(k,t) is characterized by a complex
representation „i.e., amplitude and phase [w(k,t)
5uw(k,t)ueiQ(k,t)] …, the change of the spectrum in time can
be estimated by a finite difference approach:

]w~k,t !

]t
5 lim

t→0
S uw~k,t1t!u2uw~k,t !u

tuw~k,t !u

1 i
Q~k,t1t!2Q~k,t !

t Dw~k,t !. ~2!

Substituting Eq.~2! into Eq. ~1! and simplifying, we obtain

Yk5LkXk1 (
k1>k2

k5k11k2

Qk
k1 ,k2Xk1

Xk2
, ~3!

where

Xk5w~k,t !, Yk5w~k,t1t!,

Lk5
Lk
Lt112 i @Q~k,t1t!2Q~k,t !#

e2 i @Q~k,t1t!2Q~k,t !# ,

Qk
k1 ,k25

Lk
Q~k1 ,k2!t

e2 i @Q~k,t1t!2Q~k,t !# .

Equation ~3! models an arbitrary nonlinear system with a
parallel combination of linear (Lk) and quadratic transfer
functions (Qk

k1 ,k2).
To obtain the general form of the linear growth rate~gk!

and the rate of nonlinear energy transfer (Tk), we introduce
the energy flow equation as a difference equation given by

]Pk

]t
'

^YkYk* &2^XkXk* &
t

5gkPk1Tk , ~4!

wherePk 5 ^XkXk* &. Equation~4!, which describes the time
rate of change of the spectral power of a wave numberk,
gives the capability of experimentally measuring the linear
growth/damping rate and the rate of nonlinear energy trans-
fer in fully developed turbulence. The nonlinear energy
transfer rate,Tk , represents a net flow of energy into or away
from a given modek. That is, positiveTk represents a net
flow of energy into the modek; negativeTk represents net
outflow. By multiplying Eq.~3! with the complex conjugate
of Yk and ensemble averaging over many statistically similar
realizations~denoted by angular brackets!, we obtain

^YkYk* &5Lk^XkYk* &1 (
k1>k2

k5k11k2

Qk
k1 ,k2^Xk1

Xk2
Yk* &

5LkK XkF Lk*Xk*1 (
k1>k2

k5k11k2

Q
k

k1 ,k2*Xk1
* Xk2

* G L
1K (

k1>k2
k5k11k2

Qk
k1 ,k2Xk1

,Xk2S Lk*Xk*

1 (
k18>k28

k5k181k28

Q
k

k18 ,k28*Xk
18
* Xk

28
* D L . ~5!
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Substituting Eq.~5! into Eq. ~4! and simplifying, we finally
obtain

gk'
uLku221

t
,

Tk'2 ReS Lk* (
k1>k2

k5k11k2

Qk
k1 ,k2^Xk1

Xk2
Xk* &

t D
1 (

k18>k28

k5k181k28

(
k1>k2

k5k11k2

Qk
k1 ,k2Q

k

k18 ,k28* ^Xk1
Xk2

Xk
18
* Xk

28
* &

t
.

In the next section, we will derive moment equations to ob-
tain the unknown linear (Lk) and quadratic transfer functions
(Qk

k1 ,k2) by manipulating Eq.~3!. These unknown linear

(Lk) and quadratic (Qk
k1 ,k2) transfer functions determine the

linear growth rate and the nonlinear energy transfer rate from
the above equation.

III. PROCEDURE TO ESTIMATE POWER TRANSFER

A. Review of Ritz method

Moment equations were derived by Ritzet al.1–3 to es-
timate the linear and quadratic transfer functions for non-
Gaussian input signals. By multiplying Eq.~3! with the com-
plex conjugate ofXk and ensemble averaging over many
statistically similar realizations, we obtain the second mo-
ment equation:

^YkXk* &5Lk^XkXk* &1 (
k1>k2

k5k11k2

Qk
k1 ,k2^Xk1

Xk2
Xk* &. ~6!

By multiplying Eq.~3! with Xk
18
* Xk

28
* and ensemble averaging,

we obtain a third equation containing the fourth-order mo-
ment ^Xk1

Xk2
Xk

18
* Xk

28
* &. To close the expansion of the higher

moments, the fourth-order moment is approximated by the
square of the second-order moments^uXk1

Xk2
u2& by neglect-

ing terms with (k18 ,k28) Þ (k1 ,k2), as was proposed by
Millionshchikov.16 The simplified third moment equation is
then

^YkXk1
* Xk2

* &5Lk^XkXk1
* Xk2

* &1Qk
k1 ,k2^uXk1

Xk2
u2&. ~7!

Ritz et al. used Eqs.~6! and ~7!, which we will refer to
as the Ritz method, to permit the quantitative estimation of
the transfer functions for general input signals. The derived
linear transfer function is

Lk5

^Xk*Yk&2 (
k1>k2

k5k11k2

^Xk*Xk1
Xk2

&^YkXk1
* Xk2

* &

^uXk1
Xk2

u2&

^XkXk* &2 (
k1>k2

k5k11k2

u^Xk*Xk1
Xk2

&u2

^uXk1
Xk2

u2&

. ~8!

However, application of this method can often yield un-
physically large damping coefficients at all spectral compo-
nents for the measured fluctuation data, as noted by Ritz.1

These unrealistic results arise because the method does not
account for nonideal fluctuations@i.e., fluctuations not de-
scribed by Eq.~1! such as noise in the measured signal,
higher-order nonlinear coupling, systematic errors, etc.#.
That is, the autopower spectrum in the denominator of Eq.
~8! includes nonideal fluctuations because phase relations be-
tween wave number components are suppressed in the auto
power spectrum. This leads to the unphysically large damp-
ing obtained in the Ritz method. To rectify this, we recon-
struct the auto power spectrum~contaminated by nonideal
power! by using higher-order moments that preserve the
Fourier phase of a signal.

