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Techniques for
Cubic Algebraic Surfaces

Thomas W. Sederberg
Brigham Young University

Research interest in algebraic surfaces is increas-
ing. This survey of techniques for dealing with cubic
algebraic surfaces includes some classical results as
well as several recent innovations. We resume the
survey begun in the July 1990 issue of CG&A' with the
concept of derivative continuity.

Derivative continuity

The usefulness of implicit surfaces as free-form
modeling primitives increases if they are amenable to
being pieced together with derivative continuity.

12 0272-17-16/90/0900-00012501.00 ©1990 IEEE

Parametric surface patches lend themselves to piece-
wise constructions more naturally than do implicit
surfaces. Two reasons for this are that parametric
patches are defined over a finite domain, and they
have distinct boundary curves. In contrast, implicit
surfaces can be of infinite extent. Much of the follow-
ing discussion on continuity conditions for piecewise
implicit surfaces was discussed in detail by Warren.”

The problem of derivative continuity between two
implicit surfaces can be approached as follows: Given
a surface S,(x, y, z) = 0, find a second surface S,(x, y,
z) = 0 that is G" continuous (continuous to n deriva-
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Figure 1. (a) G’continuity, (b) G* continuity, (c) G? continuity.

tives) with S, along a boundary curve. The boundary
curve is defined as the complete intersection of S,
with an auxiliary surface B(x, y, z) = 0. Then S,(x, y, 2)
= 0 and S,(x, y, z) = 0 are G" continuous along the
curve of intersection of S; N Bifand only if

Sy(x,y,2) = F(x,y, 2)S)(x, y, 2) + G(x, ¥, 2)B™'(x, y, 2)

where F(x, y, z) and G(x, y, z) are any polynomials.?

Let’s discuss what this means for G’ and G continu-
ity. G° (positional) continuity means that S, contains
the curve S; N B. In other words, S,(x, y, z) = 0 for any
point (x, y, z) for which S;(x, y, z) =0 and B(x, y, z) =
0. We can easily verify this.

Here S, and S, are G* continuous if they are G° and
also if they have the same normal direction at each
point along S; N B. The (x, y, 2) coordinates of the
normal vector are given by the partial derivatives of
the surface with respect to x, y, z. To verify that S, and
S, are G', we must show that at any point along the
curve S; N B, the normal vector for S,—(S,, S;, $;,)—
is parallel to the normal vector for S,—(S,,, S, S,,).
Using the subscript x to indicate partial differentia-
tion with respect to x,

S,y =F,8, +FS,,+ G,B*+ 2GBB,
But along S, "B, S, =B =0, so0
Sax=FSy,
Therefore,

(SZX’ S SZZ) = F(S]x’ Sly’ Slz)

2y’
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Figure 2. G!
cubic elbow.

Figure 1 shows a cylinder S,(x,y,2) =y* +z° - 1,a
boundary plane B(x, y, z) = x — 2, and a cubic surface
S,. Figures 1a, 1b, and 1c show S, and S, with G°, G,
and G* continuity, respectively. Note that F(x, y, z) is
atmost degree 1. Also, G(x, y, z) is of degree 2 in Figure
1a, degree 1 in Figure 1b, and a constant in Figure 1c.
Figure 2 shows an unexpected use for a cubic surface
as an elbow that is G! with two circular cylinders.? An
elbow surface is typically modeled using a quarter
torus, which is a degree 4 surface.

Piecewise algebraic surfaces

In this section, we briefly review what has been
termed piecewise algebraic surface patches.® The re-
lated scheme for defining planar algebraic curves has
been discussed elsewhere.*

A piecewise algebraic surface patch has the follow-
ing characteristics:

1. There is a meaningful relationship between the
coefficient values and the shape of the surface.

13
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Figure 3. Cubic control points.

