
Techniques and Directions for Building Very Large
Agent Teams
(Invited Paper Number 1049)

Paul Scerri, Joseph A. Giampapa, Katia P. Sycara
The Robotics Institute, Carnegie Mellon University

5000 Forbes Avenue, Pittsburgh, Pennsylvania
{pscerri,garof,katia}+@cs.cmu.edu
http://www.cs.cmu.edu/∼softagents

Abstract— We have developed probabilistic algorithms that
leverage the associates network for distributed plan instantiation,
role allocation, information sharing and adjustable autonomy
with a team. By developing such new algorithms, we have been
able to build teams of hundreds of cooperating agents, and test
specific behaviors among tens of thousands of agents. In this
paper, we describe the algorithms that we have developed, the
tests that we subjected them to, and sketch some of the key
challenges that remain to be addressed.

I. INTRODUCTION

Teamwork allows autonomous, heterogeneous agents to
cooperate to achieve complex goals in complex environments.
Very large teams are needed for domains such as the military,
space operations [1], disaster recovery and commerce, where
there are many interrelated, complex activities to be performed
by many agents. Typically, the problems for which such teams
are most applicable do not require optimal behavior, but
require reliably “good” behavior despite an uncertain, complex
and potentially hostile environment.

The key technical difference between teamwork and other
forms of coordinated behavior is the use of an explicit model
of teamwork and an explicit representation of the current team
status maintained by each team member. Each team member
uses their model of teamwork and the team status to reason
about the actions, both in the environment and communication
acts, that will lead to the best expected outcome for the
team. The reasoning an agent performs with its models is
derived from early work on the logic of teamwork [2], [3],
although practical implementations [4], [5], [6] relax some
of the requirements of the logical formulation. The key to
building large teams is to find ways for the maintenance of
agents’ models of team state, and reasoning with those models,
to be scalable.

The abstraction used in our teamwork models is a team
oriented plan (TOP). A TOP describes the individual activities,
roles, that must be performed to achieve team objectives and
any constraints between those individual activities. The team
starts with a library of multiple plan templates that are dynam-
ically selected and instantiated when preconditions on the plan
are matched by environmental conditions and/or individual
team member intentions. For example, a plan template for
rescuing an injured civilian in a disaster response domain may

have two roles: one for bringing the civilian to safety; and
another for administering first aid. A constraint would require
that the latter role be performed after the former. Typically,
a large team will be simultaneously executing many plans at
once. Using the TOP abstraction, the task of coordination via
teamwork is to determine what actions a team member should
take given the current plans, and what each team member
should communicate about the plans. In practice, scalable
teamwork requires that each team member does not need to
reason and communicate about each plan, but only some subset
of plans that concern them or are within their capabilities.

We achieve the scalability of team coordination among the
members of a large team (e.g. in the range from hundreds
to tens of thousands of members) by organizing all members
into an associates network [7]. An associates network is a
static, logical organization of an agent team that gives the
team the properties of a small-world network [8]. The orga-
nization of the team into an associates network is performed
once, at the initialization of the entire large-scale team, and
remains immutable for the duration of the team’s existence. In
imprecise intuitive terms, it is like organizing the individual
team members into a static hierarchy of departments and sub-
departments. Unlike a static hierarchy, an associates network
does not have any root node or imply any relationships among
neighbors — there are no parent/child or sibling relationships
— and topological proximity and organization of the nodes
does not imply relationships among them. This lack of explicit
and implicit relationships among the nodes provides generality
of application context to the associates network by keeping it
neutral of any task domain, and the lack of hierarchical vertices
provides robustness by limiting the existence of critical nodes
that, should they fail, would break the connectivity of the net-
work. Models of networks with small-world properties exhibit
enhanced signal-propagation speed and synchronizability. The
properties that enable such characteristics are a high degree
of clustering within the network and small characteristic path
lengths1. The team uses the associates network to limit the
amount of communication required for cohesive activity to just
sharing information probabilistically and finding individual

