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A new procedure for calculating the nonlinear energy transfer and linear growth/damping rate of
fully developed turbulence is derived. It avoids the unphysically large damping rates typically
obtained using the predecessor method of Fitz. P. Ritz, E. J. Powers, and R. D. Bengtson, Phys.
Fluids B1, 153(1989]. It enforces stationarity of the turbulence to reduce the effects of noise and
fluctuations not described by the basic governing equation, and includes the fourth-order moment to
avoid the closure approximation. The new procedure has been implemented and tested on simulated,
fully developed two-dimension&R-D) turbulence data from a 2-D trapped-particle fluid code, and
has been shown to give excellent reconstructions of the input growth rate and nonlinear coupling
coefficients with good noise rejection. However, in the experimentally important case where only a
one-dimensionafl-D) averaged representation of the underlying 2-D turbulence is available, this
technique does not, in general, give acceptable results. A new 1-D algorithm has thus been
developed for analysis of 1-D measurements of intrinsically 2-D turbulence. This new 1-D
algorithm includes the nonresonant wave numbers in calculating the bispectra, and generally gives
useful results when the width of the radial wave number spectrum is comparable to or less than that
of the poloidal spectrum. €1996 American Institute of Physids$1070-664X96)03811-4

I. INTRODUCTION growth rate of fully developed turbulence is presented. It
enforces a stationarity condition to eliminate nonideal power

The characterization and identification of the type ofand utilizes the fourth-order moment to avoid errors arising
mode associated with the anomalous transport of heat arffbm the closure approximation_ The Va||d|ty of the proce-
particles in high-temperature tokamak plasmas are topics Qfure is examined numerically with data generated from a
considerable interest since they might provide insight intoyrhylence model. This computational experiment estimates
ways of reducing the anomalous losses. Recently, bispectrgly well the procedure can extract relevant physical results
analysis has emerged as a way to experimentally estimate the, 1, raw fluctuation data and tests the validity of its appli-
linear growth rate and nonlinear energy tran’s‘f%lr_l fully cation to analysis of one-dimensionél-D) experimental
developed plasma turbulence, and thereby provide a morg ..o\ ,rements of intrinsically two-dimensioratD) turbu-
direct tool for mode identification compared to early trans-|, e

port experiments, which relied on indirect comparisons to The remainder of this paper is organized as follows. In

theoretical expectatiorts. . ) : o
) . . Sec. I, the nonlinear drift wave coupling equation is pre-
Bispectral analysis, which measures the amount of phase . . :
nted as the governing equation. In Sec. Il we describe how

X . ge
correlation between three spectral components, is used {0 L o .
t0 make a quantitative estimation of the linear growth rate

investigate nonlinear wave—wave interactions. Although d of th t of dina bet f
there have been many experimental studies that used digit [1d of the amount ot energy cascading between waves for a

bispectral analysis in fluids and plasmas to demonstrate th&flly turbulent system. Furthermore, the problems associated
nonlinear energy transfer by three-wave coupling processé@'th the Ritz method are identified anq the modified thz.
is important'8 the use of this analysis technique was typi- method that overcomes these problems is developed and dis-

cally limited to qualitative applications. In the late 1980's cussed. In Sec. IV, we apply these procedures to pure 1-D
Ritz et al. developed an analysis method that uses experia”d 2-D simulated turbulence data, and discuss how well the
mental turbulence data and enables one to make a quantitBtocedure reconstructs the input variables of the simulation
tive estimation of the nonlinear coupling coefficients and thedata. In Sec. V, we discuss the practically important case
resulting amount of energy cascading between waves in where only 1-D radially averaged data is available rather
fully developed turbulent systefn® However, application of than a complete 2-D characterization of the plasma turbu-
Ritz’'s method suffered from the appearance of nonphysicaence. In this case, it is found that, in general, it is not pos-
behavior of the derived linear growth rate due to nonidealible to completely reconstruct the linear growth rate and
power, here defined as noise, systematic errors, higher-ordepnlinear coupling coefficients. However, techniques are dis-
coupling, wave—particle coupling, etc. cussed that can derive a useful, partial characterization of the

In this work, a new procedure based on Ritz’s approachfluctuations. The summary and conclusion of this work are
for calculating the nonlinear energy transfer and lineampresented in Sec. VI.
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IIl. ANALYSIS MODEL de(kt) . [le(kt+ )| —]e(kb)|
=1m
a 7le(k,t)|

O(kt+71)—0O(k,1)
+i .

In the late 1980s, new fluctuation diagnostics such as
beam emission spectroscdp§ (BES), heavy ion beam
probé! (HIBP), and correlation reflectromet’ (CR)
showed that core density fluctuations have a broad wave
lr;uﬂrgﬁ;r (E(?}i;it;uorﬁl 1t? ?_thésbfég) dnglgegfL?rI:]egpStea:?:?o \;:%\i/_eSubstituting Eq(2) into Eqg. (1) and simplifying, we obtain
cate a strongly turbulent state, in that the interaction between
the separate waves broadens out the frequency spectrum, Y=L X+ E Qtl'kzxklxkz, 3
which means a linear analysis is unable to fully characterize kiitiz
the turbulent spectrum. Recently, many experiments have
used bispectral analysis to demonstrate that three-wave cowhere
pling processes are important in flut¢d® and plasmas®
This three-wave coupling term can be theoretically derived ~ X¢=¢(k,t), Y =o(K,t+7),
from the convective derivativi.e., (v-V)v, wherewv is the
flow velocity] in neutral fluids or the polarization drift and CAg+1-i[0(kt+ 1) -0 (K b)]

EX B drift convection in plasmas. L= e IOk t+7)=0(kD)] ’