B. Modified Ritz method

To correct for nonideal effects, we enforce a temporal
stationarity condition that allows us to extract that portion of
the measured power for which Eq.~1! provides an adequate
description. In essence, this involves the removal of any non-
ideal fluctuation power inherent in the measured spectrum
but uncorrelated with the fluctuation power described by the
physics contained in Eq.~1!. The degree of relevance of this
overall analysis then depends on how much of the ideal fluc-
tuation power remains in the wave–wave coupling model
spectrum compared to the total turbulence power. If a large
fraction of the turbulence power is well described by the
linear and quadratic wave–wave coupling model in Eq.~1!,
this analysis can be expected to shed light on the dynamics
of the nonlinear mode structure of the turbulence. However,
it can be considered irrelevant if almost all the turbulent
power is eliminated by this approach.

In this work, we describe the measured spectra (Xk ,Yk)
to be the sum of an ideal spectrum (bk ,ak), which is driven
by linear and quadratic processes described by Eq.~1! and a
nonideal spectrum (Xk

ni ,Yk
ni) that does not participate in lin-

ear and three-wave coupling processes. That is,

Xk5bk1Xk
ni , Yk5ak1Yk

ni . ~9!

Using Eq.~9! we can rewrite Eq.~3! in the form

~Yk2Yk
ni!5Lk~Xk2Xk

ni!1 (
k1>k2

k5k11k2

Qk
k1 ,k2~Xk1

2Xk1
ni !

3~Xk2
2Xk2

ni !, ~10!

where the finite difference for the ideal spectrum is ex-
pressed only in terms of the measured and nonideal spectra.
We assume here that the nonideal spectrum is completely
uncorrelated with the ideal fluctuation spectrum (bk ,ak), as
is appropriate for noise or any spectrum not described by the
physics of Eq.~1!.

By multiplying Eq. ~10! with the complex conjugate of
Xk , Yk , andXk

18
Xk

28
, ensemble averaging over many statisti-

cally similar realizations~as used in Ritz method!, and re-
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moving all cross terms containing the nonideal spectrum ex-

cept the autopower spectra (^Xk
niXk

ni* &,^Yk
niYk

ni* &), we obtain
three moment equations:

^YkXk* &5Lk^bkbk* &1 (
k1>k2

k5k11k2

Qk
k1 ,k2^Xk1

Xk2
Xk* &,

^akak* &5Lk^XkYk* &1 (
k1>k2

k5k11k2

Qk
k1 ,k2^Xk1

Xk2
Yk* &,

^YkXk1
* Xk2

* &5Lk^XkXk1
* Xk2

* &

1 (
k18>k28

k5k181k285k11k2

Q
k

k18 ,k28^Xk
18
Xk

28
Xk1
* Xk2

* &.

In this case, we will retain the full fourth-order cumulant
^Xk

18
Xk

28
Xk1
* Xk2

* & rather than using a closure approximation,

as was done previously. In most physical systems, the ran-
dom phase assumption is valid and the second-order closure
approximation is valid. However, in some numerical experi-
ments the random phase assumption is violated and in this
case one must use the exact fourth-order cumulant, despite
its greater computational cost.

One more relationship is needed to complete the set for
the derivation of the four unknown variablesLk , Qk

k1 ,k2,
^bkbk* &, and ^akak* &. For fully developed turbulence@sta-
tionary turbulence,]Pk /]t ' (^akak* & 2 ^bkbk* &)/t 5 0], it
is clear that the linear growth of instabilities is balanced by
the nonlinear energy transfer. This means that the power
spectrum is forced to be fully saturated by only the linear and
three mode coupling terms in the model of our system. This
observation suggests the fourth equation to be in the form of

^akak* &5^bkbk* &.

This stationarity condition is equivalent to an assumption of
local homogeneity when we apply the procedure to 1-D ex-
perimental turbulence data. Expressed in matrix notation, the
complete set of equations is then

^YkXk* &5Lk^bkbk* &1Q–A, ~11!

^akak* &5Lk^XkYk* &1Q–B, ~12!

~B* !T5Lk~A* !T1Q–F, ~13!

^akak* &5^bkbk* &, ~14!

where in the case in which the indexl of the wave numberk
is an even number,

Q5~Ql
l /2,l /2 ,Ql

~ l12!/2,~ l22!/2 ,Ql
~ l14!/2,~ l24!/2 ,...,Ql

lN ,l2 l N!,

A5~^Xl /2Xl /2Xl* &,^X~ l12!/2X~ l22!/2Xl* &,^X~ l14!/2X~ l24!/2Xl* &,... ,̂ XlN
Xl2 l N

Xl* &!T,

B5~^Xl /2Xl /2Yl* &,^X~ l12!/2X~ l22!/2Yl* &,^X~ l14!/2X~ l24!/2Yl* &,... ,̂ XlN
Xl2 l N

Yl* &!T,

F5S ^Xl /2Xl /2Xl /2* Xl /2* & ^Xl /2Xl /2X~ l12!/2* X~ l22!/2* & • •

^X~ l12!/2X~ l22!/2Xl /2* Xl /2* & ^X~ l12!/2X~ l22!/2X~ l12!/2* X~ l22!/2* & • •

• • • •

• • • ^XlN
Xl2 l N

XlN
* Xl2 l N

* &
D .

Note that l is used here for the index of the mode wave
numberk ~k5 f ( l ), where l is an integer andf is a linear
function!, and similar definitions are also used for the odd
index of k.