2. The patch has finite extent, being bounded by a
tetrahedron.

3. A mesh of patches can be pieced together with
derivative continuity.

4. It can be assured that the patch is single valued in
a specified direction.

A piecewise algebraic surface patch is defined using
a reference tetrahedron and a regular lattice of control
points imposed on the tetrahedron. Coefficients as-
signed to the control points provide a meaningful way
to control the shape of the surface patch. We define a
continuous scalar function with respect to position
within the tetrahedron. Thus, every point inside the
tetrahedron has a scalar function value associated
with it. Generally, some regions within the tetrahe-
dron will have negative function values and some
regions, positive function values. At the boundary
between the positive and negative regions lies a sur-
face whose function value is zero. This surface is the
piecewise algebraic surface patch.

The scalar function is defined using barycentric co-
ordinates s, t, u, v. These four coordinates are con-
nected by the relation s + ¢ + u + v= 1. For an arbitrary
tetrahedron with vertices V,p00, Vonoo» Voono» and
Voons the barycentric coordinates of a point P are the
values s, t, u, v, as defined by

P=5V,000 + tVin00 + V00 + VVooon
s+t+u+v=1 (1)

14

where P and the V’s are points in 3D space.
The control points Vi, form a lattice on the tetrahe-
dron such that

i )i 1
Vi = HVnooo t Vionoo + ;Votmo + HVOOOH

i,j k,120; i+j+k+I=n (2)
A degree n surface patch requires (n + 1)(n + 2)(n +
3)/6 control points. Figure 3 shows the control points
for the case n = 3. Note that V,,,, is hidden in this
view.

We denote by w;;, the control-point coefficients, and
the scalar function is defined

fistuv=Y w I ik

S$HWVI=3 Wi o
i jklIz20

i+jrk+l=n; s+t+u+v=1 (3)
The tetrahedral clipping is expressed by the inequal-
ity s, t, u, vz0.

Let’s take a closer look at the properties of piecewise
algebraic surface patches.

e Localized influence of control-point weights. A
control-point weight influences the function f{s) most
directly near the control point. In fact, the contribu-
tion of a particular control point’s weight to the func-
tion f{s) in Equation 3 can be shown to be maximum at
the control point. Qualitatively, this means that if
AVii) is negative (positive), then decreasing (increas-
ing) the value of w;3, will tend to push the surface f{s)
= 0 away from Vi, whereas increasing (decreasing)
the value of wyy, will tend to attract the surface toward
Vi

This type of control is illustrated in Figures 4a
through 4c, which show a series of three cubic alge-
braic surface patches whose control-point weights are
identical, except for the weight of the bottom right
vertex. The value of that weight is —4 in Figure 4a, -2
in Figure 4b, and 0 in Figure 4c. As you can see, the
effect of modifying one weight tends to be quite local,
especially for corner control points. In these figures,
white control points have a coefficient of zero, green
means a positive coefficient, and red means negative.
e Point interpolation. The value of f(s) at any of the
four tetrahedral vertices is the value of the weight of
that vertex. Equation 3 easily verifies this, showing
that the algebraic surface f{s) can be forced to interpo-
late a corner vertex by setting the weight of that vertex
to zero. Note that this is not generally true for any
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Figure 4. Cubic surface patch with weight of bottom right vertex (a) -4, (b) -2, (c) 0.

control point other than the corner
vertices. Figure 4c illustrates point
interpolation.

o Line interpolation. If all the
weights of all n + 1 control points
along an edge are zero, the entire
edge interpolates the surface f{s) =
0. This is also easily verified from
Equation 3. Figure 5 illustrates this
with a hyperbolic paraboloid that
interpolates four edges of the tetra-
hedron. Eight of the 10 control-
point weights in Figure 5 are zero.
¢ Gradient control. If the weight
of a corner control point is zero,
along with the weight of two of its
three nearest neighbors, the sur-
face will be tangent to the plane
defined by the three control points whose weights are
zero.

