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Abstract

The assessment of pain is of critical importance for mechanistic studies as well as for the validation

of drug targets. This review will focus on knee joint pain associated with arthritis. Different animal

models have been developed for the study of knee joint arthritis. Behavioral tests in animal models

of knee joint arthritis typically measure knee joint pain rather indirectly. In recent years, however,

progress has been made in the development of tests that actually evaluate the sensitivity of the knee

joint in arthritis models. They include measurements of the knee extension angle struggle

threshold, hind limb withdrawal reflex threshold of knee compression force, and vocalizations in

response to stimulation of the knee. A discussion of pain assessment in humans with arthritis pain

conditions concludes this review.

Review
Arthritis represents one of the most prevalent chronic
health problems and is a leading cause of disability. More
than 40 million people in the United States have arthritis
or chronic joint symptoms that are often accompanied by
joint pain [1]. By the year 2020, this number is expected
to reach 60 million. The most common form of arthritis is
osteoarthritis affecting an estimated 21 million adults in
the United States. Other common arthritic conditions
include rheumatoid arthritis (about 2.1 million people in
the United States) and gout [2]. The assessment of
arthritic pain is of critical importance for the better under-
standing of underlying mechanisms and for the evalua-
tion of therapeutic targets. Different animal models of
arthritis are available for the assessment of joint pain and
analgesic drug effects. This review will focus on arthritis
models of knee joint pain and on behavioral tests used in
these models. Information about the assessment of knee
joint pain in humans with arthritis will also be provided.

Discussing the merits of electrophysiological studies of
nociceptive processing in arthritis pain models is beyond
the scope of this article. Arthritis pain-related electrophys-
iological changes have been measured in primary afferent
nerve fibers [peripheral sensitization; 3] and in central
nervous system neurons (central sensitization), including
neurons in the spinal dorsal horn [4], spinal trigeminal
nucleus [5], pain modulating brainstem centers [6], ven-
trobasal thalamus [7], somatosensory cortex [8] and amy-
gdala [9]. While electrophysiological studies are
important and necessary for the analysis of pathways, cir-
cuitry, neuronal plasticity, transmitter action and signal
transduction mechanisms, behavioral tests are needed for
the assessment of pain.

Arthritis pain models
Arthritis is the inflammation of a joint, which can include
infiltration of inflammatory cells (monocytes), synovial
hyperplasia, bone erosion and new bone formation, nar-
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rowing of the joint space, and ankylosis of the joint [10].
The most common form of arthritis is osteoarthritis. Oste-
oarthritis is a degenerative disease characterized by dam-
age to the articular cartilage, changes in subchondral and
marginal bone, synovitis and capsular thickening, typi-
cally affecting weight bearing joints (knee and hips) [11].
Pain in osteoarthritis is localized and use-related, occur-
ring during movement or weight bearing [12-14]. Rheu-
matoid arthritis is an autoimmune disease of the
synovium that leads to an inflammatory poly-arthritis. It
is characterized by the symmetrical pattern of affected
joints and by morning stiffness, joint swelling and tender-
ness. Pain in rheumatoid arthritis improves with move-
ment [15,16]. Gout represents one of the most painful
forms of arthritis. A metabolic disorder with high blood
levels of uric acid (hyperuricemia), gout is characterized
by recurrent episodes of acute arthritis resulting from
deposits of needle-like crystals of uric acid in the joints.
The metatarsophalangeal joint (big toe) is typically
affected, but other joints can be involved as well, includ-
ing the knee [17,18]. The following animal models have
been developed to investigate the pathophysiology of dif-
ferent forms of knee joint arthritis. They are also used for
the assessment of joint pain but not all of them have a
proven track record of predictability for human disease.

Osteoarthritis

Animal models include spontaneous osteoarthritis in spe-
cific strains (mouse and guinea pig) and osteoarthritis
induced chemically or mechanically (surgically) [12-14].
Chemical models involve intra-articular injections of
compounds that cause joint pathology through inhibition
of chondrocyte metabolism by papain or monosodium
iodoacetate (MIA) and damage of ligaments and tendons
with collagenase. Surgical models induce joint instability
by (partial) meniscectomy combined with transection of
collateral and/or cruciate ligaments [12-14]. The MIA
model has emerged as a particularly useful osteoarthritis
model for the study of pain and analgesic drug effects
because it is reproducible and mimics pathological
changes and pain of osteoarthritis in humans. Intraarticu-
lar injection of MIA produces progressive joint degenera-
tion through inhibition of glycolysis and subsequent
chondrocyte death that develops over several weeks. Sim-
ilar to human osteoarthritis, joint pathology is character-
ized by chondrocyte necrosis resulting in decreased
thickness of the articular cartilage and fibrillation of the
cartilage surface, separation of the necrotic cartilage from
the underlying bone and exposure of the subchondral
bone; osteolysis and swelling; and reductions in bone
mineral content and density [13,14,19].

