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1. INTRODUCTION

Physically unclonable functions (PUFs) are physical systems with well-defined
and stable mapping from a set of inputs (challenges) to a set of outputs
(responses). Mapping is such that the owner of the system can rapidly obtain
the output for any specified input but there is small probability of obtaining
the output in any reasonable time by other parties [Pappu et al. 2002]. PUFs
should be also prohibitively hard to copy (clone), emulate, simulate, or predict.

There is a wide consensus that intrinsic manufacturing variability of mod-
ern and pending deep submicron silicon is an excellent PUF implementa-
tion platform [Gassend et al. 2002b, 2002a; Trimberger 2007; Koushanfar
and Potkonjak 2007; Bolotnyy and Robins 2007]. Silicon technologies form
the basis for almost all computing platforms today, while it is not tech-
nologically possible to reproduce the inherent silicon variability. Security
techniques that employ silicon PUFs have numerous important advantages
over traditional cryptography-based security techniques including much bet-
ter resiliency against physical attacks (e.g., radiation, reverse engineering)
[Anderson 2001; Hoeneisen and Mead 1972], the absence of covert channels
(e.g., power, delay, electromagnetic measurements), and much lower time,
speed, and power overheads [Gassend et al. 2002b, 2002a; Suh and Devadas
2007]. PUFs have been used for a variety of security applications ranging from
ID creation and authentication [Gassend et al. 2002b, 2002a; Trimberger 2007;
Koushanfar and Potkonjak 2007] to hardware metering and remote enabling
and disabling of integrated circuits [Gassend et al. 2002b, 2002a; Trimberger
2007; Koushanfar and Potkonjak 2007; Alkabani et al. 2007].

Our research has two conceptual sources: (i) natural PUF evolution through
vulnerability analysis; and (ii) quest to identify and create the best ways to
leverage reconfigurability to improve PUF’s security and operational proper-
ties. Unfortunately, recent analysis have demonstrated that many of the cur-
rent state-of-the-art PUF structures are susceptible to a variety of security
attacks. Our objective is to design and analyze reconfigurable robust PUFs
that are resilient against different types of attacks.

Our analysis considers four types of PUF security attacks:(i) reverse en-
gineering; (ii) emulation and statistical modeling; (iii) replay (man-in-the-
middle); and (iv) reconfigurability-specific vulnerabilities. Reverse engineering
aims at extracting the delay parameters of each delay element. The goal of em-
ulation attack is to efficiently compress and store the PUF challenge/responses.
Statistical attacks predict the value of the PUF outputs by exploiting the cor-
relation among them and/or between the outputs and inputs. Replay attack
looks for repeated challenges. This attack is in particular dangerous for PUF-
based digital rights management protocols. A related attack, to a certain level,
is the one where PUFs are fabricated in such a way that their replication is
easy for a specific level of manufacturing variability. Finally, reconfigurabil-
ity attacks aim to leverage the properties of reconfigurable implementation
platform to compromise the security of the PUF. Our goal is to create recon-
figurable PUF structures and the accompanying test procedures that ensure
resiliency against all the stated attacks.
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Fig. 1. PUF fundamental building blocks.

The starting point for our research is a new, generic, modular, and easy to
parameterize PUF structure. The structure includes modules for combination
of individual challenge bits, different configuration schemes of delay elements,
and combinations of a subsets of the outputs using combinational circuitry
to defend against the stated attacks. We show how reconfigurability can be
employed to strengthen each of these defense mechanisms, to enable delay
characterization, and to create notions of one-time PUFs.

The remainder of the article is organized as follows. A brief background on
PUFs and variation modeling is given in Section 2. Section 3 presents a survey
of related literature. We analyze vulnerabilities of PUFs and countermeasures
in Section 4. Next in Section 5, we present a testing and characterization
mechanism that is used for defining response error probability, PUF diagnosis,
and compression of the challenge-responses. An approach to designing a se-
cure and reliable PUF that overcomes the current vulnerabilities is presented
in Section 6. In Section 7, a secure FPGA-based authentication system is pre-
sented. We demonstrate the effectiveness of the proposed concept and methods
by extensive simulation and implementation in Sections 8 and 9 respectively.

2. PRELIMINARIES

2.1 Silicon Physically Unclonable Functions

Silicon PUFs exploit manufacturing variability to generate a unique input/
output mapping for each IC. Delay-based silicon PUFs use the delay varia-
tions of CMOS logic components to produce unique responses. The responses
are generated by comparing the analog timing difference between two delay
paths that must be equivalent by logic-level construction, but are different be-
cause of manufacturing variability. The delay-based structures use a digital
component, arbiter, that translates the analog timing difference into a digital
value. An arbiter is a sequential component with two inputs and one output.
The arbiter output is one if a rising edge signal arrives at its first input ear-
lier by at least a threshold value compared to the signal arriving at the second
input. The arbiter’s output is zero otherwise. Figure 1(a) shows an arbiter
implemented using an edge-triggered latch. If the time difference between the
arriving signals are smaller than the setup and hold times of the latch, the
arbiter may become metastable and not be able to produce an accurate and
deterministic output.
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Fig. 2. Parallel PUF structure. The feed forward arbiter (shown in the dashed line) is used to
introduce nonlinearity.

Lee et al. [2004] proposed a parallel delay-based PUF circuit shown in
Figure 2. Generating one bit of output requires a signal to travel through
two parallel paths with multiple segments that are connected by a series of
2-input/2-output switches. As depicted in Figure 1(b), each switch is configured
to be either a cross or a straight connector, based on its selector bit. The arbiter
compares the signal arrival times at the end of parallel paths (i.e., at its in-
puts) to produce the corresponding response. The path segments are designed
to have the same nominal delays, but their actual delays differ slightly due to
manufacturing variability. The difference between the top and bottom path de-
lays on the segment n is denoted by δn on Figure 2. To ensure larger variations,
one could insert additional delay elements on the path segments. The PUF
challenges (inputs) are the selector bits of the switches. The output bit of the
arbiter depends on the challenge bits and is permanent for each IC (for a range
of operational conditions). Parallel PUF’s liability to reverse engineering was
previously addressed by introducing nonlinearities, such as feedforward (FF)
arbiters, in the PUF structure [Gassend et al. 2002b]. Figure 2 also includes
a FF arbiter (dashed line) that controls a switch selector. Unfortunately, our
preliminary study shows even this structure can be reverse engineered using
a combination of combinatorial and linear programming technique [Majzoobi
et al. 2008b].

3. RELATED WORK

There is a wide and diverse body of literature related to the research presented
in this article including reconfigurable computing, secure and trustable com-
puting systems, physically unclonable functions (PUFs), techniques for hard-
ware intellectual property protection, manufacturing variability (MV), and
computer-aided techniques for addressing MV. We restrict our attention only
on the most directly related research and development results. There are four
major conceptual starting points for our research: (i) MV-based unique identi-
fiers (IDs); (ii) security and reconfigurability (FPGAs); (iii) hardware security
attacks; and (iv) integrated circuits (ICs) characterization.

Inevitable manufacturing variability, mainly due to dopants fluctuations,
has been recognized as one of fundamental physical and technological CMOS
scaling barriers in the early and mid-seventies [Hoeneisen and Mead 1972;
Keyes 1975; Mead 1994]. In the late nineties, it again received a great deal
of attention, since the first experimental studies demonstrate the validity of
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early predictions [Asenov 1998]. Inspired by these studies and developments,
Lofstrom at SiidTech in Portland and his collaborators where first to propose
intrinsic silicon MV for ID extractions [Lofstrom et al. 2000]. Soon, several
works from other groups followed [Maeda et al. 2003; Su et al. 2007]. Also,
MV has been used as a basis for creation of high-quality random number gen-
erators [Sunar et al. 2007]. Extraction of unique gate-level features from the
legacy designs for using as IDs was proposed in Alkabani et al. [2008b].

IC IDs are completely static features that provide excellent accounting
mechanisms, but essentially have no security features. A great conceptual
step forward was achieved by [Pappu et al. 2002] who introduced the notion of
PUF. Their initial targeted PUF platform was an optical coherence system. A
significant practical step to enable instantaneous and widespread application
of PUF concept was proposal of Devadas et al. who leverage silicon MV for
this task [Gassend et al. 2002b, 2003, 2004; Lee et al. 2004; Suh and Devadas
2007]. In addition, they developed a set of PUF architectures and a suite of
PUF-based security protocols. These works motivated several silicon PUFs
that use various mechanisms to extract a secret [Ozturk et al. 2008; Jie and
Lach 2008; Tuyls et al. 2006]. Recently, by exploring the relationships between
PUF-based IDs and functionality of the pertinent IC, researchers were able
to create a comprehensive and powerful system of digital rights management
protocols, including remote IC enabling and disabling and passive hardware
metering [Alkabani et al. 2007; Alkabani and Koushanfar 2007]. Interest-
ingly, the application domain of PUFs is much larger; They can be powerful
candidates for creation of a new generation of security and cryptographical
protocols that are intrinsically more resilient against physical and side chan-
nel attacks [Koushanfar and Potkonjak 2007]. This wide range of PUF applica-
tions has one ramification: significantly more stringent operation and security
requirements. There are also conceptually sharply different mechanisms, one
that use small scale reconfigurability, to associate unique IDs to each IC of a
specific design [Koushanfar et al. 2001; Koushanfar and Qu 2001].

