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Abstract Electron Backscatter Diffraction (EBSD) based

Orientation Imaging Microscopy (OIM) is used routinely

at ~500 materials laboratories worldwide for the character-

ization and development of diverse crystalline materials.

Statistically significant data sets (~107 individual EBSD

measurements) can be collected and analyzed within time

periods of acceptable beam stability (~105s). However,

limitations in angular and spatial resolution have motivated

a continued search for more robust EBSD-based methods.

Herein is a gathered presentation of advanced techniques in

use, intended as a guide to researchers in selecting the most

appropriate method for their work. Wilkinson’s method has

been shown to increase angular resolution nearly two orders

of magnitude to ±0.006°, facilitating measurement of elastic

strain, lattice curvature, and dislocation density. A simulated

pattern adaptation of Wilkinson’s method extends these

measurement capabilities to polycrystalline materials, by

avoiding the need for an experimental strain free reference

pattern. The angular resolution limit obtained is ~0.04°.

Accurate pattern center calibration, essential to the high

resolution methods, is accomplished by parallelization of

band edges projected onto a sphere centered at the interaction

volume. FFT powered cross-correlation functions improve the

spatial resolution near grain boundaries and correct for

measurement inaccuracies induced by overlapping patterns.

To corroborate these claims, exemplary results taken from a

wedge-indented nickel single crystal, cold-worked copper

polycrystal, and rolled nickel polycrystal are shown.

Keywords Cross-correlation . EBSD . OIM . Pattern

center . Simulated pattern method .Wilkinson’s method

Introduction

Significant progress in materials development strongly

correlates with advances in observational capabilities. One

example among many that could be cited is the recent trend

to examine the microstructure characteristics of fatigue

crack initiation sites. The ability to characterize the local

crystal phase and orientation field, occurring at an observed

site of fatigue crack nucleation, opens the door to studies of

the local response fields (stress and strain), and their co-

location with dislocation slip activity, weak interfaces and

other characteristics [1, 2]. These correlations, which are

currently proving to be fruitful in the study of damage

physics, would not be possible without the advances in

microscopy capable of resolving lattice phase and orienta-

tion at the micron scale.

Crystallographic information is swiftly obtained by

directing a stationary electron beam at a tilted sample and

analyzing the resulting pattern of diffracted electrons. The

diffraction pattern is characteristic of the area from which it

originated; and with the advanced capabilities described in

this paper, can be used to measure crystal orientation,

differentiate material phase, locate grain boundaries, mea-

sure interface misorientation, map elastic strain, determine
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lattice curvature, recover the geometrically necessary

dislocation density, and locate minuscule cracks and

imperfections in the material. If measurements of these

properties are of sufficient accuracy and precision, a new

world of application specific material design is open to

engineers. At present, commercially available Orientation

Imaging Microscopy (OIM) systems are commonly used to

quickly determine crystal orientation and map grain

structure. However, the angular resolution in lattice orien-

tation of standard OIM is limited to ~0.5° and the spatial

resolution to approximately 100 nm [3, 4]. While standard

OIM is satisfactory for many applications, in order to

obtain more complete information about material micro-

structure, advanced techniques must be employed.

Each grouping of diffraction patterns has associated with

it an information set containing much of the potential

knowledge that may be garnered from the patterns. This

information is contained in the angles, widths, clarity, and

intensities of the Kikuchi bands, in addition to their relative

shifts and imperfections. The purpose of this paper is to

outline, discuss, and provide examples of various advanced

techniques used to improve angular, spatial, and strain

resolution for the measurement of geometrically necessary

dislocation, grain boundary location, lattice curvature,

orientation, and elastic strain. Wilkinson’s method, and its

simulated pattern adaption in particular, will be discussed in

detail.

Materials and Methods

EBSD Overview

Before delving into the particulars of diffraction pattern

analysis, a basic overview of EBSD is provided. An EBSD

system consists of a Scanning Electron Microscope (SEM),

a sample tilted at 70° from the horizontal, and a phosphor

screen with a CCD (Charge Coupled Device) camera to

view the diffraction patterns. For EBSD, a beam of electrons

is directed to a point of interest on a tilted crystalline sample

as shown in Fig. 1. The incident electrons are diffracted from

planes within the crystalline sample according to Bragg’s

Law. Diffracted electrons from a particular plane form a

pair of wide angle cones. When these cones intersect the

fluorescent phosphor screen the intense area between them is

known as a Kikuchi band. The center-line of a Kikuchi band

nominally corresponds to the intersection of the diffracting

plane with the phosphor screen. Therefore, each band may

be indexed by its Miller indices with each intersection of

band-pairs labelled by the common zone axis.