Inflammatory mono-arthritis

Recurrent inflammatory phases are common in human
osteoarthritis [1]. The acute inflammatory phase of oste-

oarthritis is also mimicked by the kaolin/carrageenan-
induced knee joint arthritis model (K/C arthritis). Intraar-
ticular kaolin and carrageenan injections into one knee
produce an aseptic use-dependent monoarthritis with
damage to the cartilage, inflammation of the synovia and
synovial fluid exudate. The K/C arthritis develops rapidly
within hours and persists for weeks. Pathological, behav-
ioral and electrophysiological changes have been studied
extensively in the K/C arthritis model in mouse, rat, cat
and non-human primate [20-25]. A modification of the
K/C arthritis model is the knee joint monoarthritis
induced by intraarticular injection of carrageenan alone.
The time course of the carrageenan-arthritis is shorter
(hours to days) and the cartilage damage less pronounced
than in the K/C model [26-29].

Other models of inflammatory mono-arthritis in the knee
include the acute zymosan-induced arthritis and the
chronic complete Freund's adjuvant (CFA) induced arthri-
tis. Injection of zymosan into one knee produces an ero-
sive synovitis in mouse and rat. The zymosan arthritis is
characterized by an acute phase of increased vascular per-
meability, edema formation, neurophil infiltration and
exudate within hours, whereas the chronic phase (days to
several weeks) resembles chronic rheumatoid synovitis
with mononuclear cell infiltration (macrophages and
lymphocytes), fibroblast reaction and pannus formation
[30-32]. The CFA mono-arthritis of the knee is induced by
intraarticular injection of complete Freund's adjuvant,
suspension of heat-killed Mycobacterium butyricum or

Mycobacterium tuberculosum [33-36]. This chronic monoar-
thritis is characterized by joint inflammation, cartilage
destruction and bone erosion, which persist for at least
several weeks. The CFA mono-arthritis model represents a
modification of the classical adjuvant-induced poly-
arthritis. While the CFA model is well established in rats,
it has been difficult to produce a reliable CFA arthritis in
mice. Only recently a CFA-arthritis model was developed
in mice in which repeated injections of a much higher
concentration of CFA into one knee (once per week for 4
weeks) produced a monoarthritis of the knee with syno-
vial hypertrophy, neutrophil infiltration, mild erosion of
cartilage and bone, and small amounts of pannus [37].
The murine CFA-monoarthritis lasted for at least 5 weeks
after the first intraarticular injection whereas a single
injection produced a short-lasting inflammation that
resolved within 7 days.

Rheumatoid Arthritis

Animal models include poly-arthritis induced by immu-
nogenic adjuvants (CFA and cartilage antigens) and non-
immunogenic adjuvants (lacking bacterial cell wall or
peptide-containing components) [15,38]. The knee joint
is not the primary target and area of interest in these mod-
els. Further, the systemic nature of this arthritis may affect
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the overall condition and well being of the animals and
may confound pain assessment. The widely used CFA
poly-arthritis represents a model of chronic immune-
mediated joint inflammation that is induced by intrader-
mal or subcutaneous injection of a suspension of heat
killed Mycobacterium butyricum or Mycobacterium tuberculo-

sum (CFA) at the base of the tail or in the foodpad. The
ensuing poly-arthritis represents a systemic disease with
inflammation of distal joints of the limbs (ankle, wrist,
tarsal, carpal, interphalangeal joints) and spinal joints,
lesions of the eyes, ears, nose, skin and genitourinary and
gastrointestinal tracts, as well as anorexia and profound
weight loss [3,15]. The CFA arthritis follows a biphasic
time course, consisting of an acute local inflammatory
reaction within hours that subsides after 3–5 days and a
chronic systemic reaction that shows a relapsing-remitting
course after the initial two weeks and can persist for sev-
eral months. The persistent disease ultimately results in
chronic joint deformation and signs of joint destruction,
including synovitis and synovial hyperplasia, angiogen-
esis, pannus formation, capsular fibrosis, cartilage
destruction, bone erosion and new periosteal bone forma-
tion, bone matrix resorption, inflammation of the bone
marrow, and ankylosis [39]. The CFA poly-arthritis model
is well established and reproducible in rats but not in
mice (however, see CFA mono-arthritis).