Unfortunately, the current generation of MV-based PUFs often is subject to
significant security vulnerabilities. Recently, we have demonstrated surpris-
ingly simple ways to reverse engineer and even emulate several PUF classes
as well as their susceptibility to other types of attacks including (statistical)
guessing and induced instability [Majzoobi et al. 2008b]. Our primary research
objective in this article is to demonstrate that reconfigurability may serve as a
principal component of techniques for PUF fortification against vulnerabilities.

Field-programmable gate arrays are by far the most popular and practical
reconfigurable computing platform [Kuon et al. 2008]. The impact and tech-
niques to address MV in FPGA recently attracted a great deal of attention
[Drimer 2007; Fry and Langhammer 2005; Brizek et al. 2005; Eisenbarth et al.
2007; Glas et al. 2008; Guajardo et al. 2007; Kumar et al. 2008]. Several class
of PUFs for static ID creation including SRAM and Butterfly PUFs were intro-
duced and implemented on FPGAs in Philips Research Lab in Europe [Kumar
et al. 2008; Guajardo et al. 2007]. Important conceptual and positional FPGA
security references include [Wollinger et al. 2004; Trimberger 2007; Guneysu
et al. 2007]. An excellent collection of security and intellectual property

ACM Transactions on Reconfigurable Technology and Systems, Vol. 2, No. 1, Article 5, Pub. date: March 2009.



5: 6 · M. Majzoobi et al.

protection papers can be accessed.1 There are also more recent papers include
[Drimer 2007; Fry and Langhammer 2005; Brizek et al. 2005; Eisenbarth et al.
2007; Glas et al. 2008].

Silicon manufacturing is a widely studied topic in many areas of computer-
aided design. A recent excellent survey on CMOS MV is Bernstein et al. [2006].
There are two set of techniques for gate level characterization. The first one
employs direct wafer microscopic measurements [Friedberg et al. 2005]. The
other set of techniques use nondestructive indirect power and delay measure-
ments and sophisticated techniques for solving systems of overconstrainted
system of linear equation in presence of noisy data [Alkabani et al. 2008a;
Shamsi et al. 2008].

Our primary research objective in this article and our earlier conference
manuscript [Majzoobi et al. 2008a] is to demonstrate that reconfigurability
may serve as a principal component of techniques for PUF fortification against
vulnerabilities.

4. VULNERABILITIES AND SAFEGUARDS

In this section, we discuss the potential vulnerabilities of PUFs. Next, we
outline possible countermeasures and safeguards.

4.1 Vulnerabilities

The PUF vulnerabilities are discussed by presenting attacks. The possible
attacks are as follows:

4.1.1 Reverse Engineering. The reverse engineering attacks aim at esti-
mating component-wise characteristics of the system (e.g., gate delays), so that
the adversary could either clone the system or develop a software counterfeit
for the PUF. Since cloning the PUFs is technologically infeasible, the attacker’s
objective is focused on soft-modeling the structure’s behavior. In an effective re-
verse engineering attempt, the adversary models the system of N components
in polynomial time with respect to N. This is because by linearly increasing
N, one can easily provide countermeasures against the reverse-engineering at-
tacks that have an exponential complexity. Reverse engineering of delay-based
PUF has been previously studied [Gassend et al. 2004; Majzoobi et al. 2008b;
Ozturk et al. 2008].

Let us briefly show the reverse-engineering attack on the delay based PUF
shown in Figure 2 (ignoring the added FF arbiter). Figure 1(b) shows that
each switch can be represented by four delays; di, j, i, j = 0, 1, where i/ j denote
the switch input/ output port indices respectively. However, it can be easily
deduced that this model contains significant redundancy and the only impor-
tant parameter in defining a switch’s effect is the delay difference between its
following top and bottom path segments. One can eliminate the redundancy
and combine the series switches by lumping their delays to abstract thr repre-
sentation of each switch using only one parameter shown as δs in Figure 1(b).

1http://www.cl.cam.ac.uk/∼sd410/fpgasec/
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Fig. 3. An example of emulation attack.

We refer to δ as the (differential) path segment delay. Thus, a linear PUF with
N switches can be fully abstracted using N + 1 parameters.

Since the PUF structure is linear and the delays are additive, we can su-
perimpose the effect of each path segment delay at the arbiter’s input to find
the total delay difference between the top and bottom paths. Note that each
path segment’s delay—depending on the odd or even number of switchings on
its path—can appear on either the top path or the bottom path. The contribu-
tion of the segment to the total delay sum will be either positive or negative
accordingly. Let ci denote the i-th challenge bit in the challenge vector c̄ ∈ B

N,
B ={0, 1}. The result of applying this challenge vector to the PUF in Figure 2
can be formally written as

N
∑

i=1

(−1)ρ
N
i δi + δN+1

r=0

≶
r=1

0, (1)

where a transformation T defined as

ρ
j

i =
⊕

x=i,i+1,..., j

cx = ci ⊕ ci+1 ⊕ ... ⊕ c j (2)

maps the challenges to ρs (i ≤ j). The symbols
⊕

and ⊕ denote the parity
generation and exclusive-or operations respectively. The inequality’s direction
is determined by the PUF response, r, for the given challenge vector. Each
challenge-response pair (CRP) forms an inequality. By collecting enough CRPs,
one can form and solve a system of linear inequalities to estimate the unknown
δs. Note that other PUF structures, even the nonlinear ones, may also be sus-
ceptible to reverse engineering by using a polynomial order of measurements,
and linear/nonlinear modeling.

4.1.2 Emulation. The goal of this attack is to emulate the PUF by effec-
tively storing the CRPs in a memory. If the number of CRPs grows exponen-
tially with respect to the number of inputs, the required memory would be very
large, making the full CRP storage infeasible. Instead, the attackers attempt
at exploiting the predictability of the CRPs (lack of randomness) to achieve
high degrees of compressibility and reduce the storage demands drastically.
For example, if a group of challenges that differ only in their first two bits
produce the same response, there is no need that the first two bits are stored
(Figure 3). A closely relevant attack would be to guess the responses to a given
challenge with high probability by performing statistical analysis on the PUF
responses. The data from the statistical analysis could also be used to effer-
ently emulate the PUF.
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4.1.3 Man-in-the-Middle. During the authentication process, CRPs stored
in the database on a server are compared with those obtained from the PUF. In
case there are a limited number of CRPs stored for each PUF in the database,
the adversary can impersonate the PUF, if he can build a copy of the data base
content. The man-in-the-middle attack involves eavesdropping the communi-
cation between the PUF and authentication server and recording the responses
to the attempted challenges to later impersonate [Pfleeger and Pfleeger 1997].

4.1.4 Reconfiguration. While FPGA provides a versatile platform for im-
plementing the PUF, the possibility of reconfiguring the FPGA by an unautho-
rized party poses a threat. For instance, if an adversary knows how to read
the configuration bitstream and configure the FPGA, then he can gain full
knowledge of the circuit structure. The attacker may reconfigure the FPGA to
remove the nonlinearities or other added transformation circuitry at the input
or output to facilitate reverse engineering by modeling the delays of the linear
parts.

4.2 Countermeasures and Safeguards

The attacks presented in Section 4.1 can be alleviated by taking a number of
safeguards. In Section 4.2.1 we review the countermeasures proposed earlier.
In Section 4.2.2 we introduce new safeguards that are more comprehensive
than the presently available approaches.

4.2.1 State of the Art. To protect PUFs against reverse engineering and
emulation two lines of methods were mainly used: (i) introduction of nonlin-
earities, and (ii) challenge-response hashing [Lee et al. 2004; Gassend et al.
2002a]. The proposed nonlinearity-based methods are typically of two types:
(a) feed forwarding and (b) MAX (MIN) operations.

A feedforward nonlinearity is introduced by inserting an internal arbiter
that compare the signal delays at a certain point in the circuit [Gassend et al.
2002b]. The internal arbiter then forwards the arbitration results to a switch
that is located ahead on the delay path. Figure 2 shows the feedforward ar-
biter in dashed lines. The feedforward arbiter introduces nonlinear behavior
that complicates the reverse engineering process. However, our studies reveal
that nonlinear PUF structures with a small number of feedforward arbiters
are still prone to reverse engineering attacks [Majzoobi et al. 2008b]. To safe-
guard against this attack, multiple interleaved feedforward arbiters must be
used. A major drawback of this protection method is that adding the nonlin-
earities skews the bit probabilities. Thus, the resulting nonlinear PUF is more
vulnerable to statistical modeling and emulation attacks. The added internal
arbiters also increase the circuit response’s instability.