1The number of nodes through which a message must pass to get from any
one agent to any other.

members for a dynamic subteam. For example, team members
can leverage the network to search for agents with special
skills who can participate in a plan. When an agent wishes to
find another agent with particular characteristics, it pushes a
search request to its neighbor in the associates network that is
most likely to be able to respond to the search characteristics,
or if not, is most likely to have another associate neighbor that
does. This allows team members to act despite having very
limited models of the status of the rest of the team, hence
reducing the need to saturate team communications with the
propagation of state information. As a consequence, however,
the logical guarantees provided by previous teamwork algo-
rithms are replaced by algorithms that have high probability
of working correctly.

Our approach to teamwork has been implemented in domain
independent software proxies, semi-autonomous coordination
modules for each team member [9], called Machinetta [10].
Each proxy encapsulates the team work algorithms and works
closely with an individual team member and with other proxies
to effect teamwork. We have used Machinetta proxies in
several domains, such as robotic rescue and the coordination
of large groups of unmanned aerial vehicles.

II. THE DESCRIPTION OF A TEAM

At a high level, team behavior can be understood as follows.
All members of a team are initialized with access to the same
plan library. An individual team member, i.e. an agent, detects
events in the environment and respond by selecting one plan
that best describes the best response to the event that can also
achieve the team’s top level goal, or at least satisfy a portion
of the overall team’s top goal. This agent, which we call a plan
emitting agent, then communicates a description of the subplan
that it would like to execute to its neighbors in the associates
network, according to the likelihood of those neighbors, or in
turn, their neighbors, committing the subplan. The description
is propagated through the network until agents are found that
can commit to the individual roles of the subplan. Once all of
the roles of a subplan have been committed to by agents, one
can now acknowledge the existence of a dynamically-formed
subteam, which remains focused on achieving the subteam’s
goal until the goal is achieved or it has been determined
that the team cannot achieve it [2]. Any possible conflicts or
synergies with other subteams are highly likely to be detected
by virtue of the degree of agent subteam overlap due to agents
being members of more than one team. Finally, agents share
locally sensed information on the associates network to allow
the whole team to leverage the local sensing abilities of each
team member.

A. Associates Network Organization

A team A consists of a large number of agents (e.g. in
the range from hundreds to tens of thousands of members),
A = {a1, a2, . . . , an} that have been assembled to pursue
an overall team goal. The associates network arranges the
whole team into a small worlds network [8] defined by
N(t) = ∪

a∈A
n(a), where n(a) are the neighbors of agent a

Fig. 1. Relationship between subteams and the associates network

in the network. The minimum number of agents a message
must pass through to get from one agent to another via the
associates network is the distance between those agents. For
example, as shown in Figure 1, agents a1 and a3 are not
neighbors but share a neighbor, hence distance(a1, a3) = 1.
We require that the network be a small worlds network,
which imposes two constraints. First, ∀a ∈ A, |n(a)| < K ,
where K is a small integer, typically less than 10. Second,
∀ai, aj ∈ A, distance(ai, aj) < D where D is a small integer,
typically less than 10.

B. Plans and Subteams

The team A has a top level goal, G to which the team com-
mits, with the semantics of STEAM [9]. Achieving G requires
achieving sub-goals, gi, that are not known in advance but are a
function of the environment. For example, sub-goals of a high
level goal to respond to a disaster are to extinguish a fire and
provide medical attention to injured civilians. Each sub-goal is
addressed with a plan, plani =< gi, recipei, rolesi, di >. The
overall team thus has plans Plans(t) = {plan1, . . . , plann},
though individual team members will not necessarily know
all plans. To maximize the responsiveness of the team to
changes in the environment, we allow any team member to
commit the team to executing a plan, when it detects that g i

is relevant. recipei is a description of the way the sub-goal
will be achieved [6] and rolesi = {r1, r2, r3, . . . , rr} are the
individual activities that must be performed in order to execute
that recipei. di is the domain specific information pertinent to
the plan. For convenience, we write perform(r, a) to signify
that agent a is working on role r. We capture the identities of
those agents involved in role allocation with allocate(plan i).