Another immunogenic adjuvant model of rheumatoid
arthritis model is induced by cartilage-derived proteins
such as collagen II, collagen XI and cartilage oligomeric
matrix protein (COMP) in rat and mouse [38]. Emulsified
with CFA the cartilage antigens are injected intradermally
at the base of the tail. The best characterized cartilage-
induced arthritis model is the collagen type II arthritis
(CIA arthritis), which leads to a severe erosive poly-arthri-
tis affecting the hind paws and knees [40,41]. Periarticular
erythema and edema and neutrophil infiltration appear in
the hind paws after 2–3 weeks followed by a chronic
relapsing phase (5 weeks) when the severity of arthritis
progresses to include pannus formation, erosion of carti-
lage, bone resorption, osteophyte formation, restructur-
ing and ankylosis of the joints [38,40,42]. The autologous
collagen type XI-induced arthritis shows a more aggressive
course and pathology, whereas the COMP-induced arthri-
tis is rather acute and self-limited [38].

Adjuvant arthritis without an autoimmune component is
induced by compounds which do not contain major his-
tocompatibility complex binding peptides but involve T-
cell activation. These "pure" adjuvants include mineral oil
(incomplete Freund's adjuvant), avridine, squalene and
pristane [38]. Intradermal or subcutaneous injections of
pure adjuvants produce a chronic relapsing arthritis with
characteristics of rheumatoid arthritis. The severe and
long-lasting (months) arthritis appears after 1–2 weeks in

peripheral joints, mainly in the hind limbs, with pannus
formation, erosion of cartilage and bone, and joint defor-
mation [38].

Gouty arthritis

Gout is a metabolic disease characterized by recurrent epi-
sodes of acute arthritis in the metatarsophalangeal joint
but can also affect the knee joint [17,18]. Gouty arthritis
results from the deposits of needle-like crystals of uric acid
in the joints, causing inflammation with severe pain in the
affected joint. Injection of monosodium urate crystals dis-
solved in saline [43] or uric acid suspended in mineral oil
[17] into the knee joint leads to an acute inflammation
(synovitis) within 2–3 hours, which persists at maximum
levels for hours and resolves after 3–7 days

Pain behavior of arthritic animals
The main challenge of assessing knee joint pain has been
to develop tests that actually measure the sensitivity of the
knee joint rather than that of the hind paw [33]. Behavio-
ral tests that use indirect measures of knee joint pain in
arthritis models include static and dynamic weight bear-
ing [13,26,43-46]; foot posture [43,47] and gait analysis
[43,48], including paw elevation time during walking
[17,27,32,49]; spontaneous mobility [50,51]; and
mechanical or heat sensitivity of the paw [14,45-47,52].
Though indirect measures, weight bearing and gait analy-
sis have the advantage that they are also used in the clini-
cal setting to assess pain in patients with arthritis (see
"Pain assessment in patients with arthritis").

More recently, behavioral tests have been developed that
directly assess the mechanical sensitivity of the knee by
measuring the hind limb withdrawal reflex threshold of
knee compression force [33,37,51,53], struggle threshold
angle of knee extension [33,35], and vocalizations evoked
by stimulation of the knee [33,51,54].

Weight bearing

Measurements of weight bearing have been used in
mono-arthritis models induced in the knee joint by carra-
geenan, urate, MIA or papain and by surgery (partial
meniscectomy). Most commonly, the weight distribution
on the two hind paws is measured as the force exerted by
each limb on a transducer plate in the floor over a given
time period [13,26,43-46]. Weight borne by each hind
limb is expressed as percent of body weight [14,44] or per-
cent of weight borne by both hind limbs [13,45]. The ratio
[19,43] or difference [46,55] of weight distribution
(force) between each hind limb are also calculated. A sig-
nificant shift of weight from the arthritic site to the con-
tralateral limb, i.e., a weight-bearing deficit, is taken as a
pain measure and has been shown in knee joint arthritis
models induced by intraarticular MIA [13,14,45,46,55],
papain [13], urate [43] and carrageenan [44] and by par-
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tial meniscectomy [14,56]. Figure 1 illustrates the weight
bearing deficit in rats with MIA-induced knee joint arthri-
tis. These static measurements of weight bearing by the
hind limbs typically involve restraining the animals and
do not assess the shift of weight distribution to the fore-
limbs as occurs with hind limb injury such as arthritis
[48].