Here the diagonal terms of the fourth-order moment~F!
are the square of the second-order moment that the Ritz
method employs in order to make a closure. Thus, the use of
the fourth-order moment in this modified Ritz method math-
ematically complements the Ritz method but allows a de-
scription of the governing equation~1! without the closure
approximation.

This set of equations is directly solved to obtain the four
unknown variables. Rearranging Eq.~13!, we have

Q5~B* !T–F212Lk~A* !T–F21. ~15!

Substituting Eq.~15! into Eqs.~11! and ~12!, we have two
expressions forLk in the form of

Lk5
^YkXk* &2~B* !T–F21

–A

^bkbk* &2~A* !T–F21
–A

, ~16!

and

Lk5
^akak* &2~B* !T–F21

–B

^XkYk* &2~A* !T–F21
–B

. ~17!

Using Eqs.~16! and ~17!, we can then solve for the linear
growth rate given by

gk5
1

t

~A* !T–F21
–A2~B* !T–F21

–B

^bkbk* &2~A* !T–F21
–A

. ~18!

In Eq. ~18!, the linear portion (̂bkbk* & 2 (A* )T

–F21
–A) of total power (̂bkbk* &) at wave numberk is

growing ~i.e., outflow of linear energy! in order to saturate
the total fluctuation power if the flow of nonlinear energy
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into wave numberk @Tin 5 (A* )T–F21
–A# is bigger than the

outflow of nonlinear energy@Tout5 (B* )T–F21
–B#. This sug-

gests that the amplitudes of the auto-bispectrum and cross-
bispectrum are very important in this procedure in determin-
ing which wave numbers linearly grow or damp.

The numerical estimations of well-known statistical
quantities such as the autopower spectrumPk 5 ^XkXk* &, the
cross-power spectrum ^YkXk* &, the auto-bispectrum
^Xk11k2

Xk1
* Xk2

* &, and the cross-bispectrum̂Yk11k2
Xk1
* Xk2

* &,
are thoroughly discussed in Refs. 2, 3, 17, 18, and 19 and are
not discussed here.

To summarize, this procedure postulates that the mea-
sured spectrum consists of two components:

Xk5bk1Xk
ni ,

wherebk is the spectrum due to the processes described by
Eq. ~1! ~linear growth/damping and three-wave coupling!
andXk

ni is the spectrum due to processes not described by
Eq. ~1! such as higher-order nonlinear coupling, systematic
errors, and noise. By enforcing the stationarity condition
(^akak* & 5 ^bkbk* &) we are able to solve for that portion of
the spectrum that can be described by linear and quadratic
~three-wave coupling! terms.

However, note that no detailed information about those
processes that drive the extra fluctuation power is obtained
by this procedure. As mentioned earlier, the procedure must
be justified after the fact by comparing the linear-quadratic

power, ^bkbk* &, to the nonideal power,̂Xk
niXk

ni* &. For the
case wherêbkbk* & @ ^Xk

niXk
ni* & we conclude that the plasma

fluctuations are indeed dominated by linear and quadratic
processes and the nonlinear energy transfer and growth rate
estimates obtained are meaningful.

IV. SIMULATION EXPERIMENTS

To check how well the derived nonlinear characteristics
compare to the input values, we apply the bispectral analysis
to fully developed, simulated turbulence data. This numerical
experiment demonstrates the capability of the procedure to
reconstruct the input linear growth rate and nonlinear cou-
pling coefficients. The influence of noise will also be inves-
tigated with random Gaussian noise.

A. Test of the procedure with pure 1-D turbulence
data

The first test of the Ritz method and the modified Ritz
method uses a 1-D model. To generate saturated 1-D nonlin-
ear data, we analytically define the linear and quadratic trans-
fer functions and numerically integrate the basic Eq.~1!,
starting from Gaussian random spectra, to obtain fully devel-
oped turbulence. This simulated output turbulence is used
with the methods of Sec. III to produce the linear growth/
damping rates and amounts of nonlinear energy transfer,
which are then compared with the values that generated the
turbulence.

We use a contrived 1-D model that mimics the 2-D po-
larization drift nonlinearity. From the Hasegawa–Mima
equation,20 the polarization drift nonlinearity is given by

Lk
Q5Cpol~kxky12kykx1!@~kx2

2 1ky2
2 !2~kx1

2 1ky1
2 !#.

For our 1-D model we use a coupling coefficient given by

Lk
Q5Cpol8 ~k12k!~k2

22k1
2!.

Comparison with the polarization drift nonlinearity suggests
that the 1-D model represents a spectrum whose radial width
(Dkx) is much narrower than the poloidal width (Dky).
However, it should be cautioned that this model is ultimately
unphysical as a projection of the polarization drift nonlinear-
ity because of the tendency of the polarization drift nonlin-
earity to isotropize any spectrum withDkx!Dky .

Figure 1 illustrates the input linear growth rate and the
input nonlinear transfer coefficient. It shows that for satura-
tion of the fluctuations, nonlinear energy transfer must go
from linearly unstable modes at high wave number to
damped or dissipative modes at low wave number. The
simulated output fluctuation is fully saturated with 45 mode
numbers, as indicated by Fig. 2~a!. The peak in the fluctua-
tion power spectrum at intermediate wave number@Fig. 2~b!#
is formed by the polarization nonlinear energy cascade bal-
anced against linear growth and dissipation.

With the Ritz method and the modified Ritz method of
Sec. III, we estimate the linear growth/damping rate and the
nonlinear coupling coefficient. As shown in Figs. 3~c! and
3~d!, the modified Ritz method exactly recovers the input
characteristics of the simulation, but the Ritz method@Figs.
3~a! and 3~b!# fails to reproduce the true values at almost all
wave numbers.