The use of MAX (MIN) functions was first proposed by Lee et al. [2004].
MAX (MIN) operations are carried out on delay values by using AND (OR)
logic gates in the PUF structure. If two rising edge signals with delays d1 and
d2 arrive at a two-input AND (OR) logic, then the delay of the output signal
is do = MAX(d1,d2). AND (OR) logics are inserted in the parallel PUF circuit
and are connected to the bottom and top paths in between or at the end of the
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Table I. Latency and Area of Common Hash Functions

Algorithm Chip area Clock cycles

SHA-256 10,868 1,128
SHA1 8,120 1,274
MD5 8,400 612
MD4 7,350 456

structure. As we will show in Section 8.1, addition of this type of nonlinearity
also renders the circuit more prone to emulation attacks.

As another countermeasure, the use of cryptographic hash function was pro-
posed by Gassend et al. [2002a]. Hashing is performed on both challenges and
responses of the PUF. To estimate the PUF model parameters, the adversary
needs direct responses of the PUF arbiters for known challenges. However the
use of a one-way output hash function inserted immediately after the arbiters
will make the responses obfuscated and obscure. To discover the response, one
needs to invert a one-way function which is known to be a hard problem. This
process should also be repeated until sufficient number of responses are col-
lected. An input hash function is attached to the PUF challenges to prevent
bit-level control of the challenges. Due to the confusion and diffusion prop-
erties of hash functions, the final system is safe against emulation attacks.
A drawback of the hash functions is that they incur significant hardware area
and power overheads. Besides, the PUF needs to evaluate multiple clock cycles
to prepare a standard size input message block to deliver to the hash function
(MD5 can accept variable input message size). The input and output hash eval-
uations by themselves take many clock cycles, imposing a large overall latency
on the system. Table I shows latency (in cycles) and area (in gate equivalents)
of commonly used hash functions [Feldhofer and Rechberger 2006].

4.2.2 New safeguarding methods. Figure 4 shows the global flow of the
new PUF analysis and safeguarding approach. The steps are shown from left
to right on the figure. We start by introducing a novel PUF architecture in
Section 6. The objective for the new architecture is to be resilient against the
attacks introduced in Section 4. The new architecture applies transformations
to both challenges and responses by adding combinational logic to the input
and output of the circuit. Next, we analyze the security of the proposed ar-
chitecture against the outlined attacks. Lastly, countermeasures are added for
safeguarding the architecture.

The objective of the new architecture is to be robust against three groups of
vulnerabilities: (1) sensitivity to operational conditions, systematic, and tem-
poral variations; (2) susceptibility to attacks, including reverse-engineering,
statistical modeling, emulation, and man-in-the-middle attacks; and (3)
reconfiguration-based attacks. Note that the robustness to changes in oper-
ational conditions and systematic/temporal variations ensures the stability of
the resulting PUF responses.

To ensure robustness and resiliency, the proposed PUF structure utilizes
a combination of the following five countermeasures: (i) introduction of tech-
niques for determining the response error probability for each response bit;
(ii) one-time CRP usage, providing a one-time pad security; (iii) using time
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Fig. 4. The overall flow of our approach. New safeguards are introduced to overcome the attack
vulnerabilities.

Fig. 5. Delay characterization circuitry

constrained response evaluation; (iv) placement of PUFs at multiple locations
on the FPGA; and (v) creation of the configure-and-erase method.

5. SECURE AND RELIABLE FPGA-BASED PUFS

In this section, we first present a mechanism to characterize the PUF compo-
nents for a linear structure. There are at least three objectives for PUF char-
acterization: (i) The measured delays and parameters can be used to achieve
a higher robustness against variations in operational conditions and environ-
ment. This is accomplished by estimating the detection error probability for
a given challenge. (ii) Switch delay values fully describe the PUF behavior
and could be stored instead of challenges and responses. (iii) The delay values
can be used to perform diagnosis, calibration and structural modifications for
better performance. A similar test circuit to the one used in this article was
suggested by Wong et al. [2007] as a BIST structure to estimate the delays of
any combinatorial logic on FGPAs.

The suggested delay characterization circuit (Figure 5) consists of three
flip-flops: launch, sample, and capture. A transition is invoked by the launch
flip-flop at the combinatorial circuit under test (CUT) input. The output of the
CUT is sampled t seconds later. The sampled value is compared to the real
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Fig. 6. Arbiter characteristics.

value by an XOR logic and the result is recorded by the capture flip-flop. If t

is smaller (larger) than the CUT delay, then the sampling occurs before (after)
the transition appears at the output, and thus the sampled value would be
different from (same as) the input test signal. Note that the sample FF has
certain setup and hold times which make the FF unable to sense smaller delay
differences. Violation of setup and hold times places the FF into a metastable
state and causes nondeterministic outputs. If t is swept by varying the clock
frequency from fl to fu ( fl < 1/t < fu) with steps of 1 f , at some point the speed
of CUT would be almost equal to the clocking speed. By counting the number
of times the capture flip flop records a sampling error and then by forming a
histogram, it is possible to accurately find the CUT delay.

Figure 6 depicts the probability that the sample FF outputs 1 versus the
clock frequency. The symbol fc marks the frequency at which the sample FF
produces totally random outputs; 1/ fc is in fact equal to the CUT delay. In
other words the clock edge and the signal edge coming from the CUT arrive
at FF at the same time. The transition slope in Figure 6 implies the speed of
the sample flip-flop. For example, flip-flop 1 has smaller setup/hold times than
FFs 2 and 3.

The combinational test circuit used here is a PUF. The procedure is repeated
N times for different challenge configurations. Then, a system of linear equa-
tions is solved to find each switch delay. To save time and efforts, the range of
the scanned frequency can be adaptively adjusted in each iteration to scan a
smaller window around the target frequency. Also instead of linearly sweep-
ing the frequency to spot the transition point, a binary search algorithm can
be used. If the frequency sweep range is partitioned into CF steps, then the
binary search would find the transition point in log(CF) steps [Corman et al.
2001]. Most advanced FPGAs, such as Xilinx Virtex family, provide Digital
Clock Management (DCM) and Phase Locked Loops (PLL) blocks which en-
able building clock synthesizer with on-chip resources. This is useful if a stand-
alone built-in system needs to be designed. In Section 9, we will implement the
characterization circuit on Xilinx Virtex 5 FPGAs and present the measured
results.
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After solving Equation (3) to find the switch delays ( 1 = {δ1, δ2, ..., δN+1} )
and measuring the probabilistic characteristic of the sample flip-flops g(.) (see
Figure 6), the FPGA is reconfigured so that the test circuitry is removed. One
of the sample flip-flops will be used as the PUF arbiter. Since the arbiter re-
sponse only depends on the input delay differences rather than the absolute
values, the flip-flop characteristic, g(.) is transformed to represent the arbiter

characteristic: h(x) = g( fc

x× fc+1
). The estimated values for 1 and h(.) completely

characterize the PUF and are stored in a database to be later used for identifi-
cation and authentication purposes.

5.1 Response Error Probability

Small delay differences at the arbiter inputs can cause metastability and inac-
curacy of the response. Metastable arbiters are extremely sensitive to changes
in operational conditions such as temperature variations and electromagnetic
noise. Error correcting codes with syndrome decoding have been proposed to
correct for such errors [Gassend et al. 2002a]. However, since the syndrome is
public information, it can reveal some information about the responses and un-
dermine the security of the PUF. In addition, correcting multiple bits requires
a complicated decoding circuitry with large latency and hardware overheads.

To determine to what extent the responses are affected by metastability
of arbiters, we propose a method that assigns a level of confidence to each
response using the parameters obtained during the characterization step.

Let us represent the challenge vector by C = {c1, c2, ..., cN}. We define d

as the delay difference (the top path delay minus the bottom path delay) in
response to C. Now, d can be written as

d =
∑N

i=1(−1)ρiδi + δN+1 = [P 1].1−1, (3)

where P = {(−1)ρ1, (−1)ρ2, ..., (−1)ρN} and ρi = ci ⊕ ci+1 ⊕ ... ⊕ cN. The goal is to
estimate the probability of false negative detection error, i.e., Prob (H1 | H0)
for a given C where the hypotheses H1 and H0 are defined in Equation (4):

H0 : PUF = PUF′ (4)

H1 : PUF 6= PUF′.

In fact, for a given delay difference d caused by the challenge C, h(d) (or
1 − h(d)) is the probability that the arbiter produces a zero (or one) output
while the delay difference at its inputs is greater (smaller) than zero, and h(.)
is the arbiter characteristic obtained by the test circuit explained in Section 5.
We define the probability of false negative error (Perror) as the probability that
at least one of the PUF responses to K challenges has an error; therefore:

Perror = Prob (H1 | H0) =

K
∏

i=1

[αi(1 − h(di)) + (1 − αi)h(di)] (5)

αi =

{

1, di ≥ 0

0, di < 0.
(6)
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In writing Equation (5), we assume that the delays values caused by the
K challenges are independent. Using this method, the delays resulting from
a number of randomly selected challenges can be calculated by Equation (3)
(assuming the switch delays are available from the characterization step).
Then, the probability of false negative error is estimated using Equation (5).
To ensure robustness against arbiter metastabilities, the responses with high
estimated probability of error must be ignored.