Weight bearing across all four limbs has been measured in
rats with a carrageenan-induced knee joint arthritis
[26,29]. Weight load on each limb is detected while the
animal is walking across four pairs of force sensor plates
in the floor of an enclosed walkway. Time-weight curves
for left and right fore limbs and hind limbs of rats with
arthritis show a reduction of weight load on the affected
limb for up to one week. Similarly, weight distribution
across the four limbs has been measured in the MIA arthri-
tis model using load cell platforms in two sections of the
glass floor in the central portion of a chamber [48]. The
digitized load cell output and simultaneously videotaped
images are used to calculate the peak vertical load bearing
by each limb. Load bearing by the affected limb is reduced
for several weeks. Weight distribution across the four
limbs has also been determined with a gait analysis sys-
tem ("CatWalk") that measures the intensity of the illumi-
nation caused by paw contact with a glass floor [57]. The
intensity correlates with pressure (weight support) and
mechanical withdrawal thresholds and is significantly
reduced in the affected limb of neuropathic rats. The Cat-
Walk analysis system may also be useful for the assess-
ment of weight-bearing in arthritis. A potential problem
with dynamic weight bearing measurements is that ani-
mals are required to move, which can be influenced by a
number of factors such as motivation (see mobility).

Posture and gait analysis

Related to the assessment of weight bearing, abnormal
posture of the hind paw and gait have been quantified in
knee joint arthritis models using subjective rating scales.
Static (standing) and dynamic (walking) behaviors have
been analyzed separately to calculate a "pain score" in rats
with urate-induced knee joint arthritis [43]. Categories of
the rating scale include complete touch of foot pad, partial
touch or one foot stand (standing position) and slight
limping, severe limping or one foot gait (walking state). A
combination of posture and gait analysis has been used to
rate pain-related spontaneous behavior in the carra-
geenan-induced knee joint arthritis [47]. Behavioral signs
include curling toes, eversion of the foot, partial weight
bearing, non-weight bearing and guarding, and avoiding
contact with the limb.

Gait disturbance has also been detected using the knee
joint incapacitation test in rats with knee joint arthritis
induced by intraarticular injections of carrageenan [27],

zymosan [32,49] or uric acid [17]. Increased paw eleva-
tion times are measured in arthritic rats walking on a
rotating mesh-covered steel drum. Metal gaiters ("elec-
trodes") wrapped around the hind paws are connected via
a simple circuit to a computer to record the time of contact
between each hind paw and the cylinder, which is when
the circuit is closed. Paw elevation time or the ratio of time
of contact of the affected foot and the control foot serve as
indicators of pain-related functional impairment. The
advantage of this gait analysis test is that the quantitation
(paw elevation time) is independent of the observer.
Interestingly, temporal aspects of gait were not impaired
in rats with a MIA knee joint arthritis when velocity of
locomotion, stride, stance and swing times, and stride
length were measured from the pattern of paw contact
with the illuminated glass floor of a behavioral chamber
[48].

Spontaneous mobility

Locomotor activity has been measured in arthritic rats
using biotelemetry or activity boxes. The biotelemetry sys-
tem comprises a transmitter implanted in the peritoneal
cavity of the rodent, and a receiver beneath the cage. The
receiver detects the radio waves and activity of the rodents
as counts which are registered in the computer system
[50]. Loss of spontaneous mobility has been detected in
rats with knee joint arthritis induced by MIA, papain, col-
lagenase or surgical ligament transection. All models
show a transitory "primary" loss of mobility for about two
days after arthritis induction, presumably related to pain;
but only the MIA arthritis results in a prolonged secondary
loss of mobility for more than four weeks due to pain and
loss of function [50]. Spontaneous exploratory activity
has been measured using activity boxes that are divided in
zones by photobeams consisting of pairs of infra red Light
Emitting Diodes (LEDs) and phototransistors. Frequency
and pattern of photobeam interruption by the animal's
movements are recorded on a computer. Rats with K/C
arthritis show decreased entries (number of movements
from one zone to another) and increased resting time
(total time during which no movements occurred) [51].