For this test, there are no nonideal fluctuations in the
data. The assumption of stationarity is not crucial here and
the failure of the Ritz method is caused only by the assump-

FIG. 1. Input linear growth rate~a! and nonlinear coupling coefficient~b!
used for generating the pure 1-D simulated, fully developed turbulence data.
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tion that replaces the fourth-order moment with the square of
the second-order moment. It indicates that the fourth-order
cumulant is mathematically necessary to perfectly describe
the moments of our governing equation~1!. Fourth-order cu-
mulants are non-negligible in this simulation because finite
spectral resolution, exacerbated by one-dimensionality, so
limits the spectral coupling that phase-coherent triplets domi-
nate the evolution. This violates the random phase assump-
tion that allows fourth-order moments to be expressed as
products of second-order moments.

This simulation experiment confirms that the 1-D algo-
rithm of the modified Ritz method~or the Ritz method with
all fourth-order cumulants! fully recovers the linear growth
rate and the rates of nonlinear energy transfer for pure 1-D
turbulence data. However, pure 1-D turbulence is ultimately
unphysical. That is, the nature of turbulence in magnetically
confined high-temperature plasmas is generally thought to be
two-dimensional~2-D! because the parallel wavelength is
sufficiently long. This motivates 2-D simulation experi-
ments.

B. Test of the procedure with 2-D turbulence data

We simulate the turbulence of a magnetically confined
high-temperature plasma with the Terry–Horton model,
which is a two-dimensional single-field nonlinear model21–23

described by

]ñk
]t

5Dky
2 ñk2 i yDkyñk2neff,i ñk2mk4ñk2Nk

~pol!

2Nk
~ Ẽ3B! , ~19!

where

Nk
~ Ẽ3B!5

i

2
LnD(

k8
kW3kW8z&@ky82~ky2ky8!#ñk8ñk2k8 ,

Nk
~pol!5

1

2
rs
3Cs(

k8
kW3kW8–z&@~k'2k'8 !22k'8

2#ñk8ñk2k8 .

In this model, ñ is the fluctuating ion density,yD5(cTe/
eB)Ln

21 is the diamagnetic drift velocity,D 5 e1/2yD
2 (1

1 3he/2)/neff,e is a negative diffusivity describing the desta-
bilization of the dissipative trapped electron~DTE! modes by
electron collisions,Ln is the density gradient scale length,
rs5(cTe/eB)/Cs is the ion gyroradius evaluated at the elec-
tron temperature,Cs5(Te/mi)

1/2 is the ion sound speed, and
m is the coefficient of hyperviscosity, introduced to model
strong damping at high wave number and to realistically cut
off the maximum wave number in the simulation to finite
values.

The first nonlinearity (Nk
(pol)) appearing in Eq.~19! is the

polarization drift nonlinearity, and arises fromn0“–yW p
(1),

where yW p
(1)5B0

21(mic/e) ẑ3yWE–“yWE is the nonlinear polar-

ization drift. The second nonlinearity (Nk
(Ẽ3B)) is the Ẽ3B

nonlinearity, arising from yWE–“ñe , where yWE52(c/
B0)“f3ẑ is theẼ3B drift, and ñe is the nonadiabatic elec-
tron density, which, from the electron response, is related
back to the potential, and, through quasineutrality, to the ion
density.

To generate saturated 2-D turbulence data, we input val-
ues for the physical variables (D, yD , neff,i , m, Ln , Cs ,
rs) and numerically integrate Eq.~19!, starting from Gauss-
ian random spectra, to get the time evolution of the fully
developed wave number spectra. We generate more than
2000 realizations~which are used for ensemble averaging! at
each wave numberkx andky , where each realization consists
of two samples: one at timet and the other at timet1t,
wheret is a delay time between the samples and is much
smaller than the eddy turnover time. Each realization must
be separated from the next by a time longer than the eddy
turnover time to get statistically independent realizations.
This sampling method mimics the experimental turbulent
data measured via beam emission spectroscopy~BES!.9 A

FIG. 2. ~a! Evolution of total fluctuation power showing saturation of tur-
bulence data.~b! Power spectrum of the pure 1-D simulation data.

FIG. 3. Output linear growth rate~a! and linear coupling coefficient~b!
estimated by the Ritz method, and output linear growth rate~c! and nonlin-
ear coupling coefficient~d! estimated by the modified Ritz method.
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total of 2000 realizations is used for the results discussed
herein. Tests with more realizations indicate that fully sta-
tionary results are obtained with these 2000 realizations, and
further ensemble averaging does not change the derived re-
sults.

As shown in Fig. 4, the unstable modes are chosen at
intermediatek with damping at high and lowk. The imagi-
nary part of the input linear transfer function, representing
the linear fluctuation frequency~or dispersion relation!, is
proportional to the normalized poloidal mode numberky .
Here 17345 mode numbers and ten million time steps with
Dt50.0001 for a total run time ofT51000~where the eddy
turnover time is between 0.5 and 1! are used to get the time
evolution of fully developed turbulence. Figure 5 shows that
the power spectrum is anisotropic with respect to the peak,
and the peak of the fluctuation power is nearkx50 and
ky59, instead of at theky520 mode which is the most un-
stable mode, as shown in Fig. 4~a!.

To recover the 2-D input characteristics of this simulated
dataset, we generalize the governing equation~1! for two-
dimensional turbulence, which is then

]wkx ,ky
~ t !

]t
5Lkx ,ky

L wkx ,ky
~ t !

1
1

2 (
kx1

,kx2
kx5kx1

1kx2

(
ky1

,ky2
ky5ky1

1ky2

Lkx ,ky
Q

3wkx1
,ky1

~ t !wkx2
,ky2

~ t !. ~20!