C. Allocating Roles to Team Members

Role allocation can be approached as the problem of assign-
ing roles to agents so as to maximize overall team utility [11],
[12]. Large-scale teams emphasize key additional requirements
in role allocation:

1) rapid role allocation as domain dynamics may cause
tasks to disappear;

2) agents may perform one or more roles, but within
resource limits;

3) many agents can fulfill the same role; and
4) inter-role constraints may be present.

This role allocation challenge in such teams will be referred to
as E-GAP, as it subsumes the generalized assignment problem
(GAP), which is NP-complete [13].

We have adapted ideas from Distributed Constraint Op-
timization (DCOP) [14], [15] for role allocation, as DCOP
offers the key advantages of distributedness and a rich repre-
sentational language which can consider the costs and utilities
of tasks. Despite these advantages, DCOP approaches to role
allocation suffer from three weaknesses. First, complete DCOP
algorithms [14] have exponential run-time complexity and,
thus, fail to meet the response requirements of extreme teams.
One reason for this is that the purely local view of the
team that each agent has forces the search to explore many
potential solutions that are clearly sub-optimal. Teams of
agents will often have reasonably accurate estimates of both
the situation and the state of the team, however, which can
be used to accurately estimate likely solution characteristics.
For example, when a team of fire fighters responds to a
disaster, it is reasonable to assume that they know the number
of fires and number of available fire trucks to within an
order of magnitude of the correct figure, even though they
may have very little specific knowledge of individual fires or
trucks. While relying on such estimates prevents guarantees
of optimality, they can dramatically reduce the search space.
Second, similar agent functionality within very large teams
results in dense constraint graphs increasing communication
within a DCOP algorithm. Third, DCOP algorithms do not
address the additional complications of constraints between
roles.

For large scale teams, we have developed a novel DCOP al-
gorithm called LA-DCOP (Low communication Approximate
DCOP) [16]. LA-DCOP uses a representation where agents are
variables that can take on values from a common pool, i.e.,
the pool of roles to be assigned. The mechanism for allocating
values to variables encapsulates three novel ideas. First, LA-
DCOP improves efficiency by not focusing on an exact optimal
reward; instead by exploiting the likely characteristics of opti-
mal allocations, given the available probabilistic information,
it focuses on maximizing the team’s expected total reward.
In particular, the agents compute a minimum threshold on the
expected capability of the agent that would maximize expected
team performance. If the agent’s capability to perform a role is
less than the threshold capability, it does not consider taking on
the role, but channels the role towards more capable agents.
Second, to reduce the significant communication overheads
due to constraint graph denseness, tokens are used to regulate
access to values. Only the agent currently holding the token
for a particular value can consider assigning that value to its
variable. The use of tokens removes the possibility of several
agents taking on the same role, thus dramatically reducing the
need to communicate about and repair conflicts. Third, to deal
with groups of tightly constrained roles, we introduce the idea
of allowing values to be represented by potential tokens. When
groups of roles must be simultaneously performed, instead of

committing to a role by assigning the value represented by a
token, a team member accepts a potential token. This indicates
that it will accept the role only when all simultaneous roles
can be assigned. While team members are being found to fill
the other simultaneous roles, a team member with a potential
token can perform other roles. Only when team members have
been found for all roles will the holders of the potential tokens
actually take on the roles. This technique frees team members
up for other roles when not all roles in a constrained set can
be filled. More detail can be found in [17].

D. Mutual Beliefs and Subteams

Agents working on the plan and their neighbors in the
associates network, make up the subteam for the plan (we
write the subteam for plani as subteami). Since allocation of
team members to roles may change due to failures or changing
circumstances, the members of a subteam also change. All
subteam members must be kept informed of the state of
the plan, e.g., they must be informed if the plan becomes
irrelevant. This maximizes cohesion and minimizes wasted
effort. Typically |subteami| < 20, although it may vary with
plan complexity. Typically, subteami ∩ subteamj �= ∅. These
subteams are the basis for our coordination framework and
leads to scalability in teams.