e Edge intersections. The value of the function f(s)
along any of the six tetrahedral edges can be ex-
pressed as a univariate Bernstein polynomial whose
coefficients are the n + 1 control-point weights along
the edge. This means that if all the weights are posi-
tive (or negative), then the algebraic surface patch will
not intersect that edge. It also means that the surface
will intersect the edge exactly once if there is exactly
one sign variation in the sequence of control-point
weights along the edge.

o Avoiding self-intersections. A danger of algebraic
surfaces is that a surface can intersect itself. We can
avoid this within the region of the tetrahedron by
imposing a monotonicity condition on the control
points. Consider all lines defined by any two control

September 1990

Figure 5. Hyperbolic paraboloid.

points in the tetrahedron. Of that
set of lines, consider all lines paral-
lel to a given tetrahedral edge. If the
weights of all control points on
each of these lines increase (or de-
crease) monotonically in the same
direction, then any line parallel to
the edge will intersect the edge at
most once. We can see this by ex-
amining the directional derivative
of fls) in the direction of the edge. If
the monotonicity condition is sat-
isfied, then the directional deriva-
tive will be everywhere positive (or
negative) within the tetrahedron.

A crucial property of this alge-
braic surface patch formulation is
that it inherits most of the tools of Bezier curves and
surfaces. We can subdivide the surface by subdivid-
ing the tetrahedron; we can perform degree elevation
and reduction; and we can impose cross-boundary
derivative continuity. Derivative continuity is
achieved simply by imposing derivative continuity
on the f(s) function of two adjacent tetrahedrons.®
Figures 6a and 6b illustrate two C' cubic algebraic
surface patches.

The continuity conditions can be easily stated. Fig-
ure 7 highlights the six subtetrahedrons on one face of
a cubic piecewise algebraic surface patch, along with
the six subtetrahedrons on the neighboring patch.
Each subtetrahedron has four vertices with corre-
sponding coefficients. Thus, we can view each sub-
tetrahedron as a linear piecewise algebraic surface
patch; the algebraic surface that each defines is a

15

Authorized licensed use limited to: Brigham Young University. Downloaded on January 29, 2009 at 10:39 from |IEEE Xplore. Restrictions apply.



Figure 6. C* cubic surface patches.

plane. Two surfaces are C' if each
of the six boundary subtetrahedrons
defines the same plane as does its
immediate counterpart on the
neighboring patch.

An alternate approach is to de-
fine the patch within a parallelepi-
ped®” instead of within a tetrahedron,
using tensor product blending
functions. This has the disadvan-
tage that the degree of the algebraic
surface would be 3n. The advan-
tages are that parallelepipeds are
much easier to work with than tet-
rahedrons and that we can define
our functions with trivariate tensor product B-
splines, solving the continuity problem.

Macro patches

It is challenging to work out all the continuity con-
ditions for an extended mesh of piecewise algebraic
surface patches. Indeed, that it is possible to fit an
extended mesh of such surfaces with C' continuity is
not obvious. This section presents one method of
grouping together a number of piecewise algebraic
surface patches into a macro patch that is always C*
with three neighbors. There are several methods for
forming a macro patch. Wolfgang Dahmen® and An-
drew Worsey originated the idea of using macro
patches. Dahmen determined that it is actually possi-
ble to obtain a mesh of C' quadric surfaces using

16

Figure 8.Three cubic surface
patches.

Figure 7. Subtetrahedrons.

macro patches. The macro patch
presented here is a variation of his
original idea.

Figure 8 illustrates the problem
we wish to solve. It shows three
cubic surface patches joined at
their corners. At each corner, the
two neighboring surfaces have the
same tangent plane. The problem
is to fill in the hole with a surface
that is C' to the initial three sur-
faces. If we can solve this problem,
we have solved the problem of how
to construct an extended C' mesh
of cubic surface patches.