By implementing the same procedure~i.e., Yk , Xk , Xk1
,

Xk2
, Lk , Qk

k1 ,k2, and (k1>k2
k5k11k2

are directly replaced by

Ykx ,ky
, Xkx ,ky

, Xkx1
,ky1

, Xkx2
,ky2

, Lkx ,ky, Qkx ,ky

kx1
,kx2

,ky1
,ky2 , and

1
2(kx1

,kx2
kx5kx1

1kx2

(ky1
,ky2

ky5ky1
1ky2

! of Sec. III on this 2-D governing

equation~which we refer to as the 2-D algorithm!, we can
estimate the 2-D input linear growth rate and linear disper-
sion relation.

The 2-D algorithm of the Ritz method reasonably esti-
mates the input linear dispersion relation, but does not accu-
rately recover the input linear growth rate, as shown in Fig.
6. There are significant quantitative differences between the

FIG. 4. True 2-D linear growth rate~a! and dispersion relation~b! as the
input linear characteristics of the 2-D simulation.

FIG. 5. Autopower spectrum of the 2-D simulated turbulence data.

FIG. 6. The estimated 2-D linear growth rate~a! and dispersion relation~b!
computed with the 2-D algorithm of the Ritz method.
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output and input linear growths in Fig. 6 even if one ignores
the single spike~which occurs due to a local strong variation
in the fourth-order moment!. For example, the amplitudes of
the output linear growth rate at most wave numbers are twice
as large as the input values~e.g., maximum positive growth
rate is about 10, in contrast to 5 in input from the 2-D
model!. Likewise, the damping rates at lowky ~,10 or so!
are larger than the damping rates at highky ~>21! on the
output, whereas the opposite holds for the input.

However, the 2-D algorithm of the modified Ritz method
reproduces both the linear dispersion relation and the linear
growth rate in a more satisfactory way, as shown in Fig. 7,
where the output growth rates are almost equal to the input
values at all wave numbers. In addition, the 2-D algorithm of
the Ritz method with the fourth-order moment~instead of the
square of the second-order moment as prescribed in the
original Ritz formulation! also produces the same result@Fig.
7~a!# as that of the modified Ritz method. This again sug-
gests that the fourth-order moment is mathematically neces-
sary to perfectly describe the moments of our governing
equation~20!, especially for simulation data. This violation
of the random phase assumption, which allows the fourth-
order moment to be expressed as solely the products of the
second-order moment, is possibly due to finite spectral reso-
lution and the finite grid size of the simulation, which forces
each phase of wave number spectra to be strongly coupled
and thus produces significant fourth-order coupling.

From these results, it is found that for ‘‘clean’’ turbu-
lence data, the modified Ritz method is equivalent to the Ritz
method with the fourth-order moment, provided that the tur-
bulence is fully developed. However, the advantage of the
modified Ritz method over the Ritz method is improved

noise rejection when nonideal data is encountered.
To examine the influence of noise on this analysis, we

apply the 2-D algorithm of the modified Ritz method and
that of the Ritz method with the fourth-order moment to the
2-D simulated turbulence data with an added Gaussian ran-
dom noise. Figure 8 shows the true 2-D linear growth rate of
the 2-D simulation and the estimated 2-D linear growth rate
by the Ritz method with the fourth-order moment and the
modified Ritz method when the 2-D simulated turbulence
data are contaminated with this230 dB Gaussian random
noise. Here dark lines represent positive contours~linearly
growing! and gray lines represent negative contours~linearly
damping! in contour plots. As shown in Figs. 8~c! and 8~d!,
the 2-D algorithm of the Ritz method with the fourth-order
moment produces a 2-D linear growth rate, which is strongly
damped in regions of actual growth. This is due to the non-
ideal power not described by the governing equation~20!. In
contrast, the 2-D algorithm of the modified Ritz method
more reasonably reproduces the 2-D linear growth rate@Figs.
8~e! and 8~f!# and thus reduces noise effects by more accu-
rately extracting the turbulent autopower spectrum via higher
moments.

Note that the230 dB of Gaussian random noise is de-
fined relative to the average fluctuation power and thus can

FIG. 7. The estimated 2-D linear growth rate~a! and dispersion relation~b!
computed with the 2-D algorithm of the modified Ritz method.

FIG. 8. The true linear growth rate@~a! and~b!# and the estimated 2-D linear
growth rate by the Ritz method with the fourth-order moment@~c! and ~d!#
and by the modified Ritz method@~e! and ~f!# when the 2-D simulated
turbulence data are contaminated with Gaussian noise.
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be dominant in the region of low-amplitude fluctuation~i.e.,
noise @ fluctuation power where the power is small!. In
addition, the effect of noise is exacerbated in the 2-D case
due to the strong influence of the fourth-order moments,
which are noise sensitive. In contrast, when we apply the 1-D
algorithm of the modified Ritz method to 1-D experimental
data with up to210 dB of Gaussian random noise~relative
to the average power!, the modified Ritz method keeps the
linear growth rate within 10% of the value determined with-
out the added noise, indicating that the off-diagonal fourth-
order terms are negligible in the experimental turbulence
data.

Based on this and other 2-D simulation experiments, the
2-D algorithm of the modified Ritz method is found to pro-
duce reliable estimates of the 2-D linear growth rate and the
resulting rate of nonlinear energy transfer with acceptable
noise rejection.

V. APPLICATION TO EXPERIMENTAL TURBULENCE
DATA

In practical cases dealing with experimental density fluc-
tuation measured via BES or other spatial sampling fluctua-
tion measurements, only 1-D, radially averaged turbulence
data rather than a complete 2-D turbulence dataset is typi-
cally available. To develop an appropriate form of a 1-D
algorithm to apply to the experimental 1-D radially averaged
data, we test the 1-D algorithm of the modified Ritz method
with 1-D fluctuation data derived from the full 2-D simulated
dataset.