5.2 Challenge-Response Compression

The characterization scheme allows an effective way to compress the challenge
response pairs. A PUF with N switches in fact performs a transformation from
N real numbers to 2N binary numbers of length N+1. Therefore, by measuring
the N parameters (that are in fact the path segment delay differences), one
can fully describe the challenge-response space. In this way a huge reduction
in database storage requirements can be achieved. Also it enables one-time
pad encryption for large N values (e.g., N > 128). The idea of compressing the
CRPs by collecting responses and performing reverse engineering is suggested
in Ozturk et al. [2008]. However in this method, arbiter errors can cause large
errors in estimating the switch delays [Majzoobi et al. 2008b]. We attempt to
directly measuring the delays of the PUF before the arbiter. Our method also
allows for arbiter characterization and stores the characteristic as part of the
PUF parameters.

5.3 Diagnosis

The data obtained in the test phase can be used to diagnose and analyze the
PUF. Small variations in delays, long setup/hold times for arbiters, large bias
caused by systematic effects, or nonsymmetric routing may diminish the PUF’s
performance. Adding extra delay elements or switch to the PUF increases the
total delay variation. Rerouting the connections and/or relocating the PUF can
be utilized to overcome the delay bias. Also noisy flip-flops or those with large
setup/hold times should be avoided being uses as arbiters.

6. SECURE PUF ARCHITECTURE

In this section, we introduce a secure and robust PUF structure. The proposed
PUF as shown in Figure 7 consists of the four fundamental building blocks: (i)
input (logic) network, (ii) output logic network, (iii) wire interconnect network,
and (iv) parallel PUFs. After testing and characterizing each linear PUF in
the parallel structure, the FPGA is reconfigured to integrate and attach these
blocks to the core parallel PUFs.

6.1 Input Network

We design the input network attached to the parallel PUF (see the dashed
box in Figure 7) to satisfy Strict Avalanche Criterion (SAC) for a parallel PUF
circuit. A function is said to satisfy SAC if, whenever a single input bit is com-
plemented, each of the output bits changes with a probability of one half. In
Section 6.3 we will show how to bind multiple rows of the resulting structure to
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Fig. 7. The general architecture of the proposed Secure PUF.

construct an N input, Q output PUF structure that satisfies SAC. When intro-
ducing the output network, we demonstrate that the SAC property is required
to achieve the maximum security. Before discussing the design steps of the
input network, we first discuss the input/output characteristics of the parallel
PUF.

As stated in Section 4, the PUF behavior can be represented by Equation (1).
Let us assume the differential delay values (δ) in Equation (1) are independent
and identically distributed. For simplification and without loss of generality,
we assume the random variables have Gaussian distributions with zero mean,
that is, δi ∼ N (0, σ 2). Our goal is to find the probability that the PUF
output flips given that a challenge bit in the PUF input is flipped, that is,
Prob{∼ O| ∼ ck}. Any change in the sign of the summation relates to a change
in the output (response) bit value. Whenever a challenge bit value flips, some
of the terms in Equation (1) change their sign (as a result of a change in the
corresponding ρ values). Let us denote the set containing the indices of ρ’s that
flip (do not flip) as result of a flip in the k-th challenge bit by Ŵk (3k). Note that
Ŵ and 3 partition the index set, � = {1, 2, ..., N}, where N is the total number
of switches.

Vk =
∑

i∈Ŵk

(−1)ρiδi

Wk =
∑

j∈3k

(−1)ρ jδ j + δN+1. (7)

If the absolute value of the sum of the terms whose indices are in Ŵk (i.e.,
| Vk | in Equation (7)) is greater than the absolute value of the sum of terms
whose indices are in 3k (i.e., | Wk | in Equation (7)), then the response bit flips
whenever ck flips.

We define a new random variable Xk which has a value one if the output
flips and zero otherwise, that is,

Prob{Xk = 1} = Prob{∼ O| ∼ ck} (8)

then,

Xk =

{

1, | Vk |>| Wk |
0, Otherwise.

(9)
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It is desired that E{Xk} = 0.5 for k = 1, 2, ..., N. The expectation is over
all PUF realizations. Recalling that the sum of Gaussian random variables
forms a new Gaussian, if Ui ∼ N (µi, σ 2

i ) and U =
∑

Ui, then U ∼ N (
∑

µi,
∑

σ 2
i ). Therefore, V and W can be viewed as realizations of Gaussian variables

given by

Wk ∼ N (0, (| 3k | +1) × σ 2)

Vk ∼ N (0, | Ŵk | ×σ 2). (10)

where |.| denotes the set cardinality. If | Ŵk | = | 3k | + 1, then V and W will be
identical and independent Gaussian random variables. Also | Ŵk | + | 3k | = N.
Therefore, if

| Ŵk |=
N + 1

2
, (11)

then E{Xk} = 0.5. Thus, if N+1
2 (almost half) of ρ’s in Equation (1) flip as a

result of a flip in k-th challenge bit (ck), then the output of the PUF would flip
with a probability 0.5. The result is in accordance with our initial intuitive
observation.

We now verify if this property holds in the parallel PUF structure. The ρ’s
in Equation (1) are related to the challenges by the transformation T defined
in Equation (2); that is, P = T(C). It can be seen that a flip in ck causes a flip
in ρ j, where j ≤ k. Thus, | Ŵk | = k. For example, if a flip in cN happens, all
of the ρ’s flip as a result. Hence, Equation (11) is not satisfied for the parallel
PUF structure. We define a transformation G(.) on challenges that combined
with T meets the criterion set by Equation (11).

Objective: Find G(.) so that P = T(G(C)) satisfies | Ŵk | = N+1
2

for all k.
Method: (1) Before finding the proper transformation, we make an observa-

tion. Consider two challenge bits, ck and ck+ N+1
2

in the parallel PUF that flip

in succession. The first flip (ck) causes ρ j for all j ≤ k to flip, and the second

challenge flip (ck+ N+1
2

) causes ρ j for all j ≤ k + N+1
2 to flip. The ρ’s that flip twice

return to the first value and do not flip in effect. Therefore, flipping ck and
ck+ N+1

2
at the same time causes ρ j for all k < j ≤ k + N+1

2 to flip, hence satisfies

the criterion set by Equation (11). The observation implies a constraint on the
challenges. Whenever a challenge bit flips, another challenge bit at N+1

2
selec-

tors apart must flip as well to guarantee SAC. Note that N must be an odd
integer to yield integer challenge indices. However, it is easy to prove that it
is infeasible to impose the derived constraint on the PUF challenges, although
high quality approximations can be made. We design an input network that
transforms the input challenges of the PUF and imposes constraints on the
toPUF challenges.

(2) Find a transformation C = G(D), G : {0, 1}M → {0, 1}N, so that any bit
flip in the input causes two output bits at approximately N+1

2
locations apart to

flip. We use two approximations to realize the proposed concept. One approx-
imation can be implemented using a wire-only network, while the other one
can be done using XOR logic (Figure 8).
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Fig. 8. The input network realization using XOR logic.

(i) Wire-only network: for N an even integer and M = N
2 , G performs the

following transformation:

G : ci = ci+ N
2

= di, f or i = 1, 2, ...,
N

2
. (12)

The wire network connects the challenge bits of the PUF that are located N
2

apart. However, the input dimension of the wire network is half of the PUF.
Hence, one needs to use twice the number of switches to achieve the same
number of PUF inputs.

(ii) XOR network: for an even integer N and M = N, we define the transfor-
mation G as follows:

c N+i+1
2

= di, f or i = 1

c i+1
2

= di ⊕ di+1, f or i = 1, 3, 5, ..., N − 1

c N+i+2
2

= di ⊕ di+1, f or i = 2, 4, 6, ..., N − 2 (13)

Unlike the wire-only network, the XOR network achieves a one-to-one map-
ping. However, an adversary with full knowledge of the circuit structure can
apply the inverse transformation to make the input network ineffective. We
alleviate this issue later by introducing a wire interconnecting scheme that
physically binds the inputs of multiple PUF rows.

In addition to the expectation of Xk being equal to 0.5, it is desired that
the Xk has as small variance as possible. Smaller variation guarantees that
a larger number of PUFs satisfy the SAC property. The variance of Xk is re-
lated to the variances of W and V in Equation (9), that are themselves related
to the number of switches and the variance of δ. The variance of δ is deter-
mined by the technology and the amount of process variations. Therefore, one
can achieve a smaller variance for Xk by adding to the number of switches or
incorporating multiple rows of the same structure as explained in Section 6.2.