Mechanical or heat sensitivity of the paw

Von Frey filaments and a modified Randall-Selitto analge-
siometer have been used to assess the mechanical sensitiv-
ity of the hindpaw in animals with knee joint arthritis.
Typically, paw withdrawal thresholds (PWT) are meas-
ured in response to increasing pressure stimuli applied to
the plantar surface by von Frey filaments or to the dorsal
surface by a wedge-shaped probe of a Randall-Selitto anal-
gesiometer. Rats with knee joint arthritis induced by MIA
[14,45,46] have decreased PWT (mechanical allodynia;
see Figure 1) for several weeks on the affected limb meas-
ured with either technique, but show little dynamic allo-
dynia assessed by stroking the plantar surface of the paw.
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Development of punctate (A) and dynamic (B) allodynia and weight bearing deficit (C) following intraarticular injection of monosodium iodoacetate (MIA, 2 mg; ■) MIA or saline (❍) in the right kneeFigure 1
Development of punctate (A) and dynamic (B) allodynia and weight bearing deficit (C) following intraarticular injection of 
monosodium iodoacetate (MIA, 2 mg; ■) MIA or saline (❍) in the right knee. (A) Baseline (BL) paw withdrawal thresholds 
(PWT) were determined in both hind paws prior to injection. PWT to von Frey hair stimulation of the plantar paw surface 
were assessed on various days post-injection. Results are expressed as median force (g) required for a paw withdrawal in 10 
animals per group (vertical bars represent first and third quartiles). * P < 0.05, ** P < 0.01, *** P < 0.001 significantly different 
(Mann-Whitney U test) from saline-treated group at each time point. (B) Baseline (BL) paw withdrawal latencies (PWL) to 
stroking the plantar paw surface with a cotton bud were determined for both hind paws prior to injection. Results are 
expressed as mean PWL (s) in 10 animals per group (vertical bars represent ± SEM). * P < 0.05, ** P < 0.01, *** P < 0.001 sig-
nificantly different (one-way ANOVA followed by Dunnett's posthoc test) from saline-treated group. (C) Baseline (BL) hind 
paw weight distribution was determined prior to injection. Changes in hind paw weight distribution were assessed on various 
days post-injection. Results are expressed as mean change in weight distribution (contralateral-ipsilateral) (g) in 10 animals per 
group (vertical bars represent ± SEM). * P < 0.05, ** P < 0.01, *** P < 0.001 significantly different (one-way ANOVA followed 
by Dunnett's posthoc test) from saline-treated group. Reprinted from [46], Copyright 2004, with permission from Elsevier.
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Surgically induced knee joint arthritis appears to be more
sensitive to von Frey hair testing than to Randall-Selitto
analgesiometry [14,56]. Bilateral decreases of mechanical
PWT measured with von Frey filaments occur in the K/C
knee joint arthritis model [52].

Thermal sensitivity of the paw has been measured in
arthritic rats using the hot-plate test and the paw with-
drawal latency (PWL) to noxious heat. A unilateral
decrease of PWL is observed in rats with a K/C knee joint
arthritis [20,24,47]. Heat hyperalgesia was observed for
less than 48 hours by one group [24,47] but lasted for at
least two weeks in another study [20], which would be
consistent with the prolonged time course of the K/C
arthritis as mentioned earlier [see 33]. Mice with a K/C
knee joint arthritis also show decreased PWL but
unchanged hot-plate latency, which is the time until the
animal shakes or licks its hind limb [25]. No thermal
hyperalgesia has been found in the surgically induced
knee joint osteoarthritis model [56].

These tests assess secondary hyperalgesia or allodynia,
which has been reported in patients with osteoarthritis
but is not very common [13]. The following direct meas-
ures of knee joint pain have been developed recently.

Mechanical sensitivity of the knee

The threshold for hind limb withdrawal reflexes evoked
by compression of the knee has been measured in arthritic
rats and mice [37,51,53]. The knee joint of rats is com-
pressed with a calibrated forceps equipped with force
transducers (strain gauges) whose output is amplified,
digitized and recorded on a computer and/or displayed in
grams on a liquid crystal display screen [33,51,53]. Hind
limb withdrawal reflexes in mice have been assessed by
scoring the intensity of the manual compression of the
knee required to evoke the reflex [37]. Withdrawal thresh-
olds for stimulation of the arthritic, but not the contralat-
eral, knee decrease in rats with K/C arthritis [51,53] and in
mice with CFA-induced knee joint arthritis [37]. This may
be an important difference to the measurement of second-
ary mechanical allodynia in the PWT test that has shown
bilateral changes in the K/C knee joint arthritis model
[52].