To make quantitative estimates of the linear growth rate
and the energy cascade rate between waves for fully devel- ke K AE(kl,kz)r
oped turbulence, we consider the nonlinear drift wave cou- le' 2= e MOKFN-0kK]
pling equation written in the forf

e(k,t). 2

do(k,t) 1 Equation (3) models an arbitrary nonlinear system with a
at, :Ak<p(k,t)+§ > Ay ky) parallel combination of linearl() and quadratic transfer
kKo functions (le’kz)
k=kq+ky K ' .
To obtain the general form of the linear growth rég)
X e(ky,t)e(ky,t) and the rate of nonlinear energy transf&g), we introduce

the energy flow equation as a difference equation given by
=Ave(k)+ X ARk ko)

k1=ko AP (YY) — (X XE)
k=kq+ ko %%%Zykﬂﬁ Tys 4
X‘P(klvt)()o(kZ!t)v (1)

whereP, = (X, X ). Equation(4), which describes the time
_ ot AL ) rate of change of the spectral power of a wave nuniber
defined by‘P(X’g):,EkQD(k’t)e, » A is the linear transfer ;05 the capability of experimentally measuring the linear
function, andAy is the nonlinear transfer function. This o6\ th/damping rate and the rate of nonlinear energy trans-
single-field drift wave model, which assumes a linear phasg¢,, i, fully developed turbulence. The nonlinear energy

relation between fieldgsuch as density, potential, ion tem- o nqfer rateT, | represents a net flow of energy into or away

perature, etg¢, reproduces many, but not all, features of drift from a given modek. That is, positiveT, represents a net

wave turbulence. , o _ flow of energy into the modé&; negativeT, represents net
The governing equatiofll), which is appropriate to de- , yj0. By multiplying Eq.(3) with the complex conjugate

scribe turbulence that is dominated by three-wave couplingyt v anq ensemble averaging over many statistically similar
shows that the rate of change of the spatial Fourier Spec”“%alizations(denoted by angular brackgtsve obtain
of the fluctuating field is determined only by linear and qua-

dratic nonlinear interactions. The linear transfer functign . . e K .
encompasses linear damping and growth, spectral broaden- (YkYk)=Li(XkYi)+ kzk QA X X, Yi )

where ¢(k,t) is the density fluctuation at wave numbler

ing (linear dispersioy the diamagnetic driving term, etc. kzlszkz
The nonlinear transfer function? gives the strength of
mode coupling due to the convective derivative terms such _ * ok K1 K3 sk gk
as the nonlinear polarization drift arlx B advection of L[ K LicXic |<12>:k2 QX
density in the drift wave model. k=ky+ky
To get the energy cascade and linear growth rate of
modes at giverk, the time derivative in Eq(l) is replaced N 2 Kikay  y [ Lk
by a finite difference and ensemble averaged over many sta- Sk, kK| Rk Nk
tistically similar realizations to make Edl) statistically k=Kq+kp
meaningful.
If the spectrume(k,t) is characterized by a complex KK
representation (i.e., amplitude and phase ¢[k,t) + 2 QreXExX: |\ - )
=|p(k,t)|e'®®]), the change of the spectrum in time can ki=ky to?
be estimated by a finite difference approach: k=kytk;
Phys. Plasmas, Vol. 3, No. 11, November 1996 Kim et al. 3999
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Substituting Eq(5) into Eq. (4) and simplifying, we finally However, application of this method can often yield un-
obtain physically large damping coefficients at all spectral compo-
IL2—1 nents for the measured fluctuation data, as noted by'Ritz.
Vi~ k_, These unrealistic results arise because the method does not
7 account for nonideal fluctuatior{s.e., fluctuations not de-
kl'k2<X X, XE) sgribed by Eq.(l).such as nqise in the m(_easured signal,
k kg Mk ”Mk higher-order nonlinear coupling, systematic errors, ]etc.

T~2Rd L} >

Ki=k, T That is, the autopower spectrum in the denominator of Eq.
k=k;+ky (8) includes nonideal fluctuations because phase relations be-
K ko K ¥ tween wave number components are suppressed in the auto
1:K2K1 K2 * oye* . .
QP (X X, X Xi) power spectrum. This leads to the unphysically large damp-
1 2 1 2

+ 22

- ing obtained in the Ritz method. To rectify this, we recon-
ki=ky kilk;lizkz struct the auto power spectruf@ontaminated by nonideal
k=kq+kj powen by using higher-order moments that preserve the

In the next section, we will derive moment equations to ob_Founer phase of a signal.

tain the unknown linearl(,) and quadratic transfer functions
(Qtl’kz) by manipulating Eq.(3). These unknown linear
(L) and quadratic@}**?) transfer functions determine the B. Modified Ritz method

linear growth rate and the nonlinear energy transfer rate from  To correct for nonideal effects, we enforce a temporal

the above equation. stationarity condition that allows us to extract that portion of
the measured power for which E(.) provides an adequate
description. In essence, this involves the removal of any non-

IIl. PROCEDURE TO ESTIMATE POWER TRANSFER ideal fluctuation power inherent in the measured spectrum
) ) but uncorrelated with the fluctuation power described by the
A. Review of Ritz method physics contained in Eq1). The degree of relevance of this

Moment equations were derived by Rir a|_1_3 to es- overall analySiS then depends on how much of the ideal fluc-
timate the linear and quadratic transfer functions for noniuation power remains in the wave—wave coupling model
Gaussian input signals. By multiplying E@®) with the com-  Spectrum compared to the total turbulence power. If a large
p|ex Conjugate Oka and ensemble averaging over manyfraction of the turbulence power is well described by the

statistically similar realizations, we obtain the second modinear and quadratic wave—wave coupling model in &g,
ment equation: this analysis can be expected to shed light on the dynamics

of the nonlinear mode structure of the turbulence. However,
YOXE Y = Lol XX )+ kikaw . X*Y. (6 it can be considered irrelevant if almost all the turbulent
(Y1) = LX) k;kz QA ke 3y © power is eliminated by this approach.