Patterns are commonly indexed automatically utilizing a

Hough/Radon transform to represent Kikuchi band posi-

tions. A line co-linear with the Kikuchi band becomes a

point of intensity in Hough space as given by the following

equation:

r qð Þ ¼ x cos q þ y sin q ð1Þ

where x and y correspond to a point on the line. Each point

along the line produces a trigonometric function and all the

functions from a particular line will intersect to form a

distinct point; when multiple lines are considered an

intensity spot of finite size occurs, having the characteristic

butterfly shape of the trigonometric functions demonstrated

in Fig. 2. The peak is located at the angle θ0, that forms a

perpendicular intersection to the Kikuchi band, and the

radial distance r0 at that angle. Therefore, the Hough

transform of a measured pattern consists of numerous

intensity peaks spread across Hough space with each

peak corresponding to one Kikuchi band in the pattern.

Knowledge of the diffraction planes in the crystal lattice is

then used to index the pattern and obtain the associated

crystal orientation.

The limiting factor of traditional OIM’s spatial resolution

is the size of the interaction volume (the sample volume

that diffracts electrons to the phosphor screen), which is

primarily dependent upon the electron beam accelerating

voltage, material atomic number (typically, larger Z-

numbers result in smaller interaction volumes), sample tilt,

and probe current [5, 6]. The EBSD pattern recorded and

indexed by traditional OIM is actually an average of the

information contained within the interaction volume. Using

known parameters the approximate interaction volume

diameter can be simulated, and has been found by various

authors to be in the range of 50–100 nm for heavier metals

(Fe, Ni, Cu) and 100–200 nm for lighter metals (Al, Mg)

[7, 8]. The concomitant spatial resolution is dependent on

how precisely mixed patterns near grain boundaries can be

distinguished, and is often approximated as half the

interaction volume diameter [9]. Further, the angular

resolution of OIM depends upon the measurement of the

Kikuchi band position, and is in the range of±0.5° [3, 4].

Unfortunately, for small misorientations the angular uncer-

Fig. 1 Schematic of SEM. The

electron beam from the pole

piece diffracts off the sample

and forms a pattern on the

screen of the EBSD detector.

Figure courtesy of TSL
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tainty in individual measurements propagates into large

errors in determining the misorientation axis. Bate et al.

have developed an analytical relationship for the expected

error [8]:

f ¼ arctan
d

φ

� �
ð2Þ

where f is the error in the misorientation axis, δ is the

orientation measurement error, and φ is the angle of the

misorientation being measured. Obviously, for small angles of

misorientation even small errors in orientation measurement

propagate into large errors in the misorientation axis. These

errors are reduced significantly by Wilkinson’s method.

Wilkinson’s Method Overview

The work of Troost et al. and Wilkinson et al. has greatly

improved the angular resolution of EBSD analysis [10, 11].

Their cross-correlation based method increases angular

sensitivity by two orders of magnitude beyond the Hough/

Radon transform. This enhanced resolution is an extremely

important advance. For example, the improved resolution

can separate some of the cubic coincidence site lattice (CSL)

boundaries, such as ∑13b and ∑17a which differ by only

0.3°, and ∑7 and ∑9 which differ by 0.7°. Proper distinction

of the minimum axis of rotation also augments the reliability

of CSL determination. And the reduced error in misorienta-

tion axis determination is sufficient to enable an estimation

of lattice curvature, to recover some components of Nye’s

dislocation tensor [12]. Moreover, increased accuracy facil-

itates the partial recovery of the elastic displacement gradient

tensor (the entire tensor is recovered if appropriate traction-

free boundary conditions are imposed).

Wilkinson’s method compares two measured EBSD

patterns utilizing the small shifts in position of pattern

features to determine the difference in strain and orientation

between the patterns. Therefore, in order to obtain absolute

measurements, one of the two compared patterns must be a

strain free reference pattern at (or near) the correct

orientation. The patterns are compared by selecting a

number of regions of interest (ROIs) distributed over each

pattern. The cross-correlation between ROIs in the refer-

ence and experimental patterns are then calculated using

Fourier Transforms as follows:

C ¼ =�1 = ff g»conj = gf gð Þf g ð3Þ

where =f g is the Fourier transform, conj( ) is the complex f

conjugate, and g are corresponding ROIs from the two

patterns, * indicates the element wise multiplication of

matrices, and C is the resulting image. The line emanating

from the pattern center to the peak in each of the ROI cross-

correlations gives the shift vector q (measured on the

phosphor) for that ROI. Interpolation methods are used to

obtain sub-pixel resolution. It should be noted that proper

filtering of the measured EBSD pattern, to remove dark

spot defects and non-uniform intensity, is required to obtain

accurate shift vectors [13–15]. After filtering, the shift is

assumed to be equal to the average shift in the center of the

ROI and is measured perpendicular to br (the unit vector

pointing from the specimen origin to the ROI center on the

phosphor screen). The components of the shift at the center

of each ROI are related to the components of the

displacement gradient tensor D by the expression:

q ¼ Dbr � Dbr �brð Þbr ð4Þ

Fig. 2 The Hough Transform: A line from the EBSD pattern is converted to an intensity peak in Hough space. Points A-E on the left correspond