We distinguish between two sets of agents within the
subteam: those that are assigned to roles, rolesi, in the
plan and those that are not. The subteam members actually
assigned to roles in a plan plani, called the role executing
agents, REA(pi) = {a|a ∈ A, ∃r ∈ rolesi, perform(r, a)}.
The non-role executing agents are called weakly goal re-
lated agents WGRA(pi) = {a|a ∈ A, a ∈ allocate(pi) ∧
associate(allocate(pi)) ∧ associate(REA)}.

A key to scaling teamwork is the efficient sharing of
information pertaining to the activities of the team members.
Using the definitions of subteams, we can provide relaxed
requirements on mutual beliefs, making it feasible to build
much larger teams. Specifically, agents in REAi must main-
tain mutual beliefs over all pieces of information in plan i,
while agents only in WGRAi must maintain mutual beliefs
over only gi and recipei. Maintaining these mutual beliefs
within the subteam requires relatively little communication,
and scales very well as more subteams are added.

E. Detecting Conflicts and Synergies

Detecting conflicts or synergies between two known plans
is a challenging task [18], [19], but in the context of a large
team there is the critical additional problem of ensuring that
some team member knows of both recipes. Here we focus on
this additional challenge. When we allow an individual agent
to commit the team to a goal, there is the possibility that the
team may be executing conflicting plans or plans which might
be combined into a single, more efficient plan. Once a conflict
is detected plan termination or merging is possible due to the
fact that the agents form a subteam and thus maintain mutual
belief. Since it is infeasible to require that every team member
to know all plans, we use a distributed approach, leveraging the

associates network. This approach leads to a high probability
of detecting conflicts and synergies, with very low overheads.

If two plans plani and planj have some conflict or potential
synergy, then we require subteami ∩ subteamj �= ∅ to detect
it. A simple probability calculation reveals that the probability
of overlap between subteams is:

Pr(overlap) = 1 − (n−k)Cm

nCm

where where n = number of agents, k = size of subteam A,
m = size of subteam B and aCb denotes a combination.

For example, if |subteami| = |subteamj| = 20 and |A| =
200, then P (overlap) = 0.88, despite each subteam involving
only 10% of the overall team. Since, the constituents of a
subteam change over time, this is actually a lower bound on
the probability a conflict is detected because over time more
agents are actually involved. In Section III we experimentally
show that this technique leads to a high probability of detecting
conflicts.

F. Sharing Information in Large Teams

In Section II-D, we showed how requiring mutual beliefs
only within subteams acting on specific goals can dramatically
reduce the communication required in a big team. However,
individual team members will sometimes get domain level
information, via local sensors, that is relevant to members of
another subteam. Due to the fact that team members do not
know what each other subteam is doing, they will sometimes
have locally sensed information that they do not know who
requires. In this section, we present an approach to sharing
such information, leveraging the small worlds properties of the
associates network. The basic idea is to forward information
to whichever acquaintance in the associates network is most
likely to either need the information or have a neighbor who
does.

Agents send information around the team in messages. A
message consists of four parts, M =< sender, i, E, count >.
The first two elements, sender and i, denote the agent that sent
the message and the piece of information being communicated.
With this algorithm, we are only interested in delivering
domain level information (as opposed to coordination informa-
tion). Hence, I = {i1, i2, . . . , in}, defines all the information
that could be sent, here i is defined according to d i in Section
II-B. The last two elements of a message, E and count, are
used for improving the team’s information flow and determine
when to stop forwarding a message, respectively.

For the purposes of information sharing, the internal state of
the team member a is represented by Sa =< Ha, Ka, Pa >.
Ha is the (possibly truncated) history of messages received by
the a. Ka ⊆ I is the local knowledge of the agent. If i ∈ Ka,
we say knows(a, i) = 1, otherwise, knows(a, i) = 0. Typi-
cally, individual team members will know only a small fraction
of all the team knows, i.e., |Ka| << |I|. Our algorithms are
primarily aimed at routing information in I − Ka, since it is
this information that needs to be shared. Thus, the agents are
reasoning in advance about how they would route information.