k=kytk; In this work, we describe the measured spec¥g,¥,)

to be the sum of an ideal spectrur,(, «,), which is driven
by linear and quadratic processes described by(Bcnd a
we obtain a third equation containing the fourth-order mo-ngnideal spectrum)(Ei ,Yﬂi) that does not participate in lin-
ment<xklxk2X:iX:é>- To close the expansion of the higher ear and three-wave coupling processes. That is,

moments, the fourth-order moment is approximated by the
square of the second-order momeﬁ%klxkz|2> by neglect-

ing terms with k;,k;) # (ky,kp), as was proposed by ysing Eq.(9) we can rewrite Eq(3) in the form
Millionshchikov® The simplified third moment equation is

By multiplying Eq. (3) with X:iX:§ and ensemble averaging,

Xi= Bt XP Y= ay + YR (9)

then | | - |
Xk * ok k1 ka 2 (Y= Yi) = Li(Xe= Xg) + kzk k(X = X))
<kak1 k2> - Lk<Xkal kz> +Q <|Xk1Xk2| ). (7) k=lk:+2k2
Ritz et al. used Eqgs(6) and(7), which we will refer to X(sz—XE;) 10

as the Ritz method, to permit the quantitative estimation of

t_he transfer functior?s f(_)r general input signals. The derivethere the finite difference for the ideal spectrum is ex-
linear transfer function is pressed only in terms of the measured and nonideal spectra.

(X8 X Xa ) OYiXE X3 ) We assume hgre tha.t the nonidegl spectrum is completely
XEY Y- > ! S 2 uncorrelated with the ideal fluctuation spectrupy (e, ), as
kﬁfizk <|Xk1Xk2| ) is appropriate for noise or any spectrum not described by the
L= “TR _ 5 ] (8)  Physics of Eq.(_l). _ _
. (XK Xie, X )| By multiplying Eq. (10) with the complex conjugate of
(XX ) — kgkz XX X, Yy, andX,; X,s, ensemble averaging over many statisti-
k=kitky cally similar realizationgas used in Ritz methgdand re-
4000 Phys. Plasmas, Vol. 3, No. 11, November 1996 Kim et al.
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moving all cross terms containing the nonideal spectrum ex-

cept the autopower spectré((' X2} (YRIYR™)) | we obtain
three moment equations:

Ky k
(YiXi ) =L BBy ) + kzk Qi A%y Xi, Xi6),
keky g

Ky K
(aai ) =L XY )+ kzk QX X, Y )

(YK X)) = LiCXieXie Xi)

>

! ’
K=k,

ky K5 * yox
+ QX Xier Xic Xic,) -

k=k;+ky=K;+ky

In this case, we will retain the full fourth-order cumulant
<xk£xkéxfglx;2> rather than using a closure approximation,

as was done previously. In most physical systems, the ran-

dom phase assumption is valid and the second-order closu
approximation is valid. However, in some numerical experi-
ments the random phase assumption is violated and in th
case one must use the exact fourth-order cumulant, despi
its greater computational cost.

112,112 1+2)/2,(1-2)/2 | 12,(1-4)/2 InsI=1
Q:(QI 1Q|(+) ( ) 1Q|( +a2(-4) 1---1Q|N N)!

A= ((X2X02X5 )X (15 202K 1= 202XT ) X (15 2y 12K (1= 2y 12X )
B=((Xi12X12Y{" ) (X4 202X (1= 2021 ) o X1 4 ay2X (121 )

<XI/2XI/2Xik/2Xr;2

Note thatl is used here for the index of the mode wave
numberk (k=f(l), wherel is an integer and is a linear
function), and similar definitions are also used for the odd
index ofk.

Here the diagonal terms of the fourth-order momgt

are the square of the second-order moment that the Ritz
method employs in order to make a closure. Thus, the use of

the fourth-order moment in this modified Ritz method math-

One more relationship is needed to complete the set for
the derivation of the four unknown variablés,, Q:Zl’kz
(BB ), and{aaj ). For fully developed turbulencksta-
tionary turbulenceiPy /dt ~ ({ayay ) — { BBk )/ 7= 0], it

is clear that the linear growth of instabilities is balanced by
the nonlinear energy transfer. This means that the power
spectrum is forced to be fully saturated by only the linear and
three mode coupling terms in the model of our system. This
observation suggests the fourth equation to be in the form of

(@) =(BiBi)-

This stationarity condition is equivalent to an assumption of
local homogeneity when we apply the procedure to 1-D ex-
perimental turbulence data. Expressed in matrix notation, the
complete set of equations is then

(YiX$) =L BBy )+ Q-A, (11)
(e ) =L (X Y5 )+ Q-B, (12
re (B*)T=L(A*)T+Q-F, (13
(arai )= (BB ) (14)

is
tehere in the case in which the indéxf the wave numbek
is an even number,

X X, XINT

...,(X,NX|,|NY|*>)T,

(X12X172X{ 4 22X 212)
(Xi14202X0-202X172X172) (X1+2)2X (1= 202X 422X {1 -

2)/2>

(X1 K- XE X))

. (VX)) —(BY)T-FTLA
K(BBEY— (AF)T-F LA

(16)

and

(aa)—(BY)T-F 1B
XSO (AOTF LB

17

ematically complements the Ritz method but allows a delUsing Egs.(16) and (17), we can then solve for the linear

scription of the governing equatiofl) without the closure
approximation.