Struggle threshold angle of knee extension

Reduced range of motion and mechanical sensitivity of
the arthritic knee have been assessed by measuring the
struggle threshold of the knee extension angle [33,35]. In
this quantitative test the tibia is extended until the rat
shows struggling behavior, while the femur is held in
position. The extension distance that the heel travels dur-
ing movement is measured to calculate the extension
angle by a trigonometric function that uses the length of
the tibia and extension distance. In rats with knee joint

arthritis induced by K/C [33] or CFA [33,35] the struggle
threshold angle of the extension of the arthritic knee is
decreased compared to the contralateral knee for nearly
two weeks in the K/C model and for 2–3 weeks in the CFA
model. Figure 2 shows the time course of decreased strug-
gle threshold in the K/C arthritis model.

Vocalizations evoked by compression of the knee

Rodents vocalize in the audible and ultrasonic ranges.
When evoked by noxious stimuli, audible vocalizations
represent a nocifensive reaction whereas ultrasonic vocal-
izations in the 22 kHz range reflect an emotional-affective
response [51,54]. The threshold of audible vocalizations
has been measured by compressing the knee of manually
restrained rats with a calibrated forceps as described above
[33]. Vocalization thresholds are significantly decreased
for one week in rats with a K/C arthritis (see Figure 2) and
for two weeks in the CFA knee joint arthritis model [33].
A recording chamber and computerized analysis system
has been developed to measure simultaneously audible
and ultrasonic vocalizations evoked by stimulation of the
knee [51,54]. Rate and duration of audible and ultrasonic
vocalizations are increased in rats with a K/C knee joint
arthritis [51]. It should be noted that the functional rela-
tionship between audible and ultrasonic vocalizations,
which are generated by different neural mechanisms, has
not been addressed in these studies. Vocalizations that
occur during stimulation (VDS) and vocalizations that
outlast the stimulus (vocalization afterdischarges, VAD)
have also been analyzed separately. VDS are organized in
the brainstem at the medullary level whereas VAD are
organized in the limbic forebrain, including the amy-
gdala. Figure 3 shows that both VDS and VAD increase in
rats with a K/C arthritis [54].

Pain assessment in patients with arthritis
Mechanical pain thresholds, range of motion, weight
bearing and gait analysis have been measured in patients
with knee joint arthritis. In addition, a variety of patient
self-report questionnaires are frequently used to assess
pain and function in patients with arthritis, including the
Visual Analog Scale (VAS) and other rating scales, McGill
Pain Questionnaire (MPQ) and its short form (SF-MPQ),
Western Ontario and McMaster Universities Osteoarthri-
tis Index (WOMAC), Health Assessment Questionnaire
(HAQ), Medical Outcomes Study 36-Item Short-Form
Health Survey (SF-36), and Disease Activity Score (DAS
28) [58].

Pain thresholds

Mechanical thresholds for pain are decreased in patients
with osteoarthritis or rheumatoid arthritis [59]. Figure 4
shows the results obtained with von Frey filaments
applied to the arthritic knee similar to studies in animals
(see above). Whereas patients with osteoarthritis or rheu-
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Time course of the changes of three outcome measures in rats with a kaolin/carrageenan (K/C)-induced arthritisFigure 2
Time course of the changes of three outcome measures in rats with a kaolin/carrageenan (K/C)-induced arthritis. (A) Circum-
ference of the knee before and after K/C injection. (B) Angle at which the knee could be extended before eliciting struggling 
behavior in the rat. (C) Vocalization threshold of the compression force, which was applied to the knee. Post-injection time is 
expressed as hours (h) or days (d) after K/C injection. Pre-injection control was taken one day before the injection (-1 d). 
Asterisks indicate values significantly different from the pre-injection control value by one-way ANOVA followed by the Dun-
nett's posthoc test (n = 10). Symbols and error bars represent mean ± SE. Reprinted from [33], Copyright 2002, with permis-
sion from Elsevier.
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Increased audible and ultrasonic vocalizations in the K/C model of arthritic painFigure 3
Increased audible and ultrasonic vocalizations in the K/C model of arthritic pain. (A, B) Original recordings of ultrasonic vocal-
izations evoked by innocuous (upper trace) and noxious (lower trace) stimulation of the knee joint in a rat before (A) and after 
(B) induction of arthritis with intraarticular kaolin and carrageenan injections. Mechanical stimuli were applied for 15 s; dura-
tion of the recording period was 1 min. Vocalizations during and after stimulation (VDS and VAD, respectively) were analyzed 
separately. (C) Duration of audible and ultrasonic VDS increased significantly 6 h after induction of arthritis compared to the 
values measured in the same animals before arthritis (n = 16). Stimuli of innocuous (left side) and noxious (right side) intensi-
ties evoked VDS of longer duration in arthritic animals compared to controls. (D) Duration of ultrasonic, but not audible, VAD 
following innocuous (left) and noxious (right) stimuli increased significantly in the arthritis pain model (6 h postinduction; n = 
16). Symbols and error bars represent mean ± SE. ** P < 0.01, *** P < 0.001. Reprinted from Han JS & Neugebauer V [54]. 
PAIN 2005;113-211-222. Used with permission from the International Association for the Study of Pain®.
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matoid arthritis have increased thresholds for mechano-
sensation, their cutaneous pain thresholds are lower than
those of normal subjects [59].