6.2 Output Network

We introduce an XOR-based output network structure (see Figure 7) which
achieves (i) fortification against reverse engineering attacks, and (ii) smaller
deviation from the SAC on each PUF by combining multiple rows of parallel
PUFs with the transformed challenges.

The output network performs a mapping denoted by Z(.) from the PUF
arbiter responses, R, to the output, O. The mapping is defined as O = Z (R),
Z : {0, 1}Q → {0, 1}Q′

, Q′ < Q, and

o j =
⊕

i=1,...,x

r( j+s+i) mod Q f or j = 1, 2, ..., Q′ (14)
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Fig. 9. An example of output network for Q = 5, Q′ = 4, x = 4, and s = 1.

where
⊕

denotes the parity generator function and s indicates shifting step.
The transformation calculates the parity value for sets of x adjacent PUF ar-
biter responses where each set starting point is circularly shifted by s bits with
respect to each other. The transformation can be parameterized by s (the shift-
ing step) and x (the parity input size). We will discuss later how these parame-
ters govern a trade-off among security, overhead, and randomness properties.

(i) The proposed transformation can hinder the efforts to reverse engineer
the PUF in the following way. As stated in Section 4, to reverse engineer a
linear PUF structure and estimate the delays of switches, the adversary needs
to collect a set of challenge-responses from the PUF and solve a system of
inequalities.

Suppose that the responses of Q parallel PUFs are mapped to a Q′-bit out-
put by the transformation Z (.). There are 2Q−Q′

possible inputs that map to
a given output. Therefore, the adversary is faced with solving an ambiguity
to discover the real PUF response. The number of assumptions grows expo-
nentially, if he/she is not able to reject some of them at each step. It can be
shown that the problem has exponential complexity of order O(2(Q−Q′)NC ) with
respect to the number of ambiguities 2(Q−Q′) and the number of CRPs needed
to estimates the PUF switch delays NC. Majzoobi et al. [2008b] show that to
reverse engineer a linear parallel PUF having 64 switches with accuracy of
over 98%, a minimum number of 2000 CRPs (NC = 2000) are required. Then
for Q − Q′ = 1, the complexity of reverse engineering the secure PUF would be
O(22000). Nevertheless, if the attacker can control (the transition of) the PUF
arbiter responses, then it would be possible to reduce the number of assump-
tions by performing a differential attack. Let us illustrate the problem using
an example. Consider a trivial case of Z where Q = 5, Q′ = 4, and every four
adjacent response bits are XOR-ed to produce the output, i.e., s = 1, x = 4 (see
Figure 9).

Now imagine a transition in the output occurs from 0101 to 1110. As shown
in Figure 10, there are four possible transition hypotheses about the Z inputs
depicted by arrows. If we know only the first bit (or only one bit) of the input
has caused such transition in the output then we can reject two hypotheses
shown in dashed arrows. Also by associating probabilities with transitions
and ranking assumptions accordingly, one can guess the PUF responses.

Thus, Z (.) by itself does not guarantee significant resiliency against reverse
engineering. To achieve a high level of resiliency, it is required that the PUF
response bits (or Z inputs) could not be deterministically controllable. The
Maximum resiliency is obtained if PUF response bits flip with a probability
of 0.5 which is equivalent to SAC. We will use an interconnect network that
connects rows of parallel PUFs, to design a Q-output PUF with SAC property.
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Fig. 10. Example: the difficulty of inverting the output network.

(ii) The mixing property of XOR logic or in general the parity generator
function also fortifies the PUF against emulation and statistical guessing at-
tacks even in presence of outrageously large PUF switch (element) delays. For
larger values of x in Equation (14), higher number of PUF rows and responses
are mixed and smaller deviation from the transition probability of 0.5 (i.e.,
var(Xk)) is achieved.

6.3 Interconnect Network

In Section 6.1 we designed an input network that satisfied SAC for a single row
PUF with one bit output. We design a PUF structure that consists of multiple
rows of parallel PUFs and maps N challenge bits to Q response bits. The PUF
is designed to satisfy SAC. The PUF is built upon an interconnect network that
connects the challenge bits of rows of parallel PUFs (See the leftmost solid box
in Figure 7). In order to satisfy the SAC, it is required and sufficient that one
challenge bit on each row is connected to another challenge bit on a different
row. A challenge bit is broadcasted to all PUFs, and since each PUF output
flips with a probability of 0.5, the SAC is met. The interconnection can be
expressed formally as follows:

cm
i = cm+1

j f or i, j ∈ �, m = 1, 2, ..., Q − 1, (15)

where cm
i is the i − th challenge bit in the m-th row, � = {1, 2, ..., N}, j = gm(i)

and gm: � → � is a one-to-one permutation function. In Section 6.1, we men-
tioned that the XOR input network can be bypassed by applying the inverse
transformation. If the inputs of PUF rows are connected in parallel (with no
permutation), that is, i = j, by applying the inverse transformation (G−1) all
of the input networks are bypassed and thus, ineffective. By imposing a con-
straint on gm to be nonidentity for all m’s the attacker can fully bypass only one
input network and the other input networks can only be partially bypassed.
Figure 11 depicts an m-bit circular shift interconnecting scheme, that is, j =
gm(i) = (i + m − 1) mod Q.

7. APPLICATIONS

There are many possible applications for the introduced secure PUF, as pointed
out in previous research [Gassend et al. 2002a; 2002b; Trimberger 2007;
Koushanfar and Potkonjak 2007; Alkabani et al. 2007]. In this section, we
present applications that leverage reconfigurable platforms to provide system
security.
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Fig. 11. An m-bit circular shift interconnecting scheme that connects Q rows of parallel PUFs
with transformed challenges.

Fig. 12. An example of a database entry.

7.1 Configure-and-Erase Method

We introduce an FPGA-based authentication method for smart cards which
limits the user’s knowledge about the PUF circuit structure and its location on
FPGA. In this method, the FPGA owner is identified by the unique manufac-
turer variability (MV) on his/her FPGA. The permanent placement of the PUF
circuit, as in ASIC technology, would give the adversary unlimited access to the
PUF inputs/output and thus make the PUF vulnerable to reverse engineering
and emulation attacks. In the proposed method, the user is furnished with a
blank FPGA and a Personal Identification Number (PIN). Before the FPGA is
given to the user, the PUF is characterized using the methods described in Sec-
tion 5. Thus, the switch delays and arbiter parameters are derived and stored.
PUFs with different lengths and on various locations can be implemented and
characterized. Therefore, each database entry could consist of multiple fields
such as location attributes, circuit structure parameters (length), switch delay
values, and arbiter parameters (see Figure 12). Because of the linear number
of components, the space required to store all this data is still smaller than
saving many challnge/response pairs.

When the user presents the FPGA and his PIN to the authentication sys-
tem the following steps are performed: (i) The system retrieves the database
entry associated with the provided PIN. (ii) Then, the FPGA is configured ac-
cording to the database entry field values. The PUF will be placed on the
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Fig. 13. Configure-and-erase scheme steps.

location specified in the database and the input/output networks will be added
to it. The configuration bitstream could be stored in each database entry along
with other parameters or instead it could be generated online according to the
circuit parameters and location attributes stored in the database. The lat-
ter method can drastically reduce the storage requirements, although it intro-
duces a latency in generating the bitstream. Note that the number of feasible
locations for placing the PUF is merely dependent on the size of the FPGA. (iii)
At the third step, the binary challenges are sent and tried on the configured
PUF; the responses are retrieved. Meanwhile, the database derives responses
from the stored PUF parameters for the given challenge. Probability of error
for each response is also calculated. The derived responses with lower error
probabilities are compared with the received responses for authentication. (iv)
After authentication is performed, the FPGA content is erased and the FPGA
is returned to the user. The steps are shown in Figure 13.

The proposed system can be subject to the a number of attacks. First, by
tapping the communication link between the FPGA and the authentication
server and reading the configuration bitstream, the adversary might be able to
discover the PUF structure and its location on the FPGA and later attempt to
configure the FGPA and model the PUF. There are two ways to eliminate such
threats. One way is to physically secure communication link which is not fea-
sible in all applications. The other way is to encrypt the bitstream and make
the FPGA non-reconfigurable by an unauthorized party. A timed authentica-
tion method, which is explained next, can be also used to hinder the efforts to
perform PUF modeling attacks. The use of one-time PUFs (where each CRP is
tried only once) would protect the PUF against man-in-the-middle attacks.