to functions A-E on the right
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with
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0
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CA ð5Þ

where u=(u1, u2, u3) is the displacement at the position x=

(x1, x2, x3). Combining equations for components of q

results in two simultaneous equations [16]:

r3q1 � r1q3 ¼ r1r3
@u1
@x1

�
@u3
@x3

� �
� r1r2

@u3
@x2

þ r2r3
@u1
@x2

� r21
@u3
@x1

þ r23
@u1
@x3

ð6aÞ

r3q2 � r2q3 ¼ r2r3
@u2
@x2

�
@u3
@x3

� �
� r1r2

@u3
@x1

þ r1r3
@u2
@x1

� r22
@u3
@x2

þ r23
@u2
@x3

ð6bÞ

The terms @u1
@x1

� @u3
@x3

� �
and @u2

@x2
� @u3

@x3

� �
each represent a

single unknown for a total of eight unknowns in the two

equations. Therefore, shift measurements must be made for

at least 4 ROIs to obtain a solution to the simultaneous

equations. Any additional ROI measurements are used in a

standard matrix least squares method to determine the best-

fit solution. It should be noted that experimental recovery

of the full displacement gradient tensor necessarily assumes

only elastic deformation to have occurred.

Unfortunately, Wilkinson’s method cannot fully resolve

the terms on the diagonal of D. Since a spherical dilation of

the crystal lattice generates no shift in the EBSD patterns,

only the differences between the diagonal terms can be

determined. Though, with knowledge of the crystal elastic

constants, traction-free boundary conditions may be ap-

plied, consistent with the presence of the free surface of the

sample, and the final of the 9° of freedom can be resolved.

Once the displacement gradient tensor is determined it is

a simple step to find the strain tensor and the rotation tensor

as follows:

"ij ¼
1

2

@ui
@xj

þ
@uj
@xi

� �
ð7aÞ

and

wij ¼
1

2

@ui
@xj

�
@uj
@xi

� �
ð7bÞ

where ε, the infinitesimal strain tensor, is the symmetric part

of D, and ω, the infinitesimal rotation tensor, is the anti-

symmetric part. Wilkinson concluded (and the authors have

confirmed) that by using the cross-correlation method to

compare patterns directly the components of the strain and

rotation tensors can be determined to a resolution of ±10−4

consistent with a misorientation resolution of ±0.006°. This

is an improvement of nearly two orders of magnitude over

the standard Hough/Radon transform method.

Wilkinson’s method represents a substantial advance in

the angular and strain resolution of EBSD analysis and

opens the door for accurate analysis of lattice curvature,

elastic strain, and geometrically necessary dislocation

(GND) densities. However, without a strain free pattern

the Wilkinson method is limited to measuring gradients of

elastic strain and lattice orientation rather than absolute

values. This makes comprehensive application of Wilkin-

son’s method to a polycrystalline sample difficult, particu-

larly for small grain sizes and plastically deformed samples.

The simulated pattern method presented in the recent work

of Kacher et al. offers a solution to these difficulties [17].

Simulated Pattern Method Overview

In order to avoid the difficulty of obtaining a strain free pattern,

it is possible to use a simulated reference pattern. Because high

fidelity simulations are computationally expensive [18], the

simulated pattern method uses a simple kinematical model

(Bragg’s Law based) to generate a strain-free reference

pattern. By iteratively generating these simple patterns at

each calculated deformation state of a measured pattern, and

then repeating the calculation with the new simulation, a high

resolution result is rapidly found by convergence.

The deformation tensor F, which is related to D by the

expression F=D+I, determines how diffraction cones are

oriented with respect to the phosphor frame and may also

alter the inter-planar spacing dhkl. Combining the equation

for a cone with the various parameters determining

orientation and intensity results in the following equation

for a simulated Kikuchi Band [17]:

B ~p;F;Rv!c;Rc!co; hklð Þð Þ ¼ S2hkl f Rc!coFRv!c~p½ �1
� 	2

þ Rc!coFRv!c~p½ �2
� 	2

�
Rc!coFRv!c~p½ �3ð Þ

tan q

� �2

0 otherwise

8
<

:

9
=

; ð8Þ
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where B is the simulated band, ~p represents a point in the

phosphor screen reference frame v, Rv→c is the rotation

tensor from the phosphor screen frame to the crystal frame

c, Rc→co is the rotation tensor from the crystal frame to the

cone reference frame co, (hkl) is the chosen diffraction

plane, θ is the cone angle, and Shkl is the structure intensity

factor. Summing the contributions of each band and its

symmetry variants generates the complete approximation of

the EBSD image, thus:

I ~p; fð Þ ¼
X

i

X
j
B ~p;F; SðiÞ; hklð ÞðjÞ
� �

ð9Þ

where I is the composite image, S(i) are the elements of the

symmetry subgroup, and (hkl)(j) are the elements of the set

that includes all of the considered diffracting planes. The

final composite pattern is then filtered using high and low

pass filters to more accurately reflect variation in the

measured EBSD pattern background.