This set of equations is directly solved to obtain the four

unknown variables. Rearranging Ed.3), we have
Q=B*)T-F 1-L(A%)T.F L (15)

Substituting Eq(15) into Egs.(11) and (12), we have two
expressions fok, in the form of

Phys. Plasmas, Vol. 3, No. 11, November 1996
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growth rate given by
1(AHTFA-(BY)-F B
T (BB (ATF LA
In Eqg. (18), the linear portion (B B5) — (A*)T
-F~1.A) of total power (B.8r)) at wave numberk is

growing (i.e., outflow of linear energyin order to saturate
the total fluctuation power if the flow of nonlinear energy

Yk u (18
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into wave numbek [T, = (A*)T-F~1.A] is bigger than the
outflow of nonlinear energyT ;= (B*)"-F~1.B]. This sug-
gests that the amplitudes of the auto-bispectrum and cross-
bispectrum are very important in this procedure in determin-
ing which wave numbers linearly grow or damp.

The numerical estimations of well-known statistical
quantities such as the autopower spectRyr= (X, Xy ), the
cross-power spectrum (Y, Xy ), the auto-bispectrum
(X, +k, Xk, Xk,)» and the cross-bispectrufYy, i, Xi Xi ). [
are thoroughly discussed in Refs. 2, 3, 17, 18, and 19 and are a5l s - - s
not discussed here. ° ° m(;((;e nunl‘;erk 0%

To summarize, this procedure postulates that the mea-

input linear growth rate

sured spectrum consists of two components: E 200 (b)
- = A9 = so0k, 2=k
Xk: ,Bk+ XEI , § 150 k= 2 kN3 ////
S 100 4
where B, is the spectrum due to the processes described by T s0 ,//'/”/’/’
k. . ) @ //////W'

Eq. (1) (linear growth/damping and three-wave coup)ing £ o 5”2";"&'/’%’
and X' is the spectrum due to processes not described by Q 50 ¢'H.M'A!g;;,
Eq. (1) such as higher-order nonlinear coupling, systematic 3 100
errors, and noise. By enforcing the stationarity condition £ %de 36
({aar) = (BkBr)) we are able to solve for that portion of _ o,,,b‘@ 5 g)e umber ki
the spectrum that can be described by linear and quadratic i3 mo

(three-wave couplingterms.

However, note that no detailed information about thoSerIG. 1. Input linear growth ratéa) and nonlinear coupling coefficiettb)
processes that drive the extra fluctuation power is obtainedsed for generating the pure 1-D simulated, fully developed turbulence data.
by this procedure. As mentioned earlier, the procedure must
be justified after the fact by comparing the linear-quadratic

power, { By Bx ), to the n_onid*eal power Xy 'Xp'" ). For the AQ:Cpo|(kxkyl—kykx1)[(kfz+ kiz)_(kfﬁ ksl)].

case wherég, By ) > (Xg'Xp" ) we conclude that the plasma _ o _
fluctuations are indeed dominated by linear and quadratiEOr our 1-D model we use a coupling coefficient given by
processes and the nonlinear energy transfer and growth rate AkQ:CQm(kl_ K)(K3—K2).

estimates obtained are meaningful. ) ) o ) _ )
Comparison with the polarization drift nonlinearity suggests

that the 1-D model represents a spectrum whose radial width
(Ak,) is much narrower than the poloidal widthAK,).
However, it should be cautioned that this model is ultimately

To check how well the derived nonlinear characteristicsunphysical as a projection of the polarization drift nonlinear-
compare to the input values, we apply the bispectral analysiy because of the tendency of the polarization drift nonlin-
to fully developed, simulated turbulence data. This numericagarity to isotropize any spectrum witkk, <Ak, .
experiment demonstrates the capability of the procedure to  Figure 1 illustrates the input linear growth rate and the
reconstruct the input linear growth rate and nonlinear couinput nonlinear transfer coefficient. It shows that for satura-
pling coefficients. The influence of noise will also be inves-tion of the fluctuations, nonlinear energy transfer must go

IV. SIMULATION EXPERIMENTS

tigated with random Gaussian noise. from linearly unstable modes at high wave number to

, damped or dissipative modes at low wave number. The

Qétgest of the procedure with pure 1-D turbulence simulated output fluctuation is fully saturated with 45 mode
numbers, as indicated by Fig(@. The peak in the fluctua-

The first test of the Ritz method and the modified Ritztion power spectrum at intermediate wave nunilbég. 2(b)]
method uses a 1-D model. To generate saturated 1-D nonliis formed by the polarization nonlinear energy cascade bal-
ear data, we analytically define the linear and quadratic transsnced against linear growth and dissipation.
fer functions and numerically integrate the basic Eb), With the Ritz method and the modified Ritz method of
starting from Gaussian random spectra, to obtain fully develSec. Ill, we estimate the linear growth/damping rate and the
oped turbulence. This simulated output turbulence is usedonlinear coupling coefficient. As shown in FiggcBand
with the methods of Sec. Il to produce the linear growth/3(d), the modified Ritz method exactly recovers the input
damping rates and amounts of nonlinear energy transfecgharacteristics of the simulation, but the Ritz methBays.
which are then compared with the values that generated thg&(a) and 3b)] fails to reproduce the true values at almost all
turbulence. wave numbers.