Range of motion and stiffness

An ultrasonic device has been used to measure the posi-
tion of external markers attached to anatomical reference
points of the legs in the pendulum test of Wartenberg
[60]. Patients with rheumatoid arthritis show increased
knee stiffness (damping ratio) and reduced maximal
amplitude of flexion and extension. Reduced range of
motion has also been measured in patients with knee
osteoarthritis [61].

Weight bearing and gait analysis

In patients with knee osteoarthritis, the percentage of
pressure on forefoot and hindfoot (static pedobarogra-
phy) and the peak pressures on forefoot, midfoot, and
hindfoot (dynamic pedobarography) have been meas-
ured using a force platform with independent pressure-
measuring cells [62]. Analysis of the pressure map showed
that the percentage of hindfoot pressure during standing
and peak pressure of the forefoot during walking are lower
in patients with osteoarthritis, reflecting weight bearing
changes. Spatiotemporal and kinematic data of patients
with knee osteoarthritis have been obtained using a com-
puterized gait analysis system with video cameras [63].
External reflective markers are placed on anatomical refer-
ence points of the legs to determine the limb position,
and two force plates measure ground reaction forces. In
the osteoarthritis group, walking velocity, cadence (steps/
min) and stride length are reduced, stride time and double
support time are increased, and the overall stance phase is
prolonged. Knee flexion during stance and swing phases is
reduced. Extensor and flexor moments (Nm/kg) are also
altered and the peak values of ground reaction forces are
lower, suggesting gait changes in osteoarthritis patients.

Pain assessment in self-report questionnaires

The Visual Analog Scale (VAS) has been used in patients
with osteoarthritis and rheumatoid arthritis affecting the
knee [59]. Other pain scales include numeric rating scales
and the Neuropathic Pain Scale (NPS) for osteoarthritis
[64]. The McGill Pain Questionaire (MPQ) uses word
descriptors (sensory, affective and evaluative) and an
intensity scale to generate three pain scores, the pain rat-
ing index, number of words chosen and Present Pain
Intensity (PPI) index [65]. The Short-Form McGill Pain
Questionnaire (SF-MPQ) includes sensory and affective
descriptors, which are rated on an intensity scale to gener-
ate three pain scores (sensory, affective and total). The SF-
MPQ also includes the PPI index of the standard MPQ
and a VAS [66]. MPQ and SF-MPQ have been used for
pain assessment in patients with arthritis.

The Western Ontario and McMaster Universities Osteoar-
thritis Index (WOMAC) is one of the most commonly
used measures of pain and physical disability in patients
with osteoarthritis of the hip and/or knee [67,68]. Its reli-
ability and validity have been demonstrated in a range of
patient groups and interventions. The WOMAC evaluates
three dimensions (pain, stiffness and physical function)
using a numeric rating scale (Likert version) or VAS. In
addition to the score of each subscale, an index score or
global score is calculated.

The Brief Pain Inventory (BPI) is an established tool for
the assessment of cancer pain and has recently also been
used in patients with osteoarthritis [69]. The BPI includes
two numerical rating scales that assess the severity of pain
and the impact of pain on daily functions (interference).
The four-item severity subscale asks patients to rate their
worst pain, least pain, average pain over the previous 24
hours, and pain right now. The seven-item interference
subscale of the BPI assesses general activity, walking abil-
ity, normal work, mood, sleep, relations with people, and
enjoyment of life. A modified BPI short form assesses
three pain severity items (worst pain, pain on the average,
and pain right now) and five interference items (walking
ability, mood, sleep, relations with others, and ability to
concentrate) [70].