The simulated pattern analysis algorithm begins by

measuring a local lattice orientation to within 0.5° using

the Hough transform method of standard OIM. A simulated

pattern is then generated from the known crystal structure

and the Hough transform estimate of the orientation. Cross-

correlation analysis as described above is used to compare

the ROI shifts from the simulated pattern and the measured

EBSD image as illustrated in Fig. 3. The deformation tensor

is calculated using geometric relationships and the traction

free boundary condition. The fit of the deformation tensor

is evaluated by calculating the average error or difference

between measured and calculated shifts. Finally, a new

pattern is simulated at a deformation state closer to the

actual state of the material. This process is repeated

iteratively until the deformation converges as close as

possible to that of the actual lattice structure.

At present, the resolution of the simulated pattern

method does not reach the level of Wilkinson’s method.

The simulated pattern method can determine the strain and

rotation tensors to a resolution of ±7∗10−4 indicating a

misorientation resolution of ±0.04° [17]. However, though

the Wilkinson’s method is more accurate, the simulated

pattern method readily extends the high resolution advan-

tages to polycrystalline and deformed samples where

Wilkinson’s method becomes difficult.

Pattern Center Calibration

The pattern center is defined as the intersection of a vector

originating from the electron beam/sample interaction point

and normal to the plane of the phosphor screen. In order to

accurately simulate EBSD patterns for the simulated pattern

method, the pattern center must be accurately known to

within 1/10th of a pixel [19]. Any error in pattern center

calibration propagates into error in the shifts measured by

the cross-correlations and results in erroneous measure-

ments of elastic strain and orientation. Indeed, Villert et al.

have demonstrated that variation in pattern center parame-

ters leads to artificial measurements and increased error

[20]. The cross-correlation function is sensitive to sub pixel

shifts in the ROIs. In order to maintain the resolution

capabilities of the simulated pattern method, the pattern

center must also be calibrated to sub pixel resolution. While

standard EBSD analysis software typically calibrates the

pattern center with a least squares best fit approach, high

resolution cross-correlation methods require higher accura-

cy calibration.

The necessary accuracy may be obtained by realizing

that diffracted electrons create a pattern of bands with

parallel edges centered upon great circles of any sphere

emanating from the interaction volume (see [21] for an

overview of spherical EBSD). The flat phosphor screen

distorts these bands such that the band edges no longer

appear parallel. But, if the correct pattern center is known,

then mapping a collected pattern onto a sphere centered at

the interaction volume (as given by the pattern center) must

result in a pattern with parallel band edges centered on a

great circle. Conversely, if the assumed pattern center is

Fig. 3 Measured pattern and a

simulated pattern with 20 ROIs

outlined for comparison

Exp Mech (2011) 51:1379–1393 1383



incorrect, then mapping onto a sphere will not result in

parallel band edges centered on great circles.

Several methods for automated pattern center determi-

nation are currently in progress and will be described with

greater detail in an upcoming specifically dedicated paper.

Only a basic overview of one method is included here.

Figure 4 shows a collected EBSD pattern which has been

mapped onto a sphere using an assumed pattern center

location. Simple Bragg’s law simulated band edges are

overlain on the sphere and artificially widened to ensure

capture of the collected bands. For each simulated band that

intersects the actual EBSD pattern, the intensity profile is

calculated within the simulated band edges by averaging

the intensities down the length of the band in small steps

moving from one edge to the other. The typical/desired

band intensity profile has a central peak with a maximum

near the great circle and two troughs equidistant from the

center. Various indirect measures of parallelism may be

applied to the calculated intensity profiles including: peak

intensity maximization, trough intensity minimization, peak

to trough difference maximization, trough separation

minimization. Such measures have been applied success-

fully to strain-free single crystal germanium [22, 23].

The right half of Fig. 4 portrays an element of the search

space generated by the parallelism approach to pattern

center calibration. Optimization may generally be per-

formed discretely through a genetic algorithm, simulated

annealing, etc.... It should be noted that only two of the six

relevant search space parameters (x*, y*, z*, ’1, Φ, ’2) are

presented in Fig. 4 and, although the search space appears

decidedly smooth at the presented scale, a finer scale

reveals a rougher surface. However, at least in the case of

single crystal germanium, the noise level of the search

space does not prevent a sufficiently accurate pattern center

determination.

Measurements: Elastic Strain, Lattice Curvature,

and Dislocation Density

At this point a discussion on the relevance and calculation

of elastic strain, lattice curvature, and dislocation density is

requisite.