The experimental density fluctuations are measured via
BES in the core plasma region of the Tokamak Fusion Test
Reactor~TFTR!.24 This density fluctuation is given by

ñ~vLAB ,x,y!5E
2kN

kN E
2kN

kN
ñ~vLAB ,kx ,ky!

3T~kx ,ky!e
i k̄ – r̄ dkx dky ,

wherekN is the Nyquist wave number,x andy represent the
radial and poloidal direction, andT(kx ,ky) is a transfer func-
tion that is determined by the finite sample volume. The
frequency spectra observed in the laboratory frame in TFTR
are found to be completely dominated by rotation-induced
Doppler shifts of the localS(k) spectrum.25 This dominance
of the Doppler shift in the measured spectra allows a study of
the nonlinear coupling between unstable modes at variousk
through a bispectral analysis of the frequency spectra. Given
this bulk plasma rotation, we can assign a poloidal wave
number value to the observed frequencies as a first approxi-
mation, that is,

ñ~x,ky!5E
2kN

kN
ñ~kx ,ky!T~kx ,ky!e

ikxx dkx .

To simulate this 1-D experimental density fluctuation data
measured via BES, we average~inverse Fourier transform in
the radial wave number space atx50! the 2-D simulated
turbulence data over radial wave number (kx).

Using this averaged 2-D simulated turbulent data, we
can apply the procedure for one-dimensional turbulence data

in order to characterize the weighted~1-D! linear growth rate
of input variables of the 2-D simulated turbulence data.

A. Test of the modified Ritz method with averaged
2-D data

To examine how well the 1-D algorithm of the modified
Ritz method interprets the nonlinear characteristics of the
1-D experimental fluctuation data measured via BES, we ap-
ply the 1-D algorithm to the 2-D simulated turbulence data,
which is averaged over radial wave number to simulate 1-D
experimental turbulence data.

The test of the modified Ritz method is performed with
the averaged 2-D simulation data, which is the same data
used for the 2-D algorithm in Sec. IV B. In this averaging
process, we assume a unity radial transfer function,T(kx)51
~note that the influence of the radial transfer function is dis-
cussed in Ref. 26!. Figure 9 shows the weighted autopower
spectrum and input linear growth rate for the averaged data,
where again the resulting peak fluctuation power is shifted
by the nonlinear interactions to regions away from the most
linearly unstable modes. In this test, we try to recover the
weighted linear growth rate@Fig. 9~b!# of the 2-D simulation
given by

gky
5

(kx
gkx ,ky

^Xkx ,ky
Xkx ,ky
* &

^Xky
Xky
* &

,

by using the averaged 2-D data@Yk( 5 (kx
Ykx ,ky

Dkx), Xk

( 5 (kx
Xkx ,ky

Dkx)# and the modified Ritz method.
The result of this analysis is shown in Fig. 10, where the

solid dotted line represents the estimated linear growth rate
and the gray line represents the rate of nonlinear energy

FIG. 9. ~a! The averaged 2-D autopower spectrum over the radial wave
number.~b! The weighted true input linear growth rate when the 2-D simu-
lated turbulence data is reduced to averaged 1-D data.
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transfer as given by the power flow, Eq.~4!. As shown in
Fig. 10, the modified Ritz method does not recover the
weighted input characteristics of the 2-D simulation data
@i.e., thegky

in Fig. 10 does not reproduce the inputgky
in

Fig. 9~b!#. This suggests that the bispectrum calculation in
the modified Ritz method does not recover the three-wave
coupling information from the averaged 2-D simulation data.
In identifying the cause of this failure, it should be noted that
the fourth-order moment can be replaced with the square of
the second-order moment in the averaged 2-D simulation
data with no significant change in the resultinggky

output.
This contrasts with the finding that the deducedgkx ,ky

was
very sensitive to the use of the 2-D complete fourth-order
moments, and thus suggests that the averaging process vali-
dates the random phase assumption by suppressing the
higher-order phase relationships. This statement is also ap-
plicable to the 1-D experimental data.

From this, it is found that the phase of the averaged
wave number spectra is less coherent and loses information
on the three-wave coupling~bispectrum! through the averag-
ing process. This lack of information of three-wave coupling
results in linear growth rates that are two orders of magni-
tude smaller than the weighted input linear growth rate.

B. Nonresonant 1-D algorithm for 1-D experimental
turbulence data

From Eq. ~18!, we may approximate the fourth-order
moment with the square of the second-order moment be-
cause of the lower coherence of the phase of the averaged
2-D turbulence data~as discussed in Sec. V A!. The linear
growth rate is then estimated to be

gky
'
1

t

(
ky1

>ky2
ky5ky1

1ky2

u^Xky1
Xky2

Xky
* &u22u^Xky1

Xky2
Yky
* &u2

^uXky1
Xky2

u2&

^bkbk* &2 (
ky1

>ky2
ky5ky1

1ky2

u^Xky1
Xky2

Xky
* &u2

^uXky1
Xky2

u2&

.

From this equation, it is seen that the linear growth or damp-
ing is entirely determined by the auto- and cross-bispectra.
Hence, the exact evaluation of these bispectra is important in
obtaining optimal reconstructions of input variables from the
averaged phase. To account for broadening of the bispectra

induced by the radial averaging process and include all pos-
sible three-wave coupling information at wave numberky ,
we consider a modified 1-D governing equation that includes
all nonresonant nonlinearities to be applied to the radially
averaged data. The modified governing equation for this non-
resonant 1-D algorithm is taken to be

]wky

]t
5Lky

L wky
1 (

ky1
,ky2

Lky
Qwky1

wky2
. ~21!