7.2 Timed Authentication

Swift evaluation of the arbiter-based PUF is a unique feature that can be
used to safeguard the authentication process. Unlike ring oscillator PUFs,
the arbiter-based PUFs can produce a response to a given challenge in a sin-
gle clock cycle. The clock frequency is however limited by the delay of PUF
structure itself. Attempts to build a software counterfeit of the PUF by either
emulating the responses or reverse engineering can be encumbered by impos-
ing a tight timing constraint on PUF evaluation. The method could be real-
ized by time stamping the responses using either the embedded system clock
or the authenticating server clock. The former requires a tamper resistant
clock since otherwise an adversary with high-speed clocking resources at his
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Fig. 14. Probability of the response flip given a flip in the k-th challenge bit for a single row
parallel PUF. The dot (circular) markers show the probability before (after) transforming the
challenges.

disposal might be able to reduce the system clock frequency and calculate the
PUF response more quickly. Using the authentication server clock removes
concern about clock tampering, however it would be limited to applications
where the PUF and the server can communicate through a high-speed channel
whose latency is not much higher than the PUF evaluation time.

8. SIMULATION RESULTS

In this section, we demonstrate the efficacy of the proposed concepts and
methods. We thoroughly examine the secure PUF architecture that uses the
proposed input/output network and the interconnecting method explained in
Section 6. In the next section, we present delay measurement results obtained
from the test platform.

8.1 Secure PUF Architecture

In this section we thoroughly examine the performance attributes of the PUF
structure presented in Section 6. In the following experiments, we model each
switch with four delays—two for straight connection and two for cross connec-
tion links. We assume that the delay components are samples from indepen-
dent identical Gaussian distributions with µ = 0.5ns and σ = 4ps. The mean
and variance conform with the 65nm technology [Sedcole and Cheung 2006].

For a single row parallel PUF circuit with 64 switches, we simulated the
probability of output transition conditioned on each challenge bit transitions.
In this experiment, we apply to the PUF 100 random 64-bit challenge vec-
tor pairs that differ only in the i − th bit, where i = 1,...,64, and record the
percentage of times the output transitions. We repeat this experiment for 50
PUF circuit realizations and find the expectation. Figure 14 shows the value
of E[Xk] before and after applying the input XOR transformation (defined in
Equation (13)) on the PUF challenges. The figure shows that the probability
of output flip conditioned on the k-th challenge bit before input transforma-
tion increases monotonically from less than 0.1 to over 0.9, where k = 1,2,...,64.
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Fig. 15. Deviation of transitional probabilities of individual PUF instances from the SAC.

This can be intuitively viewed as the cumulative effect of switch delays in the
parallel PUF circuit structure. Note that after applying the XOR transforma-
tion on the PUF challenges, the output flips with a probability close to 0.5 for a
flip in input bits, which per se satisfies the SAC. A smaller deviation from the
transition probability of 0.5 is desired for each individual PUF circuit realiza-
tion. There are two ways to reduce such deviation: (i) by using more switches
in the parallel PUF circuit (increasing N); (ii) by mixing the outputs of larger
number of parallel PUF circuits (increasing x in Equation (14)). The black solid
line in Figure 15 indicates how the variance (var(Xk)) decreases as the number
of switches in a single row parallel PUF increases from 8 to 128. For a fixed
number of switches in a row, the variance rapidly drops as 2, 4, and 8 adjacent
outputs of rows of parallel PUFs (x = 2,4,8) are mixed (by an x-input parity
generator function). Note that the challenges of the parallel PUFs arranged in
rows are connected by the interconnection network presented earlier.

We now investigate the security of the proposed PUF against emulation at-
tacks. We devised an algorithm that randomly selects a challenge vector within
which it searches for the largest number of bits that can be represented with
don’t-cares. We set an upper bound on the number of search efforts for each
challenge and use the knowledge of the statistical PUF characteristics to ex-
pedite the search. For example, we know that the left most challenges have
a lower impact in determining the parallel PUF output (same scenario for FF
PUF), thus they can be represented with don’t-cares with higher probability.

Figure 16 shows the amount of compression achieved for a single row par-
allel PUF, FF PUF, and Secure PUF; (Q,Q′,x,s) = (9,8,8,1) and 64 switches in
each row (N = 64). The feed forward arbiter in the FF PUF compares the
delays at switch 20th and feeds the result to the selector of the 40th switch.
The emulation attack is performed on 10 PUFs of each type. The ten values
are shown in box plots in Figure 16. Note that compressibility of the challenge
response pairs of the secure PUF structure is four and five orders of magnitude
smaller than a single row parallel and FF PUF respectively. The smaller level
of compressibility corresponds to lower predictability of the responses.
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Fig. 16. The amount of CRP compressibility for parallel, FF and the proposed secure PUFs. Each
box represents the results of 10 experiments on different PUF realizations.

Fig. 17. Sensitivity of PUF transitional behavior to outlier switch delays.

We also examined PUF sensitivity to very large switch delays. In general,
delay outliers cause high predictability, high compressibility of CRPs, and
facilitate building of statistical models. We studied the sensitivity of secure
PUF and the single row parallel PUF structures to outliers. A fault is in-
jected as an outlying delay of 5ns (10 times larger than mean delay) into the
20th switch—of the first row for the secure PUF. Figure 17 shows the ex-
pected probability of output transition for both single row parallel PUF and the
Secure PUF with the parameters (Q,Q′,x,s) = (9,8,8,1). The expectation is
taken over 50 PUF realizations. For the parallel PUF with one row, the tran-
sition probability is highly distorted; flipping inputs 1 (42) to 39 (64) (does not)
flips the output with a probability of 0.8. Such divergence from SAC leads to
high predictability of PUF responses and facilitates emulation and statistical
modeling attacks. However, as it can be seen in Figure 17, the transition prob-
ability of output (any of the eight PUF output bits) does not change because
of the mixing introduced by the output network. In addition, if the PUF re-
sponses in some of the rows do not show significant changes and variations
due to arbiter failure, arbiter insensitivity, or large delay biases, the effect
would not be transparent at the output.
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Fig. 18. The detailed structure of the delay characterization test circuit. The clock frequency is
consciously swept using an external clock generator and the frequency range is shifted up by the
internal FPGA PLL.

9. IMPLEMENTATION RESULTS

We present the measurement and characterization results obtained by im-
plementing the test circuit described in Section 5 on Xilinx Virtex 5 FPGAs.
Figure 18 shows the details of the implemented circuit structure. The circuit
benefits an external clocking source which sweeps the clock frequency contin-
uously from 13 to 15 MHz. The frequency is swept every 65 milliseconds. The
clock generator’s output is then connected to a PLL inside the FPGA which
multiplies the input frequency by 7, shifting the frequencies up to the 91–
105 MHz interval. The PUF under test is triggered by a toggle flip flop which
alternately produces a falling and rising edge signal. A 9-bit counter driven by
the system clock resets the error counter values and issues a read signal every
512 clock cycles. The errors are counted by 8-bit counters.

The linear PUF structure was used for testing and characterization. The
PUF consists of 8 switches with 6 delay elements in between. The delay ele-
ments are implemented by a series of 6 NOT gates. Each NOT gate is realized
by a separate LUT. To balance the path delays, the PUF was manually placed
and routed using the FPGA Editor in Xilinx ISE design tool. Figure 19 shows
the PUF after placement on the FPGA floor plan. Eight different challenge
values with corresponding decimal values of 0, 1, 3, 7, 15, 31, 63, 127 are tried
at each sweep. With the delays measured by applying the challenges, one can
find each path segment delay (δ) by solving a system of linear equations. The
error counter values are read using a Tektronix LA714 logic analyzer when the
READ signal goes high. The circuit was implemented on five XC5VLX50 and
three XC5VLX110 Xilinx Vertex 5 chips.

Figure 20 shows the relationship between the clock period and the PUF out-
put sampling failure rate. At clock periods above 11.45ns (i.e., Region 1), the
PUF output is sampled and captured successfully, making Region 1 a fault-
free region. As the clock period decreases, sampling errors begin to appear
(Region 2). The failure rates reach a plateau of 0.5 (Region 3). In this region,
the sample flip-flop always fails to properly sample the rising edge transitions
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Fig. 19. The PUF circuit on the FPGA floor plan after manual placement. A screen shot from
FPGA editor tool in the Xilinx ISE software.

Fig. 20. Measured arbiter characteristic.

but it can capture the falling edge transitions successfully. This is due to the
fact that the delays for positive and negative transitions through the PUF are
different. Since half of the transitions are positive and the other half are nega-
tive, the failure rate would be 50%. If the clock period is further decreased,
errors would appear for the falling edge signals too (Region 4). Finally in
Region 5, all of the sample values would be erroneous. The curves in Regions 2
and 4 are in fact the flip flop characteristics. The flip flop setup and hold times
are indicated by markers in Figure 20. The 10% and 90% values for the ST
and HT times are chosen respectively. The points where the failure rates are
equal to 0.25 and 0.75 virtually correspond to the cases where the clock period
is equal to the circuit delay for rising and falling transitions respectively. Also
note the fineness of delay resolutions at which the measurements are carried
out.