For small strains, the elastic strain tensor is simply the

symmetric part of the displacement gradient tensor, as given

in equation (7a). Knowledge of the elastic strain present in

a material is important to possibly resolve the probable

failure modes and strain concentration points. The remain-

ing anti-symmetrical portion of the displacement gradient

tensor is the material rotation tensor. As discussed by El-

Dasher et al., the crystal lattice rotation accounts for a

portion of the material rotation [24]. The crystal lattice

curvature tensor follows directly from the lattice rotation

and as defined by Nye [12] is:

k ¼
k11 k12 k13
k21 k22 k23
k31 k32 k33

2

4

3

5 ð10Þ

where kij ¼ @qi=@xj and the terms θ1, θ2, and θ3 are the

lattice rotation about the x1, x2, and x3 coordinates. Clearly,

only the first two columns of the curvature tensor can be

Fig. 4 Parallelism method for pattern center calibration with part of the search space shown on the right. The true pattern center is located at the

minimum of the space
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obtained from a two-dimensional scan. Access to the third

column requires knowledge of local lattice orientation

variations perpendicular to the plane of investigation. In

the reference state, the lattice curvature is assumed to be

zero everywhere, thus the measured curvature is the same

as the gradient of lattice rotation.

Nye’s dislocation density tensor αij is related to the

lattice curvature tensor as follows (note that the Einstein

summation convention is used here and throughout all

following discussions):

kij ¼ �aij þ
1

2
dijakk � 2ijk "

e
jk;l ð11Þ

where δij is the Kronecker delta, and "ejk;l is the lth

derivative of the elastic strain tensor [25]. Therefore, lattice

curvature results from the presence of dislocation networks

possessing a net Burger’s vector, and also from gradients in

the elastic strain tensor. Equation (11) implies that the

values of three components (αi3) of the dislocation density

tensor can be determined with certainty from the 6

accessible curvature components. The other 6 components

are obscured by material opacity. If it is determined that the

elastic strain gradient terms are negligible, in comparison to

the lattice curvatures, than, as Pantleon pointed out, for

small misorientations the α12, α21, and the difference

between the α11 and α22 components are also available

[26]. It has been the experience of the authors that the

elastic strain gradient terms are a factor of ~6 times smaller

than the lattice curvature terms [27].

The dislocation density tensor consists of the dislocation

densities multiplied by the Burger’s vector and associated

unit line direction, summed over all dislocation types

present [24, 25]. Presented formally:

aij ¼
XK

k¼1
rkbki

bzj
k

ð12Þ

where ρk is the density of dislocations of type k, bk is its

Burger’s vector, bz k is its unit tangent line direction, and

there are K types of dislocations present. Generally the

recovery of the full set of ρk cannot be completed without

ambiguity. The number K of possible dislocation types

depends on the geometry of the crystal lattice and the

particular dislocation types considered (screw, edge, etc.).

Consequently, the number of dislocation types that should

be considered usually exceeds the number of components

of the dislocation density tensor that are available; and the

independent dislocation densities cannot all be determined

by inversion of equation (12) [25, 27]. Since at most 5

components of αij are accessible from two-dimensional

scans, the equation is underdetermined and a surfeit of

potential solutions exists. Further, there generally are many

combinations of Burger’s vectors and line directions that

support an arbitrary dislocation tensor; therefore, an infinite

variety of network types can be envisaged to support the

same lattice curvature.

Still, while the exact solutions for dislocation densities

are inaccessible, it is possible to solve for a set of densities

that satisfies the lattice curvature and minimizes the total

required dislocation density. The solution is defined as the

geometrically necessary dislocation density and is a lower

bound to the solutions of equation (12) (note that the upper

bound is infinite) [25, 28]. Knowledge of the lattice

curvature and the local geometrically necessary dislocation

densities within a material offers information on the stress

distribution, provides insight into the deformation mechan-

ics, and indicates likely failure points.

Combining Methods

Wilkinson’s method is more accurate than the simulated

pattern method and is well suited to measuring gradients.

The simulated pattern method is more versatile for

polycrystalline scans and measures absolute orientation

and strain. Combining the two methods using a custom

scan pattern takes advantage of the strengths of each

method, providing for accurate measurements of curvature

gradients within grains and absolute measurements of

elastic strain from grain to grain without requiring multiple

strain free reference patterns.

A custom scan pattern like the one in Fig. 5 consisting of

closely spaced five-point cross-grids in an evenly spaced

hexagonal or square distribution takes full advantage of the

two methods. The center points (or other corresponding

points) of each cross-grid can be treated separately as a

normal scan, and the simulated pattern method can be

applied to measure absolute values of elastic strain and

rotation. Wilkinson’s method is then used to make local

estimates of lattice curvature utilizing the five point cross-

Fig. 5 Schematic of the Cross-Grid method for utilizing both the

Simulated Pattern method and Wilkinson’s method

Exp Mech (2011) 51:1379–1393 1385



grid. Since curvature is a gradient measure, a strain free

pattern is not required and the superior accuracy of

Wilkinson’s method is well applied in finding the curvature

and geometrically necessary dislocation density. Obviously,

if any two points in the cross are not in the same grain, the

calculation is compromised. If temporal limitations are a

factor, a five-point grid need not be used. A three-point L-

shape provides the same opportunity to use Wilkinson’s

method for gradient measurements within a grain. However,

the five-point grid allows for accuracy-increasing averaging if

desired.