By implementing the same procedure as the modified Ritz
method without the off-diagonal terms of the fourth-order
moments on this new governing equation, we can evaluate
the weighted linear growth rate for the averaged 2-D simu-
lated turbulence data.

The main advantage of this approach is that the values of
the third-order cumulants are zero if there is no phase rela-
tion in the three-wave coupling. This, in turn, gives better
estimates of the bispectra and correspondingly better esti-
mates of thegky

.
With the previous 1-D simulation obtained by reduction

of the 2-D simulated data of Sec. V A~whose weighted lin-
ear growth rate was not recovered by the original 1-D algo-
rithm!, the new nonresonant 1-D algorithm reconstructs the
input linear growth rate and nonlinear coupling coefficients
for the simulated data within the same order of magnitude
and with growth and damping occurring at the proper wave
numbers, as indicated in Fig. 11~b!. In Figs. 11~b! and 12~b!,
the thick gray lines are smoothed versions of the thin lines
~which are the actual output values!. The radial wave number
spectrum@shown in Fig. 12~a!# and the amplitude of net flow
of the nonlinear energy@Fig. 12~b!#, given by

(
ky1

,ky2

u^Xky1
Xky2

Xky
* &u22u^Xky1

Xky2
Yky
* &u2

^uXky1
Xky2

u2&
,

indicate that there is significant power at all radial wave
numbers and they are all strongly coupled. Because there is
strong three-wave coupling at all spatial scales~all k!, the
radial averaging of the spectrum causes a more extensive,
nonreversible loss of phase information. This, in turn, limits
the accuracy of the reconstruction. Observations from many
simulation experiments indicate that better results are ob-
tained for spectra that are highly localized~i.e., all the fluc-
tuation power is concentrated in a narrow range of the radial
wave number space,kx!. In this case, the spectra are nearly
‘‘one-dimensional’’ and radial averaging destroys relatively
little phase information. However, for the very broad spectra
~larger range inkx! shown in this simulation@Fig. 12~a!#,
more phase information is progressively destroyed by radial
averaging. Similarly, in simulated data generated solely by
the Ẽ3B nonlinearity, with its anisotropic transfer, more
phase information is lost in radial averaging than it is in
simulations generated solely by the isotropic polarization
drift nonlinearity.

In general, the nonresonant 1-D algorithm reconstructs
the linear growth rates and nonlinear coupling coefficients of

FIG. 10. The derived linear growth rate computed with the 1-D algorithm of
the modified Ritz method from the averaged 2-D simulated turbulence data.
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the averaged 2-D simulation data in an approximate but
much more satisfactory manner when the width of the radial
wave number spectrum is comparable to or less than that of
the poloidal spectrum. How well it quantitatively reproduces
the input linear growth rates will depend on the details of the
spectra and the underlying turbulence.

Since only the nonresonant 1-D algorithm reproduces, at
least qualitatively, the radially averaged characteristics of
turbulence described by the original 2-D governing equation,
it is the algorithm that should be applied to analysis of the
1-D tokamak plasma turbulence data. While quantitative re-
sults from this analysis will only be relevant when used in
comparison to full 2-D theoretical models of the turbulence
in machines such as TFTR, the qualitative trends in the de-
ducedgk’s should accurately reproduce regions of relative
growth and stability.

VI. SUMMARY AND CONCLUSION

A new procedure for experimentally estimating the en-
ergy cascade and linear growth/damping rate of fully devel-
oped turbulence has been developed to study the physics of
plasma turbulence. Application of this new procedure to the
reconstruction of turbulent spectra eliminates the unphysi-
cally large damping rates observed using the original method
of Ritz et al. It employs stationarity or statistical ergodicity
of the turbulence to eliminate the effects of noise and fluc-
tuations not described by the governing equation, and can
include the fourth-order moment to avoid closure approxima-
tions as needed.

To examine the validity of the procedure, a 2-D algo-
rithm has been implemented and tested on simulated, fully
developed 2-D turbulent data from a 2-D trapped-particle
fluid model code, which has polarization drift andẼ3B non-
linearities. Also, a 1-D algorithm has been tested on the av-

eraged~inverse Fourier transformed! 2-D simulation data to
estimate how well a standard 1-D algorithm can extract rea-
sonable physical results from 1-D experimental data. The
results show that the 2-D algorithm can fully and accurately
reproduce the input characteristics of the 2-D simulation data
with good noise rejection, but the standard 1-D algorithm
does not, in general, reproduce the input variables, especially
from the averaged 2-D simulation data that has significant
fluctuation power above half the Nyquist wave number for
the averaged axis~i.e.,Dkx.kN/2!.

We have developed a nonresonant 1-D algorithm that
includes nonresonant wave numbers in the 1-D governing
equation to include three-wave coupling information from
the averaged phase. This nonresonant 1-D algorithm is able
to qualitatively reproduce the input growth rate spectrum
from the simulated, 1-D experimental fluctuation data when
the width of the radial wave number spectrum is comparable
to or less than that of the poloidal spectrum. This criterion is
usually satisfied with density fluctuation data measured via
BES.

The work in this paper assumes that the saturated turbu-
lence may be described adequately by a one-field model. In
reality, tokamak turbulence is characterized by multifield
fluctuations ~density, temperature, electric potential, etc.!.
We have made the assumption that the observation of one of
these fields~density! is sufficient to characterize the nonlin-
ear behavior of the system. This assumption is reasonable for
saturated turbulence. However, it has not been rigorously
tested to date. In the future, further simulation tests will be
performed using more sophisticated, multifield models that
should allow the role of multiple fields to be evaluated.