It quickly becomes apparent that it is not possible to
fill the hole using a single surface patch. The analo-
gous problem for cubic triangular parametric surface
patches is solved using the Clough-Tocher scheme of
splitting a patch into three pieces, thereby generating
additional degrees of freedom sufficient to satisfy the
continuity conditions. Likewise, it turns out that if
our piecewise algebraic surface patch is splitinto nine
piecewise components, enough degrees of freedom
are generated for C' continuity between all adjacent
patches. Figure 9a shows the split, and Figure 9b
shows the tetrahedrons that enclose the component
surfaces.

Actually, this macro patch satisfies its continuity
conditions with 10 degrees of freedom to spare. Thus
we can see that the macro patch provides C' continu-
ity with three neighbors and still has 10 coefficients
left over to manipulate the shape of the macro patch.
Figure 9c shows the patch with its 10 control points,
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Figure 9. (a) Nine-component macro patch, (b) macro patch tetrahedrons, (c) macro patch with 10 control

points.

which influence the shape of the surface just like the
control points of an individual piecewise algebraic
surface patch.

Parameterizing cubic algebraic
surfaces

Cubic surfaces have the valuable property that they
can be parameterized. Thus, models consisting of
cubic piecewise algebraic surface patches (using, for
example, macro patches) can be converted to a para-
metric representation. This section shows how to im-
pose a parameterization on a cubic algebraic surface.
More detailed discussions appear elsewhere.®*°

The 27 lines

One fascinating result from classical geometry is the
fact that every nonsingular cubic algebraic surface
contains exactly 27 straight lines. Nonsingular means
that the surface does not contain any double points.
These lines were discussed at length in the mathemat-
ical literature of 50 to 120 years ago, and even an
entire book was devoted to the subject.’* These lines
hold the key to parameterization.

Existence of 27 lines

That the 27 lines exist can be seen most easily in the
parametric equation of a cubic surface. Consider the
parametric equation of a surface given by

_ Pt
TP (st

P fs,t)

V=P (s

September 1990

. P,(s,t)
P,(s,t)
where P,(s, 1), Py(s, 1), P,(s, t), and P,[s, t) are cubic
polynomials in s and t. As discussed in the section on
base-point coercion in part one of this tutorial,! a
cubic implicit surface can be represented as a cubic
parametric surface with six base points.

The existence of the 27 lines can be shown in terms
of these six base points. To begin with, each base point
maps to a line on the surface, because any plane inter-
sects a base point exactly once. However, the only
geometric object that intersects a plane exactly once is
a straight line. This accounts for six of the lines.

A general line in parameter space maps to a cubic
curve on the surface. However, if a line in parameter
space contains a base point, its degree in three space
is 2, and if a line passes through two base points in
parameter space, its degree in three space is 1, making
it a straight line on the surface. There are (5) = 15 ways
that a straight line can pass through two base points,
and they account for another 15 of the lines.

A general conic in parameter space maps to a curve
of degree 6 in three space. However, if the conic con-
tains five base points, it maps to a straight line. There
are (%) = 6 ways that a conic can pass through five of
the six base points, accounting for the final six straight
lines.

If the parametric equations have real coefficients,
then the base points must either be real or come in
complex conjugate pairs. If all six base points are real,
then all 27 lines are real. If two of the base points are
complex (forming a conjugate pair), then 15 of the
straight lines are real. If four of the base points are
complex (forming two conjugate pairs), then seven
lines are real. Finally, if all the base points are com-

17

Authorized licensed use limited to: Brigham Young University. Downloaded on January 29, 2009 at 10:39 from |IEEE Xplore. Restrictions apply.



Figure 10. Cubic elbow surface.

plex, then three lines are real. The three real lines are
formed by straight lines in parameter space going
through two base points that are a conjugate pair.

Real lines can be identified for the cubic surface in
Figure 2. Figure 10 shows a more extended region of
the surface, and Figures 11a and 11b show two of the
real lines.