For example, a fire fighter might build a model of who might
be interested in particular street blockages.

Since the reason for sharing information between teammates
is to improve performance of a team, quantifying the impor-
tance of a piece of information i to an agent a at time t is
needed. Specifically, we use the function U : I×A → R. The
importance of the information i is calculated by determining
the expected increase in utility for the agent with the infor-
mation versus without it. That is, U(a, i) = EU(a, Ka ∪ i)−
EU(a, Ka) , where EU(a, Ka) is the expected utility of the
agent a with knowledge Ka. When U(a, i) > 0, knowledge
of i is useful to a, and the larger the value of U(a, i) the
more useful i is to a. Formally, the reward for the team is

reward(i) =

∑

a∈A

U(a,i)×knows(a,i)

∑

a∈A

knows(a,i)
. Since this calculation is

based on knowing the use of a piece of information to each
agent, agents cannot compute this locally. Thus, it is simply a
metric to be used to measure algorithm performance.

The heart of our algorithm is a model of the relative
probabilities that sending a piece of information to a neighbor
will lead to an increase in the reward as defined by our
objective function. This is Pa in the agent state. Pa is a
matrix where Pa[i, b] → [0, 1], b ∈ N(a), i ∈ I represents
the probability that neighbor b is the best neighbor to send
information i to. For example, if Pa[i, b] = 0.7, then a will
usually forward i to agent b as b is very likely the best of its
neighbors to receive it. To obey the rules of probability, we
require ∀i ∈ I,

∑
b∈N(a) P t

a[i, b] = 1. Although space does not
allow a full explanation of these models, the reader is referred
to [7], [20], [21] for more detailed descriptions of the different
models that we have examined.

III. EXPERIMENTAL RESULTS

Our model of teamwork described above has been imple-
mented as 200 Machinetta proxies, with the same proxies
applied to both the rescue domain and a simulated UAV
search and destroy domain [7]. Although experiments with
large teams demonstrate the feasability of the approach, often
they are not effective at isolating specific factors affecting
performance. Hence, to better understand the key algorithms,
we first ran a series of experiments in MatLab, and then
extended our previous Machinetta experiments to TeamSim,
a highly configurable Machinetta simulator with extensive
logging capabilities.

First, we tested our information sharing algorithms on very
large teams using two different types of networks: a small
worlds network and a network with random links. We arranged
32, 000 agents into a network and randomly picked one agent
as the source of an element of information, i, and another as
a sink. The sink agent sent out 30 messages with information
of strong interest to i with MAX STEPS = 300. Then, the
source agent sent out i and we measured the time that was
required for the message to reach the sink agent. Routing via
the small world associates network, on average, required less
than half of the number of hops than what was required when

5101520

0
10

20
30

0

0.2

0.4

0.6

0.8

1

Size of Subteam ASize of Subteam B

(a) Pr(overlap) vs team size

5
10

15
20

0

10

20

30

0

50

100

150

Size of Subteam ASize of Subteam B

(b) Avg. replacement times to overlap

Fig. 2. Fig. 2(a): The probability of having at least one common agent vs.
subteam size. Fig. 2(b): The average number of times that agent need to be
replaced to have at least one common agent.

routing i randomly. Using a similar setup, we then measured
the variation in the length of time it takes to get a piece of
information to the sink. We consider a frequency distribution
of the time taken for a network with 8, 000 agents and
MAX STEP = 150. While a large percentage of messages
arrive efficiently to the sink, a small percentage get “lost”
on the network, illustrating the problem with a probabilistic
approach. However, despite some messages taking a long time
to arrive, they all eventually did, and faster than if moved
randomly.