Finally, the nonresonant 1-D algorithm described here
will be applied to density fluctuation data measured via beam
emission spectroscopy~BES! for quantifying the linear
growth/damping rate and the resulting amount of nonlinear

FIG. 11. ~a! The weighted input linear growth rate of the averaged 2-D
simulation. ~b! The derived linear growth rate with the nonresonant 1-D
algorithm from the averaged 2-D simulation data.

FIG. 12. ~a! The averaged 2-D autopower spectrum over the poloidal wave
number.~b! The net flow of nonlinear energy,Tout2Tin .
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energy transfer in the core of TFTR. Such experimental mea-
surements and analysis can be useful for a direct comparison
with full 2-D theoretical models.

ACKNOWLEDGMENTS

This work was supported by the U.S. Department of En-
ergy Grant No. DE-FG02-89ER53296 and Contract No. DE-
AC02-76-CHO-3078.

1Ch. P. Ritz and E. J. Powers, Physica D20, 320 ~1986!.
2Ch. P. Ritz, E. J. Powers, R. W. Miksad, and R. S. Solis, Phys. Fluids31,
3577 ~1988!.

3Ch. P. Ritz, E. J. Powers, and R. D. Bengtson, Phys. Fluids B1, 153
~1989!.

4M. Rosenblatt,Proceedings of the Symposium of Time Series Analysis
~Wiley, New York, 1963!, p. 125.

5Y. C. Kim and E. J. Powers, Phys. Fluids21, 1452~1978!.
6Y. C. Kim and E. J. Powers, IEEE Trans. Plasma Sci.PS-7, 120 ~1979!.
7S. Assadi, S. C. Prager, and K. L. Sidikman, Phys. Rev. Lett.69, 281
~1992!.

8C. Hidalgo, E. Sanchez, T. Estrada, B. Branas, and Ch. P. Ritz, Phys. Rev.
Lett. 71, 3127~1993!.

9R. J. Fonck, P. A. Duperrex, and S. F. Paul, Rev. Sci. Instrum.61, 3487
~1990!.

10S. F. Paul, N. Bretz, R. D. Durst, R. J. Fonck, E. Mazzucato, and R.
Nazikian, Phys. Fluids B4, 2922~1992!.

11P. M. Schoch, J. G. Schatz, T. P. Crowley, K. A. Conner, A. Carnevali, J.
C. Forster, J. F. Lewis, G. A. Hallock, and R. L. Hickok, Rev. Sci. In-
strum.9, 1646~1988!.

12E. Mazzucato and R. Nazikian, Plasma Phys. Controlled Fusion33, 261
~1991!.

13J. D. Callen, Phys. Fluids B4, 2142~1992!.
14R. W. Miksad, F. L. Jones, and E. J. Powers, Phys. Fluids26, 1402~1983!.
15S. Elgar and R. T. Guza, J. Fluid Mech.161, 425 ~1985!.
16M. D. Millionshchikov, Dokl. Akad. Nauk SSSR32, 611 ~1941!.
17C. L. Nikias and M. R. Raghuveer, Proc. IEEE75, 869 ~1987!.
18B. Harris,Spectral Analysis of Time Series~Wiley, New York, 1967!, p.
153.

19M. B. Priestley,Spectral Analysis and Time Series~Academic, London,
1981!.

20A. Hasegawa and K. Mima, Phys. Fluids21, 87 ~1978!.
21D. E. Newman, P. W. Terry, and P. H. Diamond, Phys. Fluids B4, 599

~1992!.
22D. E. Newman, P. W. Terry, P. H. Diamond, and Y. M. Liang, Phys.
Fluids B5, 1140~1993!.

23P. W. Terry and W. Horton, Phys. Fluids25, 491 ~1982!.
24J. Strachan, M. Bitter, A. Ramsey, M. Zarnstorff, V. Arunasalam, M. Bell,
N. Bretz, R. Budny, C. Bush, S. Davis, H. Dylla, P. Efthimion, R. Fonck,
E. Fredrickson, H. Furth, R. Goldston, L. Grisham, B. Grek, R. Hawryluk,
W. Heidbrink, H. Hendel, K. Hill, H. Hsuan, K. Jaehnig, D. Jassby, F.
Jobes, D. Johnson, L. Johnson, R. Kaita, J. Kampershroer, R. Knize, T.
Kozub, H. Kugel, B. LeBlanc, F. Levinton, P. LaMarche, D. Manos, D.
Mansfield, K. McGuire, D. McNeil, D. Meade, S. Medley, W. Morris, D.
Mueller, E. Nieschmidt, D. Owens, H. Park, J. Schivell, G. Schilling, G.
Schmidt, S. Scott, S. Sesnic, J. Sinnis, F. Stauffer, B. Stratton, G. Tait, G.
Taylor, H. Towner, M. Ulrickson, S. von Goeler, R. Wieland, M. Will-
iams, K.-L. Wong, S. Yoshikawa, K. Young, and S. Zweben, Phys. Rev.
Lett. 58, 1004~1987!.

25R. J. Fonck, G. Cosby, R. D. Durst, S. F. Paul, N. Bretz, S. Scott, E.
Synakowski, and G. Taylor, Phys. Rev. Lett.70, 3736~1993!.

26J. S. Kim, ‘‘Experimental measurement of nonlinear energy transfer on the
Tokamak Fusion Test Reactor,’’ Ph.D. thesis, University of Wisconsin,
Madison, 1996.

4009Phys. Plasmas, Vol. 3, No. 11, November 1996 Kim et al.

Downloaded¬07¬Mar¬2007¬to¬128.104.198.190.¬Redistribution¬subject¬to¬AIP¬license¬or¬copyright,¬see¬http://pop.aip.org/pop/copyright.jsp