We use a contrived 1-D model that mimics the 2-D po- For this test, there are no nonideal fluctuations in the
larization drift nonlinearity. From the Hasegawa—Mima data. The assumption of stationarity is not crucial here and
equatior?® the polarization drift nonlinearity is given by the failure of the Ritz method is caused only by the assump-

4002 Phys. Plasmas, Vol. 3, No. 11, November 1996 Kim et al.
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4 Output linear growth rate
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FIG. 2. (a) Evolution of total fluctuation power showing saturation of tur-

bulence data(b) Power spectrum of the pure 1-D simulation data. . . . .
FIG. 3. Output linear growth ratéa) and linear coupling coefficientb)

. . stimated by the Ritz method, and output linear growth (@t@nd nonlin-
tion that replaces the fourth-order moment with the square of,, coupling coefficientd) estimated by the modified Ritz method.

the second-order moment. It indicates that the fourth-order

cumulant is mathematically necessary to perfectly describe

the moments of our governing equati@). Fourth-order cu- . . o ]

mulants are non-negligible in this simulation because finitdn this Enpdel,n is the fluctuating ion qenSIIWD:(CZTe/
spectral resolution, exacerbated by one-dimensionality, s6B)Ln " is the diamagnetic drift velocityD = 21
limits the spectral coupling that phase-coherent triplets domi-- 37¢/2)/vei¢ is @ negative diffusivity describing the desta-
nate the evolution. This violates the random phase assumpilization of the dissipative trapped electrdTE) modes by

tion that allows fourth-order moments to be expressed aglectron collisionsL, is the density gradient scale length,
products of second-order moments. ps=(cTJ/eB)/C is the ion gyroradius evaluated at the elec-

This simulation experiment confirms that the 1-D algo-tron temperatureCo=(T¢/m;)* is the ion sound speed, and
rithm of the modified Ritz methodor the Ritz method with & is the coefficient of hyperviscosity, introduced to model
all fourth-order cumulanjsfully recovers the linear growth Strong damping at high wave number and to realistically cut
rate and the rates of nonlinear energy transfer for pure 1-§ff the maximum wave number in the simulation to finite
turbulence data. However, pure 1-D turbulence is ultimately/alues.
unphysical. That is, the nature of turbulence in magnetically  The first nonlinearity ") appearing in Eq(19) is the
confined high-temperature plasmas is generally thought to bRolarization drift nonlinearity, and arises fromyV- ",
two-dimensional(2-D) because the parallel wavelength is Where 75”=Bg*(m;c/€)2X vg- Vg is the nonlinear polar-
sufficiently long. This motivates 2-D simulation experi- ization drift. The second nonlinearity\I{(EXB)) is theEXB
ments. nonlinearity, arising from vg-Vn,, where vg=—(c/

Bo) VX2 is theE X B drift, andn, is the nonadiabatic elec-
tron density, which, from the electron response, is related

We simulate the turbulence of a magnetically confinedback to the potential, and, through quasineutrality, to the ion
high-temperature plasma with the Terry—Horton model,density.
which is a two-dimensional single-field nonlinear mddet® To generate saturated 2-D turbulence data, we input val-

B. Test of the procedure with 2-D turbulence data

described by

ues for the physical variableD( vp, vegi, 4, Ln, Cs,
ps) and numerically integrate E§19), starting from Gauss-

an, — _ _ _ . . .
(9_tk:Dk32/ M— i vpky M — veﬁ,ink—uk“nk—ij’"” ian random spectra, to get the time evolution of the fully
developed wave number spectra. We generate more than
(ExB) 2000 realizationgwhich are used for ensemble averagiag
k ' each wave numbes, andk, , where each realization consists
where of two samples: one at time and the other at timeé+ 7,
B . where 7 is a delay time between the samples and is much
NE(EXB):I_ L,D> |2><I2’2[k§,—(ky—k)’,)]'ﬁkr'ﬁk_kr, smaller than the eddy turnover time. Each realization must
2 K be separated from the next by a time longer than the eddy

1 s s , Joe ~
NP =2 p2CeS kXK' 2L (k, — kD)2~ K[ [ iy
k/

Phys. Plasmas, Vol. 3, No. 11, November 1996

turnover time to get statistically independent realizations.
This sampling method mimics the experimental turbulent
data measured via beam emission spectrosd&BS).° A
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input linear growth rate

Im{ i X, }

FIG. 4. True 2-D linear growth ratéa) and dispersion relatiofb) as the
input linear characteristics of the 2-D simulation.

8x109 -

Pe, = <ka o Xen, )

6x10°9

4x109

2x109

Autopower spectrum

FIG. 5. Autopower spectrum of the 2-D simulated turbulence data.

Xi.r Ly El'kz, and 2k12k2 are directly replaced by

? k=K +ky
Yi ko Xk ks Xk, ok, Kk ok, o Lk k Qkxl,kxzykyfky2 and
) x Ky’ x Ky’ xRy, Xy Ny, ! x Ky’ klx,k ! .
52kxl'kx2 Ekvl'kyz ) of Sec. lll on this 2-D governing
K=k Ty, ky=ky tky
equation(which we refer to as the 2-D algorithpwe can
estimate the 2-D input linear growth rate and linear disper-

sion relation.

total of 2000 realizations is used for the results discussed The 2-D algorithm of the Ritz method reasonably esti-
herein. Tests with more realizations indicate that fU”y Sta-mates the input linear dispersion re|ati0n, but does not accu-
further ensemble averaging does not change the derived rg: There are significant quantitative differences between the

sults.