We begin with characterizing the arbiter. To efficiently represent the ar-
biter, a parametric model could be fit to the arbiter characteristic and the per-
tinent parameters are estimated and stored in the database. The arbiter’s
non-deterministic behavior in presence of small input delay differences is in-
fluenced by circuit noise and many other surrounding effects. Due to central
limit theorem we argue that the arbiter output can be represented by Gaussian
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Fig. 21. Measured arbiter characteristic in region 4 and the corresponding Gaussian fit.

cumulative function (CDF). We fit the Gaussian CDF to the measured arbiter
characteristic in least square sense and estimate its mean and standard devi-
ation. Figure 21 shows a section of the measured arbiter characteristic along
with the Gaussian fit. The standard deviation (σ ) of the fit determines the
speed of the arbiter and the mean value corresponds to the PUF delay. Note
that the σ (arbiter speed) can be different for rising edge and falling edge sig-
nals. Therefore, the arbiter can be effectively represented by two parameters,
that is, σrise and σ fall. Setup time and hold times are functions of σ .

We used the characterization circuit to measure the top and bottom path de-
lays of the PUF. The delays are measured for eight different challenge values.
Figures 22(a) and (b) respectively show the path delays for falling edge and ris-
ing edge signals propagating through the PUFs implemented on XC5VLX50
chips. Figures 22(c) and (d) show the same data but for XC5VLX110 chips.
Each plot in these figures correspond to one chip. There are two sets of data
on each plot distinguished by circle and dot markers. The circle marker repre-
sents the top path delay while the dot marker refers to the bottom path delay.
The top and bottom path delays are shown for the given challenge values on
the x-axis. As the measurements suggest, the path delays are in some case
correlated among the chips (e.g., see how the delays on the second and third
plots in Figure 22(d) follow the same trend).

We next estimated the σrise and σ fall of the flip-flops from the measure-
ment data. With two sample flip-flops per circuit and a total of 5 circuits on
XC5VLX50 chips and 3 circuits on XC5VLX110 chips, there were 16 flip-flops
to characterize. The measurements were repeated 8 times for each flip-flop.
The box plots in Figures 23(a) and (b) show the estimated σ fall and σrise respec-
tively for the flip-flops on XC5VLX50. Figures 23(c) and (d) shows the same
result for the flip-flops on three XC5VLX110 chips. The adjacent flip-flops in
the figures (i.e., FF1 and FF2) come from the same circuit and are physically
close to each other in the circuit. FF1 and FF2 reflect similar speed character-
istics. The flip-flops on the third XC5VLX50 chip is the fastest among the other
XC5VLX50 chips. Also the flip-flop on the first XC5VLX110 chip is the fastest.
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Fig. 22. The top and bottom path delays of PUFs on XC5VLX50 chips for (a) rising edge transition,
and (b) falling edge transition; The top and bottom path delays of PUFs on XC5VLX110 chips for
(c) rising edge transition, and (d) falling edge transition.

The narrowness of the boxes confirms the accuracy of the measurements and
parameter estimations.

The measurements can also help locate faulty or unstable flip-flops. For
example, the test results on one of the the flip-flops as shown in Figure 24
demonstrates a noisy glitch marked by the black circle. The glitch keeps re-
peating at every round of measurement. Thus, when implementing PUFs, the
designer should avoid noisy arbiters and those with large setup and hold times.
Even if the noisy flip-flop (like the one shown in Figure 24) has to used as an
arbiter, then those challenges that cause a delay difference coinciding with the
glitch must be avoided.

The amount of delay variability in future FPGA technology follows an
upward trend. Sedcole and Cheung [2006] predict that with a slightly rapid
increase in stochastic variability (2% every three years), stochastic variation
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Fig. 23. The sample flip-flop speed σ of PUF circuits on XC5VLX50 chips for (a) rising edge
transition (σrise), and (b) falling edge transition (σ f all); The sample flip-flop speed σ of PUF circuits
on XC5VLX110 chips for (c) rising edge transition (σrise), and (d) falling edge transition (σ f all).

Fig. 24. Faulty flip-flop behavior.

will amount to 11.5% in 22nm technology node while systematic variations
keeps decreasing. Table II shows the amount of variability in the current and
pending FPGA technologies [Sedcole and Cheung 2006].

We estimated the amount of observed variability on 65nm Virtex 5 FPGA
family from the measurement data. Assuming the additive delay model for
the PUF, the total path delay (Z ) can be written as sum of independent and
identically distributed random variables (X i), that is, Z = X1 + X2 + . . . + Xn

where n is the total number of delay elements in the PUF structure, X i ∼
N(µ, σ ) and Z ∼ N(µZ , σZ ). Then

σZ /µZ = (1/
√

n) × (σ/µ). (16)

ACM Transactions on Reconfigurable Technology and Systems, Vol. 2, No. 1, Article 5, Pub. date: March 2009.



Techniques for Design and Implementation of Secure Reconfigurable PUFs · 5: 29

Table II. Delay Variability in Current and Future FPGA Technologies

Production year 2004 2007 2010 2016

Node 90nm 65nm 45nm 22nm

Stochastic var. (3σ ) 3.3% 5.5% 7.5% 11.5%

Fig. 25. The distribution of delay difference between the top and bottom paths. The distribution
is calculated for 8 input challenges, 5 XC5VLX50 chips, and 3 XC5VLX110 chips. Figures (a) and
(b) show the distribution for rising and falling transition delays on XC5VLX50 chips. Similarly,
Figures (c) and (d) show the distribution for rising and falling transition delays on XC5VLX110
chips. The vertical lines show the 3σ detection edges of slow and fast arbiters (FF).

The mean and variance of Z were estimated as µZ = 10.41ns and σZ = 0.068ns
using the delay measurements obtained from XC5VLX50 chips. Since the PUF
uses 8 switches and 6 delay elements in between then the total length of the
PUF would be n = 56. Therefore from Equation (16), the variability is derived
as (3 × σ )/µ ≃ 5%. The amount of variability conforms with the estimated
values shown on Table II. The measurement results show that even though
variability exists in the structure, the amount of variability in presence of the
arbiter imperfections and measurement biases is not enough to make a robust
and yet random response on all of our test chips. In what follows, we present
a number of interesting observations from our implementation experiments.

Figure 25 shows the distribution of the delay differences between the top
and bottom paths for XC5VLX50 test chips. Figures 25(a) and (b) show the
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distribution for rising and falling edge transition delays. Each distribution con-
tains 40 points; 5 chips and 8 challenges per chip. The flip-flop 3σ setup/hold-
times are depicted on the same figure by vertical lines for the fastest and
slowest flip-flops on the chips.

It can be seen that in Figure 25(a), on our test chips, the delay differences
are smaller than 3σ setup/hold times of the arbiter, resulting in metastable
responses. In the falling edge transition case shown in Figure 25(b), 87.5%
and 70% of the points fall inside the metastable region of the slow and fast flip-
flops respectively. Figures 25(c) and (d) show the same results for XC5VLX110
chips. For the falling and rising edge transition cases (Figure 25(d) and (c))
87.5% and 100% of the points fall inside the metastable region of both slow
and fast flip-flops. As it can be seen, because of the lack of calibration, the
distributions are skewed toward positive and negative values.

Also, it is important to note that a delay difference between the top and bot-
tom paths after the last switch and before the arbiter may cause a bias in the
responses toward zero or one since this is the only path that does not switch.
As shown on Figure 19, the sample flip-flops (FF1 and FF2) are symmetrically
placed on the top and bottom paths to minimize the delay difference in the
measurements. To implement the PUF, the two sample FFs must be replaced
by a single FF whose inputs could potentially follow asymmetric routes intro-
ducing bias in the PUF responses. As the measurement results suggest, any
delay difference on the path segment between the last switch and the arbiter in
the order of 100 picoseconds can be deadly and force the responses completely
into zero or one by moving the mean of the distribution. Thus, careful cali-
bration and compensation of this bias is crucial for obtaining robust results.
This could be achieved by insertion of extra delay elements or trying different
routes on either of the top or bottom path.

We have also tried changing the placement strategies and the PUF lengths
(64 switches, 128 switches) on the FPGAs. The small delay variability can
partially be compensated by including more delay elements. As Equation (16)
implies, σZ increases as the square root of the number of delay elements (n)
assuming that µZ increases linearly n. Assuming the amount of variability on
22nm FPGA with same nominal delays, the total delay variation of the PUF
(n=56) would be 3σZ = 160 ps which is more than twice the measured 3σ of the
slowest arbiter.

Successful and systematic implementation of PUFs requires a larger vari-
ability (that is technologically inevitable with the current trends), details of
the variability information about the FPGA fabric and switches, as well as
development of tools for automatic timing-aware PUF placement and routing.