Combining the simulated pattern method and Wilkinson’s

method takes maximum advantage of the available techniques

in EBSD analysis to achieve high angular resolution data.

Still, neither method increases the spatial resolution of scan

data. The following section deals with increasing spatial

resolution.

Grain Boundary Spatial Resolution

There exists a finite interaction volume associated with the

electron beam. The diameter of the interaction volume

depends primarily on the probe current, the sample

material, and the accelerating voltage, and is on the order

of 100 nm. When the beam scans across a grain boundary,

the interaction volume is composed of two or more grains.

The resulting EBSD pattern will be a mixture of the

patterns from each grain similar to the pattern in Fig. 6, and

an additional random noise component associated with the

disturbed atomic positions in the interface. Even without

any consideration of the random component, the over-

lapping patterns result in a pronounced decrease in image

quality. Additionally, any attempts to analyze an overlapped

pattern with either Wilkinson’s or the simulated pattern

method will likely result in incorrect measurements of

strain and rotation as the wrong pattern features are tracked.

Correctly separating one grain’s contribution to the over-

lapped EBSD pattern increases spatial resolution and allows

for improved accuracy in the study of regions near grain

boundaries and triple junctions.

Kacher et al. proposed the following method for

increasing spatial resolution near grain boundaries [29].

To separate a mixed pattern, pristine reference patterns from

each of the contributing grains are selected. Each of the

reference patterns are then cropped and filtered to secure

the highest quality section. A cross-correlation (equation

(3)) between the mixed EBSD and the pristine filtered

reference patterns shows the fraction of each reference

pattern present in the mixed pattern. The zero-shift value of

the cross-correlation represents how well the images

correspond. The non-dominant reference images are then

subtracted out of the mixed pattern leaving only the

dominant pattern behind. Finally, the intensity of the

remaining image is normalized to correspond with the

intensity range found in the unaltered measured patterns.

Subsequently, the pattern can be analyzed in the conven-

tional way.

While this method improves the spatial resolution of any

scan crossing a grain boundary, it does not necessarily

locate the grain boundary exactly at the surface if the

investigated boundary is heavily inclined. Because the

electron interaction volume extends 10–40 nm below the

surface, the point where the dominant pattern switches

occurs when equal amounts of electrons are returning from

each grain [30]. Depending upon the inclination of the

boundary, this point could be arbitrarily shifted. However,

regardless of the boundary inclination, the pattern separa-

tion method improves measurement accuracy with the

highest spatial resolution obtained being an average of half

the interaction volume at the grain boundary. Separating

patterns allows orientation measurements to be taken right

up to the very edge of the grain boundary. While other

phenomena, such as dislocation pileups at grain boundaries,

can cause a decrease in image quality and consequently

limit spatial resolution, if a discernable pattern is acquired

(mixed or not) accurate measurements can be taken.

Figure 7 shows the results of a simulation demonstrating

the accuracy attainable by pattern separation. The labelled

ESBD patterns 1–5 represent a series of artificially mixed

images with intensity filtering and image quality adjust-

ments to represent actual patterns near a grain boundary

(without a random component). Pattern 1 is unmixed (but

contains elastic strain), pattern 2 contains 75% of pattern 1

and 25% of pattern 5 (also containing elastic strain), pattern

Fig. 6 When the electron beam rasters across a grain boundary

portions of the interaction volume will be in separate grains resulting

in a mixed pattern that cannot be indexed without adjustment. Figure

courtesy of TSL
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3 is split evenly between 1 and 5, etc.... Each mixed

patterns was separated and measurements were made using

the simulated pattern method. Ideally, the elastic strains

represented in the figure would not vary across the patterns,

but as expected, the smaller the percentage of an unmixed

pattern contained in a mixed one, the greater the measure-

ment error. Still, at 25 and 50% mixing, a majority of the

separated measurements compare favourably with the

unmixed values.

Experiments

For this work, the above techniques were applied to three

samples, each of which will be presented here as

examples of the information obtained by advanced EBSD

analysis. The first example deals primarily with calcula-

tion of the elastic strain tensor, the rotation tensor, lattice

curvature, and geometrically necessary dislocation densi-

ty. The second example is more concerned with advan-

tages of the combined L-grid scanning method. And the

third scan deals specifically with pattern separation at

grain boundaries.

Single Crystal Nickel Indentation

The first experiment is a wedge indentation which is

subjected on a single crystal nickel sample. The geometry

of the problem is designed such that only three effective in-

plane slip systems exist. Rice showed that plane deforma-

tion conditions are satisfied when a face centered cubic

crystal is subjected to a line loading parallel to a [110]

direction. The experiments and sample preparation for

EBSD were done on a Nickel single crystal sample by J.