Figure 2 shows the results of simulations that were run to
see how the probability of overlap — and thus the ability
of agent subteams to detect conflicts and synergies — varied
according to the sizes of two dynamically changing subteams.
Two subteams, each composed of from 1 − 20 members,
were formed from a group of 200. For each subteam size,
members were chosen at random and then checked against
the other subteam for any common team members. Figure
2(a) shows the calculated percentage of team member overlap
when the subteams are initially formed during the simulation.
This graph matches closely with the calculated probability
Pr(overlap) = 1 − (n−k)Cm

nCm
. In the event that two mutually

exclusive subteams are formed, that is, neither subteam has
a member in common, we wanted to test the likelihood of
membership turnover in each team such that the new member
would be part of both teams. Figure 2(b) shows the average
number of times that team members needed to be replaced
before a common team member was found.

For the TeamSim experiments, a group of 400 distributed
UAVs were configured to search in a hostile area. Each UAV
had, on average, four “associates”, and the network topology
was that of a small world network. Simulated data, in the
form of 200 simulated automatic target recognition (ATR)
events was randomly sensed by UAVs and passed around the
team of 400 UAVs as information. Fifty plans, each with
four independent information tokens, were allowed in each
trial. After a plan was initiated, the tokens which represented
its preconditions were retained by the initiating agent and
tokens for the three additional roles needed to realize the plan
were circulated through the acquaintance network. To accept
a role, an agent must be close to the location that the role
specifies and have access to tokens for free airspace in order

P

0 100 200 300 400
0

50
100
150
200
250
300
350
400
450
500 C

A

S
P

R

R

C

P
A
S
R

C
P
A
S
R

C

A

S

P Plan Initiation
A Role Allocation

R Random
S Resource Sharing
C Integrated Coordination

N
um

be
r

of
 R

ew
ar

ds
 R

ec
ei

ve
d

(m
or

e
is

 b
et

te
r)

Simulation Steps ("Ticks")

(a) Team Rewards per Tick

P Plan Initiation
A Role Allocation

R Random
G Resource Planning
C Integrated Coordination

15,000
20,000
25,000
30,000
35,000
40,000
45,000
50,000
55,000
60,000

C
CC

C C C C
R

R R
R R

R

N
um

be
r

of
 M

es
sa

ge
s

(l
es

s
is

 b
et

te
r)

300250150 200 450400350

AP

P

R

G
G G

G G G
G

P P
P

P
P

A A
A

A
A

A

Number of Rewards Received

(b) Avg. Message per Agent

Fig. 3. Fig. 3(a) shows relative strengths of different coordination algorithms
as a function of time, e.g. simulation “ticks”. Fig. 3(b) shows the number of
messages that are exchanged by a team in order to achieve a greater team
reward.

to fulfill the role. Airspace over the hostile area was divided
into fifty regions. Each of these regions was represented by
three duplicate resource tokens. This restriction limits the risk
of collisions by allowing only three UAVs to use a region
of airspace at the same time. Each UAV needed to obtain
the resource for the region which the role specified before it
could perform its task. After all four roles of a plan were
successfully implemented, a team reward of 10 units was
credited. A maximun reward of 500 units (10 units ×50 plans)
was possible. Results for each experiment are based on one
hundred trials.

The first experiment investigated how the associates network
improves information sharing in the network of team members,
as evidenced by the total amount of team reward achieved
through an information sharing heuristic. In the simulation,
reward was recorded for each tick of the simulation. Five
algorithms were compared. In the evaluation of the first
algorithm, agents passed tokens randomly. For the next three
algorithm evaluations, only one of possibly three token types,
information, resource, and role, was preferentially routed
throughout the associates network while the other two token
types were routed randomly through the TeamSim network.
The fifth algorithm evaluated was an integrated coordination
heuristic, a technique explained in [21] in which tokens of each
type are used to improve the routing of the others by oppor-
tunistically conveying information of neighbors’ preferences
and capabilities. The results, shown in Figure 3(a) show how
all four associates network based heuristics performed better
than random, and that the integrated coordination algorithm
performd the best of all. The reader is referred to [21] for
more details on the four algorithms.