Computing the 27 lines

Locating the 27 lines is simple if we are given a
parametric equation and six base points. However, we
are forced to work from the implicit equation of the
surface. Let’s look at a robust method for computing
all 27 lines. It is relatively expensive to compute one
line, but having one line in hand, we can compute the
remaining 26 lines systematically by solving a small
number of quintic univariate polynomials.

There are exactly 27 lines on a cubic surface if that
surface is nonsingular. If the surface happens to be
singular, there are still straight lines on it. Of the sev-
eral methods for parameterizing a cubic surface,® one
method doesn’t require any knowledge of the lines,
but the parameterization involves a square root. A
second method requires only one real line, but it is a
two-to-one parameterization (every point on the sur-
face is covered by two parameter pairs). The best pa-
rameterization (and the one we discuss here) requires
two skew real lines. Thus, no parameterization
method requires us to compute all 27 lines.

We can find the equation of one line as follows: If the
implicit equation of the surface is given by

_ 3
fx,5.,2) = Copp + C300X" + Cozal” + CoaZ” +
2
Ca00X> + Copol” + CopaZ” + Crp0X +

Cor0Y + Cop1Z + Co10X°Y + Cra0XY” +

18
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Figure 11. Two lines on a cubic surface viewed from different angles.

ConX°Z + CppXZ2 + CopnV°Z + CoraV2Z° +

C111XYZ + C110XY + C101XZ + Cy11YZ
and the line is expressed parametrically as
x=t y=y,t+twnt, z=2z,+ 2,

then substituting the parametric equation of the line
into the implicit equation of the surface yields an
equation that is degree 3 in t. If a line lies entirely on
the cubic surface, then this equation must be identi-
cally zero. The conditions for the equation to be iden-
tically zero are that the coefficients of £, £, £!, and £°
are all zero. Those coefficients are all cubic in yy, y;,
2y, and z;:

e Coefficient of 1%
Cooo + Cosa¥s + CoosZo + CozoVa + CoozZg +
Co1¥o + ComZo + Coa1Ye%0 + Co12YoZ0 +
Co11YoZo = 0

e Coefficient of t':
3CoaaVaVe + 3Co03ZZo + 2Cop0¥1Y0 +
2Cp0371%0 + C100 + Cor0¥1 + Co0121 + C120¥o +
Cr02Z0 + Con1VoZ1 + 2ConY1YoZo + 2C12Y0%120 +
Co12Y1%5 + C111¥0%0 + C110¥o + Cr01%0 +

C011Y0Z1 t Co11Y1%0 =0

e Coefficient of #*:
3Co30¥aY0 + BCo03Z3Z0 + Cago + Coz0¥i +
Co02Z3 + C210¥0 + 2C100Y1Y0 + Can1%0 +
2C1052170 + 2C21¥1Y0%1 + CozViZo + Cor2VoZs +
2C912Y12129 + C111V021 + C111¥1Zg + C1a0Y1 +

C101Z1 + Cp11Y12, =0

IEEE Computer Graphics & Applications
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Coefficient of £*:

Cago + Coo¥3 + CooaZs + Ca10¥1 + Cazo¥s +
CoorZ1 + C100Za + CognVi21 + CoraVaZs +
€111512, =0

We can find a solution to this set of four nonlinear
equations in four unknowns using standard numeri-
cal methods, and we know that at least three real lines
exist.

Now let’s examine a procedure for finding the re-
maining 26 lines on the cubic surface, given one line.
Recall that we do not need to compute all 26 of them,
but we can stop as soon as we find a second real line
skew to the first real line. After changing coordinates
if necessary, the given line will be the z axis. The
implicit equation must then vanish identically when
x and y are both zero; hence all nonzero terms of F
must have an x or a y. Thus F can be written

F(x,y,z,w) = xP(x,y,2,w) + yQ(V,2,W) (4)

where P and Q are quadratic forms in the variables
indicated. The pencil of planes through the z axis can
be given as x — Ay = 0. Substituting Ay for x in F gives
the intersection curve of F = 0 with the plane x = Ay,
which consists of the line y = 0 and a residual conic