10. CONCLUSION

In this article, we developed new techniques for the design and implementation
of FPGA-based PUFs. The PUF vulnerabilities to various types of potential at-
tacks were discussed. We demonstrated how reconfigurability can be exploited
to ensure that PUFs are resilient against the potential attacks and are robust
to unpredictable operational conditions. A PUF testing and characterization
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mechanism enabled by reconfigurability feature provides tools for diagnosis,
CRP compression, and determining the level of confidence in responses. A
unique input/output logic network along with an interconnecting approach is
introduced to encumber attempts at reverse engineering or modeling the PUF.
The proposed building blocks are added to the PUF after the characterization
step. We have shown two new applications where FPGA-based PUFs can be
used for security and privacy protection. The effectiveness of all the proposed
claims is validated using extensive implementations, simulations, and statis-
tical analysis.
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EISENBARTH, T., GÜNEYSU, T., PAAR, C., SADEGHI, A., SCHELLEKENS, D., AND WOLF, M. 2007.
Reconfigurable trusted computing in hardware. In Proceedings of the Workshop on Scalable

Trusted Computing. 15–20.

FELDHOFER, M. AND RECHBERGER, C. 2006. A case against currently used hash functions in
RFID protocols. In Proceedings of the Workshop on RFID Security. 372–381.

FRIEDBERG, P., CAO, Y., CAIN, J., WANG, R., RABAEY, J., AND SPANOS, C. 2005. Modeling within-
die spatial correlation effects for process-design co-optimization. In Proceedings of the Interna-

tional Symposium on Quality of Electronic Design (ISQED), 516–521.

FRY, J. AND LANGHAMMER, M. 2005. RSA and public key cryptography in FPGAS. Tech. rep.,
Altera Corporation.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 2, No. 1, Article 5, Pub. date: March 2009.



5: 32 · M. Majzoobi et al.

GASSEND, B., CLARKE, D., VAN DIJK, M., AND DEVADAS, S. 2002a. Controlled physical random
functions. In Proceedings of the Computer Security Applications Conference (ACSAC). 149–160.

GASSEND, B., CLARKE, D., VAN DIJK, M., AND DEVADAS, S. 2002b. Silicon physical random
functions. In Proceedings of the Conference on Computer and Communications Security (CCS).
148–160.

GASSEND, B., CLARKE, D., VAN DIJK, M., AND DEVADAS, S. 2003. Delay-based circuit authenti-
cation and applications. In Proceedings of the Symposium on Applied Computing. 294–301.

GASSEND, B., LIM, D., CLARKE, D., VAN DIJK, M., AND DEVADAS, S. 2004. Identification and
authentication of integrated circuits. Concurrency and Computation: Practice and Experience.

John Wiley & Sons 16, 11, 1077–1098.

GLAS, B., KLIMM, A., SANDER, O., MULLER-GLASER, K., AND BECKER, J. 2008. A system ar-
chitecture for reconfigurable trusted platforms. In Proceedings of the Conference on Design,

Automation and Test in Europe (DATE). 541–544.

GUAJARDO, J., KUMAR, S., SCHRIJEN, G., AND TUYLS, P. 2007. FPGA intrinsic PUFs and their
use for IP protection. In Proceedings of the Workshop on Cryptographic Hardware and Embed-

ded Systems (CHES). 63–80.

GUNEYSU, T., MOLLER, B., AND PAAR, C. 2007. Dynamic intellectual property protection for
reconfigurable devices. In Proceedings of the International Conference on Field-Programmable

Technology (ICFPT), 169–176.

HOENEISEN, B. AND MEAD, C. A. 1972. Fundamental limitations in microelectronics I-MOS tech-
nology. Solid-State Electron. 15, 7, 819–829.

JIE, L. AND LACH, J. 2008. At-speed delay characterization for IC authentication and trojan
horse detection. In Proceedings of the International Workshop on Hardware-Oriented Security

and Trust(HOST). 8–14.

KEYES, R. 1975. Physical limits in digital electronics. Proc. IEEE 63, 5, 740–767.

KOUSHANFAR, F. AND POTKONJAK, M. 2007. CAD-based security, cryptography, and digital
rights management. In Proceedings of the Design Automation Conference (DAC).

KOUSHANFAR, F. AND QU, G. 2001. Hardware metering. In Proceedings of the Design Automation

Conference (DAC). 490–493.

KOUSHANFAR, F., QU, G., AND POTKONJAK, M. 2001. Intellectual property metering. In Proceed-

ings of the Information Hiding Workshop. 81–95.

KUMAR, S., GUAJARDO, J., MAES, R., SCHRIJEN, G.-J., AND TUYLS, P. 2008. The butterfly PUF
protecting IP on every FPGA. In Proceedings of the International Workshop on Hardware-

Oriented Security and Trust (HOST). 67–70.

KUON, I., TESSIER, R., AND ROSE, J. 2008. FPGA Architecture. Now Publishers.

LEE, J., DAIHYUN, L., GASSEND, B., SUH, G., VAN DIJK, M., AND DEVADAS, S. 2004. A technique
to build a secret key in integrated circuits for identification and authentication applications.
In Proceedings of the Symposium of VLSI Circuits. 176–179.

LOFSTROM, K., DAASCH, W., AND TAYLOR, D. 2000. IC identification circuits using device mis-
match. In Proceedings of the International Solid-State Circuits Conference (ISSCC). 372–373.

MAEDA, S., KURIYAMA, H., IPPOSHI, T., MAEGAWA, S., INOUE, Y., INUISHI, M., KOTANI, N.,
AND NISHIMURA, T. 2003. An artificial fingerprint device (AFD): a study of identification num-
ber applications utilizing characteristics variation of polycrystalline silicon TFTs. IEEE Trans.

Electron. Dev. 50, 6, 1451–1458.

MAJZOOBI, M., KOUSHANFAR, F., AND POTKONJAK, M. 2008a. Secure lightweight PUFS.
In Proceedings of the IEEE International Conference on Computer-Aided Design (ICCAD).
670–673.

MAJZOOBI, M., KOUSHANFAR, F., AND POTKONJAK, M. 2008b. Testing techniques for hardware
security. In Proceedings of the International Test Conference (ITC). 1–10.

MEAD, C. A. 1994. Scaling of MOS technology to submicrometer feature sizes. Analog Integr. Circ.

Sig. Process. 6, 1, 9–25.

OZTURK, E., HAMMOURI, G., AND SUNAR, B. 2008. Physical unclonable function with tris-
tate buffers. In Proceedings of the IEEE International Symposium on Circuits and Systems.
3194–3197.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 2, No. 1, Article 5, Pub. date: March 2009.



Techniques for Design and Implementation of Secure Reconfigurable PUFs · 5: 33

OZTURK, E., HAMMOURI, G., AND SUNAR, B. 2008. Towards robust low cost authentication for
pervasive devices. In Proceedings of the International Conference on Pervasive Computing and

Communications. 170–178.

PAPPU, R., RECHT, B., TAYLOR, J., AND GERSHENFELD, N. 2002. Physical one-way functions.
Science 297, 2026–2030.

PFLEEGER, C. P. AND PFLEEGER, S. L. 1997. Security in Computing. Prentice Hall.

SEDCOLE, P. AND CHEUNG, P. Y. K. 2006. Within-die delay variability in 90nm FPGAs and
beyond. In Proceedings of the International Conference on Field-Programmable Technology

(FPT). 97–104.

SHAMSI, D., BOUFOUNOS, P., AND KOUSHANFAR, F. 2008. Noninvasive leakage power tomogra-
phy of integrated by compressive sensing. In Proceedings of the International Symposium on

Low Power Electronics and Design (ISLPED). 341–346.

SU, Y., HOLLEMAN, J., AND OTIS., B. 2007. A 1.6J/bit stable chip ID generating circuit using
process variations. In Proceedings of the International Solid State Circuits Conference (ISSCC).
606–611.

SUH, G. AND DEVADAS, S. 2007. Physical unclonable functions for device authentication and
secret key generation. In Proceedings of the Design Automation Conference (DAC). 9–14.

SUNAR, B., MARTIN, W. J., AND STINSON, D. R. 2007. A provably secure true random number
generator with built-in tolerance to active attacks. IEEE Trans. Comput. 58, 1, 109–119.

TRIMBERGER, S. 2007. Trusted design in FPGAs. In Proceedings of the Design Automation Con-

ference (DAC). 5–8.

TUYLS, P., SCHRIJEN, G.-J., SKONC, B., VAN GELOVEN, J., VERHAEGH, N., AND WOTTERS,
R. 2006. Read-proof hardware from protective coatings. In Proceedings of the Cryptographic

Hardware and Embedded Systems Workshop. 369–383.

WOLLINGER, T., GUAJARDO, J., AND PAAR, C. 2004. Security on FPGAs: State-of-the-art imple-
mentations and attacks. ACM Trans. Embed. Comput. Syst. 3, 3.

WONG, J. S. J., SEDCOLE, P., AND CHEUNG, P. Y. K. 2007. Self-characterization of combinatorial
circuit delays in FPGAS. In Proceedings of the International Conference on Field-Programmable

Technology. 17–23.

Received May 2008; revised October 2008, January 2009; accepted January 2009

ACM Transactions on Reconfigurable Technology and Systems, Vol. 2, No. 1, Article 5, Pub. date: March 2009.