The second experiment investigated the effect of the coor-
dination algorithms on communication costs. This experiment
compared the number of message exchanges required by a
team to achieve a particular level of reward. A message
was credited to each transfer of a token from an agent
to its preferred acquaintance. The same five algorithms —
random, three with coordination for single token-types, and the
integrated technique — were employed. As shown in Figure

Random Algorithm
Integrated Token Based Algorithm

A
ve

ra
ge

 M
es

sa
ge

 p
er

 A
ge

nt
(l

es
s

is
 b

et
te

r)

200 400 600 800
Team Size

40

20

60

80

100

120

0

140

160

(a) Team Reward = 200

Random Algorithm
Integrated Token Based Algorithm

A
ve

ra
ge

 M
es

sa
ge

 p
er

 A
ge

nt
(l

es
s

is
 b

et
te

r)

200 400 600 800

40

20

60

80

100

120

0

140

160

Team Size

(b) Team Reward = 400

Fig. 4. A measure of efficiency in terms of the average number of messages
per agent. This metric is in terms of team reward (200 units in Fig. 4(a) and
400 units in Fig. 4(b)), team size, and coordination algorithm used.

3(b), algorithms using token coordination performed better,
in terms of fewer communications to attain the same level
of reward, than random. Of the coordinated algorithms, the
integrated token routing technique performed best.

The last experiment examined scalability of large teams
in terms of the communication load on the individual agent.
Teams of 200 to 800 agents were run under conditions that
were otherwise identical to the first two experiments. Only
two algorithms were used in this experiment: the random
algorithm, in which agents chose the associate to which to
forward a token, randomly, and the integrated algorithm which
utilized relevance between all types of tokens to improve token
routing. Performance was measured in terms of messages per
agent, the number of messages passed by the team divided
by the number of agents in the team. As shown in Figure 4,
integrated token-based routing produced fewer messages per
agent. More significantly it increased at a much lower rate
as team size increased from 200 to 800 agents. For both the
200 (Fig. 4(a)) and 400 (Fig. 4(b)) unit award levels, there
were fewer messages per agent for teams of 800 agents using
the integrated algorithm than for 400 member teams using the
random algorithm.

IV. CONCLUSION

In this paper, we have presented an approach to building
large teams that has allowed us to build teams an order of
magnitude bigger than previously published. To achieve this
aim, fundamentally new ideas were developed and new, more
scalable algorithms implemented. Specifically, we presented an
approach to organizing the team based on dynamically evolv-
ing subteams. Potentially inefficient interactions between sub-
teams were detected by sharing information across a network
independent of any subteam relationships. We leveraged the
small worlds properties of these networks to very efficiently
share domain knowledge across the team. While much work
remains to be done to fully understand and be able to build
large teams, this work represents a significant step forward.

ACKNOWLEDGMENT

This research has been sponsored in part by AFRL/MNK
Grant F08630-03-1-0005 and AFOSR Grant F49620-01-1-

0542.

REFERENCES

[1] D. Goldberg, V. Cicirello, M. B. Dias, R. Simmons, S. Smith, and
A. Stentz, “Market-based multi-robot planning in a distributed layered
architecture,” in Multi-Robot Systems: From Swarms to Intelligent Au-
tomata: Proceedings from the 2003 International Workshop on Multi-
Robot Systems, vol. 2. Kluwer Academic Publishers, 2003, pp. 27–38.

[2] P. R. Cohen and H. J. Levesque, “Teamwork,” Nous, vol. 25, no. 4, pp.
487–512, 1991.

[3] B. Grosz and S. Kraus, “Collaborative plans for complex group actions,”
Artificial Intelligence, vol. 86, pp. 269–358, 1996”.

[4] J. A. Giampapa and K. Sycara, “Team-oriented agent coordination in
the retsina multi-agent system,” Robotics Institute, Carnegie Mellon
University, Pittsburgh, PA, Tech. Rep. CMU-RI-TR-02-34, December
2002, presented at AAMAS 2002 Workshop on Teamwork and Coalition
Formation.