Ay* + Byz + Cz* +Dyw + Ezw + Fw* =0 (5)

where A, ..., Finvolve A. The condition for the resid-
ual conic to degenerate to a pair of lines is

B D
CE
E

1 o
2

oWl
Do
N

F

and this turns out to be a polynomial of degree 5 in A,

a’+bAt+ A3+ dA +eh+ f=0 (6)

Once we find a root of Equation 6, we can factor the
conic (Equation 5) to get two lines. In more detail,
letting F(x, v, z, w) be the homogeneous equation of
the cubic surface, oriented with a line on the z axis

F(x, ¥, 2, W) = Gg00X> + Qy1gX°Y + Ay90XY” + Gga0)” +
U1 X°Z + 0191XVZ + Qgp1V°Z + QyopXZ° + Ugyy2° +

September 1990

Agp3Z® + AppeX°W + Qg XYW + Qgpy’ W + Ay  XZW
+ Qg1 VZW + QgpaZ°W + AygoXWP + Ggpy W +
lag,0zW* + agoew®

= X(Ay00X” + Ap10XY + Uyz0Y” + po1XZ + Q111 YZ +
@y092° + QpooXW + Ay10yW + 101ZW + QyoW)

+ Y{(Qoa0)” + Ugy1YZ + Ug122” + Aoy W + Gg11ZW +
AgoW?) + QgpsZ® + ApgpZW + Gy 2W? + QoW

(7)

and by assumption these last four terms must be zero.
The residual conic, obtained by substituting Ay for x,
is given by

A= a300h® + @y30h* + a0k + Aoz
B = a,,\* + ayyyh + agy

C= a1 + agyy

D= aygoh® + ay30h + gy
E=apA + agpy

F=a90M + Gg1o

The coefficients of A in the expanded determinant are
then

a = 403001020100 + 030101019200 ~ awza%oo -
3000501 = 1009501
b = 4(a40004020010 + A300%012%100 + T210%1028100) +
Q90181010110 + A2010118200 T 1111013200 ~
2040501190200 ~ amza%oo — 203009119101 —
3190501 — 2010901110201 = amoa%m
€= 4(U300U0120010 + U2108102010 + 21080128100 T
Qy3001028100) T Az01%101%020 + @201%011%110
+ 41101019110 T 31113011200 + do21%101%200 ~
20405020200 ~ awza%m = 20g1231100200
= 3000511 ~ 20y5108p110101 ~ 3500501 —
20a,0909210201 ~ alooagn — 2041931110501
d = 4(a5190120010 + A12081028010 + A12080128100 +
Qo3001020100) + A201%119020 + 11101019020
+ 011139110119 t Toz19101%110 T To21%011%200 ~
240200300110 — 2Qg128020200 — 00120%10
- ‘12100%11 — 2043000110191 — ‘1030‘1%01 -
204000210111 ~ 20919U021201 ~ ‘1010‘1311
e = 4(ay200120010 + do30%102d010 T Q03020120100
+ Q41100119020 T Q02121019020 T 02190110110
— Q3020550 = 2001500500110 = A120T511 ~
2003000119101 = Q1009521 — 2801000210111
f=40Gy3089120010 + Qp21%011%20 ~

2 2 2
Qp12%020 ~ Q0309011 ~ 0109021

19
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Using these coefficients, we can
compute the five roots of Equation
6.

Parameterizing a cubic
surface

This section discusses how to pa-
rameterize cubic surfaces having
two skew real lines. This parame-
terization requires two skew lines
to be identified on the surface,
which is accomplished using the
development in the previous sec-
tion.