The Health Assessment Questionnaire (HAQ) and its
derivatives have been used in patients of osteoarthritis
and rheumatoid arthritis as a predictor of functional and
work disability, costs, joint replacement surgery, and mor-
tality [71,72]. The full HAQ assesses five dimensions (dis-
ability, pain, medication effects, costs of care, and
mortality) with a scale of 20 activities of daily living
(ADL) in eight categories and a VAS for pain. The short
HAQ contains only the HAQ Disability Index (HAQ-DI)
and the patient global and pain visual analog scales
(VAS). Several modifications of the HAQ have been devel-
oped [58]. The multidimensional HAQ (MDHAQ)
includes additional ADL and three psychological items
concerning sleep, anxiety and depression. The clinical
HAQ (CLINHAQ) includes anxiety and depression scales,
a pain diagram, fatigue scale and other scales.

The Medical Outcomes Study 36-Item Short-Form Health
Survey (SF-36) is a generic, non-disease-specific question-
naire, which includes eight scales that assess limitations in
physical activities, limitations in social activities, limita-
tions in usual role activities because of physical problems,
pain, general mental health (psychological distress and
well-being), limitations in usual role activities because of
emotional problems, vitality (energy and fatigue), and
general health perceptions [73]. The Arthritis-Specific
Health Index (ASHI) for the SF-36 includes the eight-scale
SF-36 and five arthritis-specific measures of knee pain on
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Altered thresholds for mechanosensation (A) and pain (B) in patients with rheumatoid arthritis and osteoarthritisFigure 4
Altered thresholds for mechanosensation (A) and pain (B) in patients with rheumatoid arthritis and osteoarthritis. (A) Mechan-
ical sensation thresholds (g) for normal (Norm), rheumatoid arthritis (RA) and osteoarthritis (OA) patients, determined by von 
Frey monofilament testing. The RA and OA groups had significantly higher average mechanical sensation thresholds in both 
knees. Monofilament diameter scores for each knee were converted to grams per protocol convention for threshold determi-
nation. Average and standard error mechanical sensation scores for both knees and for the most symptomatic (worst) knee 
are demonstrated. * P <0.05 when compared to normal controls, analyzed by paired and unpaired Student t-tests. (B) Mechan-
ical pain threshold scores (g) for Norm, RA and OA patients, determined by von Frey monofilament testing (see A). The aver-
age pain threshold for both knees and for the most painful (worst) knee was significantly lower in RA patients than in the 
Norm group. The average pain threshold for both knees and for the most painful knee in OA patients was significantly lower 
than in the Norm group. * P < 0.05 when compared to normal controls, analyzed by paired and unpaired Student t-tests. 
Reprinted from [59], Copyright 2003, with permission from Elsevier.

A mechanosensation

B pain
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weight bearing, time to walk 50 feet, physician global
evaluation of symptom severity and impact, patient glo-
bal evaluation of symptom severity and impact, and pain
intensity VAS [74]. The ASHI has been used in patients
with osteoarthritis and rheumatoid arthritis.

The Disease Activity Score (DAS) and its modified version
including 28 joint count (DAS28) have been developed to
measure disease activity in patients with rheumatoid
arthritis [75]. The DAS provides an absolute number that
can be compared to other patients and to past and future
scores in the same patient. Measures include a swollen
joint count, tender joint count, acute-phase reactant
(erythrocyte sedimentation rate or C-reactive protein),
and patient assessment of global status. Pain assessment
in the DAS is only indirect via the global status assess-
ment.

Conclusion
Animal models of different forms of arthritis have been
developed for the assessment of knee joint pain. Limita-
tions of their ability to mimic fully a condition as complex
as arthritis in humans need to be considered carefully.
Measurements of knee joint pain associated with arthritis
in animal models include indirect (weight bearing, gait
analysis, spontaneous mobility, and sensitivity of the paw
to von Frey filaments or heat) and more direct measure-
ments (probing the sensitivity of the knee, knee extension
angle, and vocalizations evoked by stimulation of the
knee). In patients with knee joint osteoarthritis or rheu-
matoid arthritis, physical measures include testing the
mechanosensitivity of the knee, range of motion, weight
bearing and gait analysis, whereas frequently used patient
self-report questionnaires for pain assessment include the
VAS and other rating scales, MPQ, WOMAC, BPI, HAQ,
SF-36, and DAS.
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