[5] M. Tambe, “Agent architectures for flexible, practical teamwork,” Na-
tional Conference on AI (AAAI97), pp. 22–28, 1997.

[6] N. R. Jennings, “Specification and implementation of a belief-desire-
joint-intention architecture for collaborative problem solving,” Intl. Jour-
nal of Intelligent and Cooperative Information Systems, vol. 2, no. 3,
pp. 289–318, 1993.

[7] P. Scerri, Y. Xu, E. Liao, J. Lai, and K. Sycara, “Scaling teamwork to
very large teams,” in Proceedings of AAMAS’04, 2004.

[8] D. Watts and S. Strogatz, “Collective dynamics of small world net-
works,” Nature, vol. 393, pp. 440–442, 1998.

[9] M. Tambe, W.-M. Shen, M. Mataric, D. Pynadath, D. Goldberg, P. J.
Modi, Z. Qiu, and B. Salemi, “Teamwork in cyberspace: using TEAM-
CORE to make agents team-ready,” in AAAI Spring Symposium on
agents in cyberspace, 1999.

[10] P. Scerri, D. V. Pynadath, L. Johnson, P. Rosenbloom, N. Schurr,
M. Si, and M. Tambe, “A prototype infrastructure for distributed robot-
agent-person teams,” in The Second International Joint Conference on
Autonomous Agents and Multiagent Systems, 2003.

[11] G. Tidhar, A. Rao, and E. Sonenberg, “Guided team selection,” in
Proceedings of the Second International Conference on Multi-Agent
Systems, 1996.

[12] B. B. Werger and M. J. Mataric, “Broadcast of local eligibility for
multi-target observation,” in Proc. of 5th Int. Symposium on Distributed
Autonomous Robotic Systems (DARS), 2000.

[13] D. Shmoys and E. Tardos, “An approximation algorithm for the gener-
alized assignment problem,” Mathematical Programming, vol. 62, pp.
461–474, 1993.

[14] P. J. Modi, W. Shen, and M. Tambe, “Distributed constraint optimiza-
tion and its application,” University of Southern California/Information
Sciences Institute, Tech. Rep. ISI-TR-509, 2002.

[15] S. Fitzpatrick and L. Meertens, Stochastic Algorithms: Foundations and
Applications, Proceedings SAGA 2001. Springer-Verlag, 2001, vol.
LNCS 2264, ch. An Experimental Assessment of a Stochastic, Anytime,
Decentralized, Soft Colourer for Sparse Graphs, pp. 49–64.

[16] A. Farinelli, P. Scerri, and M. Tambe, “Building large-scale robot
systems: Distributed role assignment in dynamic, uncertain domains,”
in Proceedings of Workshop on Representations and Approaches for
Time-Critical Decentralized Resource, Role and Task Allocation, 2003.

[17] P. Scerri, A. Farinelli, S. Okamoto, and M. Tambe, “Allocating roles
in extreme teams,” in Proceedings of AAMAS’04, Poster Presentation,
2004.

[18] B. Clement and E. Durfee, “Scheduling high level tasks among cooper-
ative agents,” in Proceedings of the 1998 International Conference on
Multi-Agent Systems (ICMAS’98), Paris, July 1998, pp. 96–103.

[19] M. Paolucci, O. Shehory, and K. Sycara, “Interleaving planning and
execution in a multiagent team planning environment,” Journal of
Electronic Transactions of Artificial Intelligence, May 2001.

[20] Y. Xu, M. Lewis, K. Sycara, and P. Scerri, “Information sharing in very
large teams,” in In AAMAS’04 Workshop on Challenges in Coordination
of Large Scale MultiAgent Systems, 2004.

[21] Y. Xu, M. Lewis, K. Sycara, and P. Scerri, “An integrated token-
based algorithm for sclable coordintion,” in Proceedings of AAMAS’05
(submitted), 2005.