As shown in Fig. 4, the unstable modes are chosen at
intermediatek with damping at high and low. The imagi-
nary part of the input linear transfer function, representing
the linear fluctuation frequencgor dispersion relation is
proportional to the normalized poloidal mode number.
Here 17<45 mode numbers and ten million time steps with
At=0.0001 for a total run time of =1000(where the eddy
turnover time is between 0.5 andl dre used to get the time
evolution of fully developed turbulence. Figure 5 shows that
the power spectrum is anisotropic with respect to the peak,
and the peak of the fluctuation power is ndge=0 and
k,=9, instead of at thé&,=20 mode which is the most un-
stable mode, as shown in Fig(a

To recover the 2-D input characteristics of this simulated
dataset, we generalize the governing equatinfor two-
dimensional turbulence, which is then

(7‘ka,ky(t)

ot :Akx,kywx,ky(t)

[

ts > > A(kgx Ky
kxl’kxz kyl’kyz

Ky= kx1+ kx2 ky= ky1+ ky2

Xep k. (Do « (). (20
X"V X2'Y2

output linear growth rate

Im{Aﬁx % }

) ) ) FIG. 6. The estimated 2-D linear growth rd® and dispersion relatiotb)
By implementing the same procedutee., Y, X, Xy computed with the 2-D algorithm of the Ritz method.
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FIG. 7. The estimated 2-D linear growth rd& and dispersion relatiotb)
computed with the 2-D algorithm of the modified Ritz method.
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mode number ky

output and input linear growths in Fig. 6 even if one ignores

the single spikéwhich occurs due to a local strong variation FIG. 8. The true linear growth raféa) and(b)] and the estimated 2-D linear

in the fourth-order momeptFor example, the amplitudes of growth rate by thg_ Ritz method with the fourth-order momigot gnd(d)]

the output linear growth rate at most wave numbers are twicf%nOI by the modified Ritz methotle) and (f)] when the 2-D simulated

rbulence data are contaminated with Gaussian noise.

as large as the input valués.g., maximum positive growth

rate is about 10, in contrast to 5 in input from the 2-D

mode). Likewise, the damping rates at loky (<10 or s9

are larger than the damping rates at high(=21) on the

output, whereas the opposite holds for the input. noise rejection when nonideal data is encountered.
However, the 2-D algorithm of the modified Ritz method To examine the influence of noise on this analysis, we

reproduces both the linear dispersion relation and the lineapply the 2-D algorithm of the modified Ritz method and

growth rate in a more satisfactory way, as shown in Fig. 7that of the Ritz method with the fourth-order moment to the

where the output growth rates are almost equal to the inpi2-D simulated turbulence data with an added Gaussian ran-

values at all wave numbers. In addition, the 2-D algorithm ofdom noise. Figure 8 shows the true 2-D linear growth rate of

the Ritz method with the fourth-order momeirtstead of the the 2-D simulation and the estimated 2-D linear growth rate

square of the second-order moment as prescribed in they the Ritz method with the fourth-order moment and the

original Ritz formulation also produces the same redilig.  modified Ritz method when the 2-D simulated turbulence

7(a)] as that of the modified Ritz method. This again sug-data are contaminated with this30 dB Gaussian random

gests that the fourth-order moment is mathematically necesioise. Here dark lines represent positive contdilirearly

sary to perfectly describe the moments of our governinggrowing and gray lines represent negative contdlirearly

equation(20), especially for simulation data. This violation damping in contour plots. As shown in Figs(® and &d),

of the random phase assumption, which allows the fourththe 2-D algorithm of the Ritz method with the fourth-order

order moment to be expressed as solely the products of thmoment produces a 2-D linear growth rate, which is strongly

second-order moment, is possibly due to finite spectral resadamped in regions of actual growth. This is due to the non-

lution and the finite grid size of the simulation, which forcesideal power not described by the governing equa(f). In

each phase of wave number spectra to be strongly couplembntrast, the 2-D algorithm of the modified Ritz method

and thus produces significant fourth-order coupling. more reasonably reproduces the 2-D linear growth|ifaitgs.
From these results, it is found that for “clean” turbu- 8(e) and &f)] and thus reduces noise effects by more accu-

lence data, the modified Ritz method is equivalent to the Ritzately extracting the turbulent autopower spectrum via higher

method with the fourth-order moment, provided that the tur-moments.

bulence is fully developed. However, the advantage of the Note that the—30 dB of Gaussian random noise is de-

modified Ritz method over the Ritz method is improvedfined relative to the average fluctuation power and thus can
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be dominant in the region of low-amplitude fluctuatiore.,

5x10-5 T
noise > fluctuation power where the power is smalln 5 " (@)
addition, the effect of noise is exacerbated in the 2-D case §4"‘°'5 3
due to the strong influence of the fourth-order moments, Saxi0o5f
which are noise sensitive. In contrast, when we apply the 1-D gms ]
algorithm of the modified Ritz method to 1-D experimental :-f;
data with up to—10 dB of Gaussian random noige=lative g x0® (30,7 )= 5 (% 1, X,
o . E P
to the average powgrthe modified Ritz method keeps the

0 : 4 L :
0.0 0.2 04 0.6 08 1.0

1 ithi 0, i ith-
linear growth rate within 10% of the value determined with mode number ky/Kymax

out the added noise, indicating that the off-diagonal fourth-
order terms are negligible in the experimental turbulence
data.

Based on this and other 2-D simulation experiments, the
2-D algorithm of the modified Ritz method is found to pro-
duce reliable estimates of the 2-D linear growth rate and the (b)
resulting rate of nonlinear energy transfer with acceptable
noise rejection.

M ka/

10

V. APPLICATION TO EXPERIMENTAL TURBULENCE
DATA

s F linearly linearly
damping growing

weighted input
linear growth rate

PN TN .5 S S S S
0.0 0.2 0.4 0.6 0.8 1.0

In practical cases dealing with experimental density fluc- mode number Ky/kymax

tuation measured via BES or other spatial sampling fluctua-
tion measurements, only 1-D, radially averaged turbulence|G. 9. (a) The averaged 2-D autopower spectrum over the radial wave
data rather than a complete 2-D turbulence dataset is typirumber.(b) The weighted true input linear growth rate when the 2-D simu-
cally available. To develop an appropriate form of a 1-p lated turbulence data is reduced to averaged 1-D data.
algorithm to apply to the experimental 1-D radially averaged
data, we test the 1-D algorithm of the modified Ritz method
with 1-D fluctuation data derived from the full 2-D simulated
dataset.