W. Kysar’s group at Columbia University. The EBSD scans

were done at BYU. Two scans of the indented sample were

examined: the first is a 100 μm square scan with a 500 nm

step size, and the second is a smaller 10 μm by 5 μm scan

with a 50 nm step size. Maps of the resultant elastic strain

tensor are given in Fig. 8. Note that the wedge penetrates

the sample from the bottom center position of these figures.

The first maps give the diagonal components of the strain

tensor and the second three the off diagonal. It can be seen

that the indentation and ensuing structural changes result in

regions of residual elastic compression and tension in a

wide ranging area extending beyond the borders of even the

larger scan. Additionally, the most strongly affected regions

appear to have a structure of contrasting elastic strain, from

left to right in each example. It is instructional to note the

regional interdependence of the various strain components.

In addition to the elastic strain tensor, the lattice rotation

was determined by comparing the as-deformed orientation

of the crystal lattice to its known orientation in the

undeformed reference state as discussed in [31]. Figure 9

shows the θz component of the rotation tensor in degrees.

The larger scan shows how the lattice tends to curve out

Fig. 7 Effect of pattern separation at various levels of pattern mixing on components of the elastic strain tensor
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away from the centrally affected region and how stark the

difference is on either side. This region of rapid change in

lattice rotation was identified in a previous study using a

spatial resolution of 3 microns [32]. The higher spatial

resolution analysis herein showed that the change in lattice

rotation is not discontinuous, but the lattice curvature is

very high. Knowledge of the rotation tensor, leads easily to

calculations of the lattice curvature as defined by equation

(10). While it is possible to display the components

individually, the sum of the magnitudes of the six available

curvature components is mapped in Fig. 10. The summed

curvature increases sharply near the highly deformed

central areas and could signal a probable propagation path

of material failure in components where similar features

might occur.

Finally, from knowledge of lattice curvature it is possible

to calculate a lower bound of geometrically necessary

dislocations. Kysar et al. derived the least L2-norm

Fig. 8 Mapped components

of the elastic strain tensor

ranging from −0.01 to 0.01

Fig. 9 θz component of the rotation tensor mapped across a 100 μm square area and a 5 μm by 10 μm area respectively
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solutions to the geometrically necessary dislocation densi-

ties for the special cases where there are three effective in-

plane slip systems [33]. Figure 11 shows that the density of

GND’s is much higher through the central area. The high

gradient in lattice rotations in this region results in

accumulation of dislocation densities. Further, there appears

to be a characteristic length scale to the concentrated region

of GND’s on the order of ~1 μm. In this particular sample,

the width of the densest regions is consistent, whether near

or far from the indentation point.

Cold-worked Polycrystalline Copper Sample

In addition to the single crystal indentation experiment, a

second experiment was performed on a polycrystalline 58

percent cold-worked copper sample. The sample was

polished and scanned utilizing an L-grid scanning pattern

to obtain increased measurement accuracy in a reasonable

scan time. The scan area is 100 μm square, with a 1 μm

step size between L-grid center points and 100 nm spacing

between points within each grid. Thus, identical measure-

ment resolution in a square scan of similar size would have

required one million individual scan points. However, using

the L-grid technique, only 30 thousand points were

required; a remarkable 97 percent increase in efficiency

with minimal loss of usable information. Wilkinson’s

method was used to determine the lattice orientation

gradient within grains and the simulated pattern adaptation

was used to obtain absolute measurements of strain and

rotation across the polycrystalline sample. The resultant

false color grain map is shown in Fig. 12.

The elastic strains over the entire sample were obtained

using the simulated pattern method. Some components are

presented in Fig. 13. It is interesting to note the rather

uniform strain distribution across each particular grain

interior while wide variations exist near boundaries.

Additionally, the lattice curvature was calculated using

Wilkinson’s method using the L-grid. Figure 14 shows the

mapped sum of the absolute magnitudes of the six

obtainable components of the curvature tensor. Wide

variations in the curvature occur near grain boundaries as

expected. Additionally, the interior concentrations of

curvature variation are likely due to a distributed pattern

of internal dislocation cell structures resulting from the

material rolling.

Rolled Polycrystaline Nickel Sample

Finally, the pattern separation method was employed on a

set of consecutive points (across a grain boundary) from a

polycrystalline nickel line scan to illustrate the increased

measurement accuracy available. As described in the final

portion of the Materials and Methods segment, the cross-

correlation of mixed patterns at the grain boundary with

ideal reference patterns from each respective grain was

performed. Upon comparison of the intensity peaks, a

decision was made and the secondary part of the mixed

pattern was subtracted out. One of the mixed patterns and

two reference patterns are shown in Fig. 15. In this

particular case, cross-correlation revealed that the grain on

the right was the main contributor to the mixed diffraction

pattern and therefore the left reference pattern was

subtracted.