Begin by parameterizing each
line. Call the parameter value on one line s and on the
other line ¢, as illustrated in Figure 11b. The surface
parameterization is created by imagining a variable
line through an arbitrary point on the s line and a
second arbitrary point on the ¢ line. This variable line
intersects the surface at three points: once along the s
line, once along the t line, and at exactly one addi-
tional point. The additional point is assigned the s
and t parameters that define the variable line. This is
a one-to-one parameterization, because to each point
on the surface there exists a unique variable line. Fig-
ure 12 shows a line that intersects the slineat s= 1 and
the t line at t = 4. The third (and final) point at which
that line intersects the surface is assigned parameter
pair (1, 4).

The fact that to each point on the surface there exists
a unique line connecting it with the s and ¢ lines can
be understood by viewing the two skew lines from any
point on the surface. The skew lines will have one
apparent intersection—the path of the unique line
joining the point to the two skew lines.

We now see how to express the surface parametri-
cally using the skew lines. This means that we derive
equations for the x, y, z coordinates of points on the
surface in terms of the parameters s, t. Let the first line
be expressed Py(s) = (x(s), y{s), z(s), 1), where x{s), y(s),
and z(s) are all linear in s. Likewise, we denote the
second line by P,(t). The variable line that contains a
point on the s and t lines respectively is expressed

APy(s) + WPy (1), A+p=1 (8)

Then the points at which the variable line hits the
surface can be found from the equation

JAPy(s) + uPy(1) = 0 (9)

20

Figure 12. Cubic parameteriza-
tion.

Figure 13. Biquadratic parame-
terization.

where f{P) is the homogeneous equation of the cubic
surface as in Equation 7. We expand Equation 9 by
Taylor’s series to get

JPOA? + (VA(Py) - PR +
(VAP,) - PYM? + fPu’? (10)
There are three roots (A, yt) to the homogeneous cubic
Equation 10 which, when substituted into Equation 8,
produce the three points at which the variable line
hits the surface. However, since Py(s) and P,(t) always
lie on the surface for any value of s and ¢, the third
point at which the variable line hits the surface can be
found from Equation 10 to be

(VAPy) - PiA+ (VAPY) - P =0 (11)
With the constraint A + u = 1, we can solve Equation
11 to get

_ Vf(Pl)PO
_Vf(Pl)'Po_Vf(Po)'Pl
— Vf(PO)'Pl
N = VRB,) - P, - VfP)- P,

A

Combining Equations 8 and 11, we obtain the param-
eterization of the surface as

s VAP(1) - Po(s) N
=TS VAP, (1) - Pols) ~ VAPS)) - Py(D)

P.(b VAPy($) - Pr()
B VfPy(s)) - Py(t) = VAP () - Po(s)

P(s,t)

(12)

This turns out to be biquadratic in s and t. Thus, the
skew-line parameterization results in a rational bi-
quadratic parametric surface. Figure 13 shows an ex-
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ample. We can be sure that such a parametric surface
equation has five base points.

Conclusions

This tutorial has presented several tools for defining
cubic algebraic surfaces. Cubic surfaces have the ap-
peal of being low degree, while possessing adequate
flexibility to provide tangent continuity. We have also
seen that cubic surfaces defined using implicit equa-
tions can be parameterized.

Designing by interpolating points and curves makes
controlling the surface between interpolated entities
difficult. The bundle of planes idea also shows little
practical design merit. Warren'? recently made the
valuable observation that base points of arbitrary mul-
tiplicity can nicely be imposed on a rational surface
by assigning zero weights to a corner control point
and possibly some of its neighbors. In this way, the
curve that the base point maps to is easily identified
in terms of Bezier control points and in fact can be
treated as a boundary curve of the patch. This insight
has led to a clever approach to designing n-sided
patches, and can also be used to define low-degree
algebraic surfaces using parametric equations. How-
ever, for cubic surfaces, the boundary curves of the
patch turn out to include straight lines.

The methods we have just seen in part two of this
tutorial seem somewhat promising, but further work
is needed to examine the behavior of macro patches
and to determine whether they can be used for serious
geometric modeling. n
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