The experimental density fluctuations are measured vié. Test of the modified Ritz method with averaged
BES in the core plasma region of the Tokamak Fusion Tes¢-D data

in order to characterize the weight€dD) linear growth rate
of input variables of the 2-D simulated turbulence data.

Reactor(TFTR).** This density fluctuation is given by To examine how well the 1-D algorithm of the modified
_ kn (kn Ritz method interprets the nonlinear characteristics of the
N(wiag . X,Y)= f f N(wLas Ky, Ky) 1-D experimental fluctuation data measured via BES, we ap-

ke ply the 1-D algorithm to the 2-D simulated turbulence data,
X T(k, ,ky)eiﬁr*d ky dk, , which is averaged over radial wave number to simulate 1-D
experimental turbulence data.

whereky is the Nyquist wave numbex, andy represent the The test of the modified Ritz method is performed with

radial and poloidal direction, ant(k, ,k,) is a transfer func-  the averaged 2-D simulation data, which is the same data
tion that is determined by the finite sample volume. Theysed for the 2-D algorithm in Sec. IV B. In this averaging
frequency spectra observed in the laboratory frame in TFTRrocess, we assume a unity radial transfer funcfigi,) =1

are found to be completely dominated by rotation-inducednote that the influence of the radial transfer function is dis-
Doppler shifts of the locaB(k) spectrun?® This dominance cussed in Ref. 26 Figure 9 shows the weighted autopower
of the Doppler shift in the measured spectra allows a study o§pectrum and input linear growth rate for the averaged data,
the nonlinear coupling between unstable modes at vakous yhere again the resulting peak fluctuation power is shifted
through a bispectral analysis of the frequency spectra. Givepy the nonlinear interactions to regions away from the most
this bulk plasma rotation, we can assign a poloidal wavejnearly unstable modes. In this test, we try to recover the

number value to the observed frequencies as a first approxjyeighted linear growth ratFig. 9(b)] of the 2-D simulation
mation, that is, given by

k . *
'ﬁ(x,ky):J' : ﬁ(kx,ky)T(kX,ky)e'kxx dk, . . ka?’kx,ky<XkX,kkaX,ky>
o Y (Xie X)) ’
y Py

To simulate this 1-D experimental density fluctuation data .

measured via BES, we avera@ieverse Fourier transform in Y Using the averaged 2-D daltf( = 2 Yi i AKd), Xk

the radial wave number space xt0) the 2-D simulated (= Zi X« Aky)]and the modified Ritz method.

turbulence data over radial wave numblg)( The result of this analysis is shown in Fig. 10, where the
Using this averaged 2-D simulated turbulent data, wesolid dotted line represents the estimated linear growth rate

can apply the procedure for one-dimensional turbulence datand the gray line represents the rate of nonlinear energy

4006 Phys. Plasmas, Vol. 3, No. 11, November 1996 Kim et al.

Downloaded-07-Mar-2007-t0-128.104.198.190.-Redistribution-subject-to~AlP-license-or-copyright,~see-http://pop.aip.org/pop/copyright.jsp



induced by the radial averaging process and include all pos-
sible three-wave coupling information at wave numkey
we consider a modified 1-D governing equation that includes

0.06

0.04

8L g0 ; . . .
o all nonresonant nonlinearities to be applied to the radially
= g 0 averaged data. The modified governing equation for this non-
g8 o0 resonant 1-D algorithm is taken to be

[«

-0.04

-0.06 L L . . d
00 02 04 06 08 10 Pr

—T=AL o + AQ ) 21
mode number ky/Kymax at k, Pky y%yz k, Pky, Pky, (21)

FIG. 10. The derived linear growth rate computed with the 1-D algorithm of . | . h d h dified Ri
the modified Ritz method from the averaged 2-D simulated turbulence data?’y implementing the same procedure as the modified Ritz

method without the off-diagonal terms of the fourth-order
moments on this new governing equation, we can evaluate
transfer as given by the power flow, E@). As shown in  the weighted linear growth rate for the averaged 2-D simu-
Fig. 10, the modified Ritz method does not recover theated turbulence data.
weighted input characteristics of the 2-D simulation data  The main advantage of this approach is that the values of
[i.e., they, in Fig. 10 does not reproduce the inpyt in  the third-order cumulants are zero if there is no phase rela-
Fig. 9b)]. This suggests that the bispectrum calculation intion in the three-wave coupling. This, in turn, gives better
the modified Ritz method does not recover the three-wavestimates of the bispectra and correspondingly better esti-
coupling information from the averaged 2-D simulation data.mates of they, .
In identifying the cause of this failure, it should be noted that  \ith the pryevious 1-D simulation obtained by reduction
the fourth-order moment can be replaced with the square aff the 2-D simulated data of Sec. V @&hose weighted lin-
the second-order moment in the averaged 2-D simulatiogar growth rate was not recovered by the original 1-D algo-
data with no significant change in the resultipg, output.  rithm), the new nonresonant 1-D algorithm reconstructs the
This contrasts with the finding that the deducggvky was input linear growth rate and nonlinear coupling coefficients
very sensitive to the use of the 2-D complete fourth-ordefor the simulated data within the same order of magnitude
moments, and thus suggests that the averaging process vaiad with growth and damping occurring at the proper wave
dates the random phase assumption by suppressing thémbers, as indicated in Fig. (). In Figs. 11b) and 12b),
higher-order phase relationships. This statement is also ape thick gray lines are smoothed versions of the thin lines
plicable to the 1-D experimental data. (which are the actual output valyeFhe radial wave number
From this, it is found that the phase of the averagedspectrunishown in Fig. 12a)] and the amplitude of net flow
wave number spectra is less coherent and loses informatid¥ the nonlinear energhfFig. 12b)], given by
on the three-wave couplin@pispectrum through the averag-
ing process. This lack of information of three-wave coupling [(Xie Xie XEM2= (X Xi Y|
results in linear growth rates that are two orders of magni- B Ve ¥ zyl 2 Y
tude smaller than the weighted input linear growth rate. Ky, ky, <|Xkylxky2| )