Mixed patterns result in errors and inaccuracies for the

recovered strain and the rotation tensors, which increase as

the beam approaches the interface. Without pattern separa-

tion, the measured values of strain and rotation may be

artificially low or high. While it goes beyond the purposes

of this paper to delve into the changes upon each

component of the strain and rotation tensors at one

particular grain boundary, suffice it to say that pattern

separation has a significant effect on the measurements at

and near grain boundary interfaces. Figure 16 provides one

example: pattern separation reveals that the un-separated

measurement of ε22 is artificially low, particularly just

before and after crossing the grain boundary. Further, the

location of the grain boundary is ~1 μm further along the

progression. The change in grain boundary position is large

when compared to the estimated ~100 nm spatial resolu-

tion, however, the discrepancy disappears upon recollection

of the 1 μm step size used for this particular scan.

Essentially, the pattern separation method demonstrated

that a single mixed pattern very near the OIM grain

boundary produced a faulty result for the ε22 elastic strain

that subsequently misplaced the approximated grain bound-

ary by one micron (note that this particular boundary is

probably at a high angle of inclination from the surface,

accounting for the wide range of partially mixed patterns

and subsequent positional change). To obtain the upper

limits of spatial resolution, a sufficiently small step size

must be used in correlation with the pattern separationFig. 10 Summed available components of the curvature
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method. The increased spatial resolution available from

pattern separation could play a vital role in furthering the

study of grain boundary interactions with the deformation

field, by making near interface measurements possible.

Figure 16 is representative of the useful increases in

accuracy pattern separation affords.

Discussion

Increased informational content can be extracted from

EBSD analysis through the appropriate application of

various advanced methodologies. To summarize: Wilkin-

son’s method is ideal for measuring gradient terms and for

application in single crystal samples with readily available

strain-free reference patterns. The simulated pattern method

cannot yet equal Wilkinson’s method in terms of angular

resolution, but extends the measurement capabilities into

polycrystalline and highly deformed samples. Pattern center

calibration is vital to insure accuracy in measurements of

elastic strain, lattice curvature, and dislocation density.

Combining the two cross-correlation methods can take

advantage of the strengths of each. And finally, spatial

resolution can be improved by cross-correlations that are

used to separate out non-dominant patterns near interfaces.

It should be noted that the usefulness of each of these

techniques is restricted to materials which allow a fine

polish and produce an EBSD pattern. Materials which are

porous, amorphous, not polishable, etc., will require

different methods.

Each of the above techniques has been successfully

applied to an indented single crystal sample, a polycrystal-

line sample, or both. The advantages of increased resolu-

tion, both spatial and angular, are obvious in light of the

stunning images obtained, which contain a wealth of

information that can shed light on the pertinent micro-

mechanics. The potential for greater understanding of crack

initiation is particularly promising. Further study is neces-

sary to determine the potential resolution of crack detection,

but it seems reasonable to postulate that even micro cracks

within an order of magnitude of the interaction volume

diameter may be detectable. Still, limitations in instrument

capability and the lack of three-dimensional information

leaves ample room for future improvement and innovation.

At present, measurements of elastic strain, rotation, lattice

curvature, and dislocation density are limited to the material

surface and the effect of the traction free condition on eachFig. 12 False color grain map of cold-worked copper

Fig. 11 GND density for large and small scans demonstrating concentrations near failure points
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metric must be considered. In the study of crack initiation

(which typically occurs at the surface) this observational

restriction is probably not an issue, but sectioning a sample

to investigate the interior structure introduces a free surface

which may substantially alter any recovered measurements.

Regardless, the lattice configuration within ~100 nm of the

surface may be reliably investigated using the advanced

techniques herein presented.

Conclusions

To conclude, the current state of EBSD-based microstruc-

ture analysis has been outlined and examples of the various

methods provided. The current absolute resolution limits

are given by Wilkinson’s method at 0.006° for angular and

10−4 for strain components. The simulated pattern augmen-

tation offers resolutions of 0.04° and 7×10−4, respectively,

while allowing greater versatility in measurements forFig. 14 Summed lattice curvature of cold-worked copper

Fig. 13 Mapped components of the elastic strain tensor of cold-worked copper
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polycrystals. Pattern center calibration, accomplished by

parallelizing band edges in a spherical frame, can reduce

pattern center error to a negligible level (i.e. below the

noise level of Wilkinson’s method). Only 6 components of

the lattice curvature tensor are available from a two-

dimensional scan and at most 5 components of Nye’s

dislocation density tensor can be resolved. Individual

dislocation densities generally cannot be recovered, but a

lower bound density can be established. Finally, separating

mixed boundary patterns using cross-correlation facilitates

accurate measurements nearer to interfaces than otherwise

would be possible.
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