B. Nonresonant 1-D algorithm for 1-D experimental indicate that there is significant power at all radial wave
turbulence data numbers and they are all strongly coupled. Because there is

From Eq.(18), we may approximate the fourth-order Strong three-wave coupling at all spatial scalel k), the
moment with the square of the second-order moment begiadial averaging of the spectrum causes a more extensive,
cause of the lower coherence of the phase of the averagéu)nreversible loss of phase information. ThiS, in turn, limits
2-D turbulence datdas discussed in Sec. V)AThe linear the accuracy of the reconstruction. Observations from many
growth rate is then estimated to be simulation experiments indicate that better results are ob-

.12 12 tained for spectra that are highly localizéck., all the fluc-
|<Xkylxky2 ky>| - |<xky1xky2 ky>| tuation power is concentrated in a narrow range of the radial
S X X 1P wave r!umbe'r spacé,). In this case, t'he spectra are ngarly
Y1 Y2 “one-dimensional” and radial averaging destroys relatively

) little phase information. However, for the very broad spectra
vor |<Xkylxky2 §y>|2 (larger range ink,) shown in this simulatioriFig. 12a)],

(BB ) — T % 12 more phase information is progressively destroyed by radial

=k <|Xky Xky| ) ) - N
12 averaging. Similarly, in simulated data generated solely by

the EX B nonlinearity, with its anisotropic transfer, more
From this equation, it is seen that the linear growth or dampphase information is lost in radial averaging than it is in
ing is entirely determined by the auto- and cross-bispectrasimulations generated solely by the isotropic polarization
Hence, the exact evaluation of these bispectra is important idrift nonlinearity.
obtaining optimal reconstructions of input variables from the  In general, the nonresonant 1-D algorithm reconstructs
averaged phase. To account for broadening of the bispecttae linear growth rates and nonlinear coupling coefficients of
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FIG. 11. (8) The weighted input linear growth rate of the averaged 2-D FIG. 12. (a) The averaged 2-D autopower spectrum over the poloidal wave
simulation. (b) The derived linear growth rate with the nonresonant 1-D number.(b) The net flow of nonlinear energf,,— T, -
algorithm from the averaged 2-D simulation data.

the averaged 2-D simulation data in an approximate bueraged(inverse Fourier transformg¢@-D simulation data to
much more satisfactory manner when the width of the radiagstimate how well a standard 1-D algorithm can extract rea-
wave number spectrum is comparable to or less than that gonable physical results from 1-D experimental data. The
the poloidal spectrum. How well it quantitatively reproducesresults show that the 2-D algorithm can fully and accurately
the input linear growth rates will depend on the details of the'éproduce the input characteristics of the 2-D simulation data
spectra and the underlying turbulence. with good noise rejection, but the standard 1-D algorithm
Since only the nonresonant 1-D algorithm reproduces, afoes not, in general, reproduce the input variables, especially
least qualitatively, the radially averaged characteristics offom the averaged 2-D simulation data that has significant
turbulence described by the original 2-D governing equationfluctuation power above half the Nyquist wave number for
it is the algorithm that should be applied to analysis of thethe averaged axi§.e., Ak,>Kky/2).
1-D tokamak plasma turbulence data. While quantitative re- We have developed a nonresonant 1-D algorithm that
sults from this analysis will only be relevant when used inincludes nonresonant wave numbers in the 1-D governing
comparison to full 2-D theoretical models of the turbulenceequation to include three-wave coupling information from
in machines such as TFTR, the qualitative trends in the dethe averaged phase. This nonresonant 1-D algorithm is able

duced s should accurately reproduce regions of relativeto qualitatively reproduce the input growth rate spectrum
growth and stability. from the simulated, 1-D experimental fluctuation data when

the width of the radial wave number spectrum is comparable
to or less than that of the poloidal spectrum. This criterion is
usually satisfied with density fluctuation data measured via
A new procedure for experimentally estimating the en-BES.
ergy cascade and linear growth/damping rate of fully devel-  The work in this paper assumes that the saturated turbu-
oped turbulence has been developed to study the physics tefhce may be described adequately by a one-field model. In
plasma turbulence. Application of this new procedure to theeality, tokamak turbulence is characterized by multifield
reconstruction of turbulent spectra eliminates the unphysifluctuations (density, temperature, electric potential, gtc.
cally large damping rates observed using the original methotlve have made the assumption that the observation of one of
of Ritz et al. It employs stationarity or statistical ergodicity these fieldddensity is sufficient to characterize the nonlin-
of the turbulence to eliminate the effects of noise and fluc-ear behavior of the system. This assumption is reasonable for
tuations not described by the governing equation, and casaturated turbulence. However, it has not been rigorously
include the fourth-order moment to avoid closure approximatested to date. In the future, further simulation tests will be
tions as needed. performed using more sophisticated, multifield models that
To examine the validity of the procedure, a 2-D algo-should allow the role of multiple fields to be evaluated.
rithm has been implemented and tested on simulated, fully Finally, the nonresonant 1-D algorithm described here
developed 2-D turbulent data from a 2-D trapped-particlewill be applied to density fluctuation data measured via beam
fluid model code, which has polarization drift aBk B non-  emission spectroscopyBES) for quantifying the linear
linearities. Also, a 1-D algorithm has been tested on the avgrowth/damping rate and the resulting amount of nonlinear

VI. SUMMARY AND CONCLUSION
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