
Linköping Studies in Science and Technology

Dissertations, No 1716

Techniques for Efficient

Implementation of FIR and

Particle Filtering

Syed Asad Alam

Division of Computer Engineering

Department of Electrical Engineering

Linköping University

SE–581 83 Linköping, Sweden

Linköping 2016

Linköping Studies in Science and Technology
Dissertations, No 1716

Syed Asad Alam
syed.asad.alam@liu.se

www.da.isy.liu.se/

Division of Computer Engineering
Department of Electrical Engineering
Linköping University
SE–581 83 Linköping, Sweden

Copyright c© 2016 Syed Asad Alam, unless otherwise noted.
All rights reserved.

Alam, Syed Asad
Techniques for Efficient Implementation of FIR and Particle Fil-

tering
ISBN 978-91-7685-915-5
ISSN 0345-7524

Typeset with LATEX
Printed by LiU-Tryck, Linköping, Sweden 2016

To my mother and wife

Abstract

Finite-length impulse response (FIR) filters occupy a central place many signal
processing applications which either alter the shape, frequency or the sampling
frequency of the signal. FIR filters are used because of their stability and pos-
sibility to have linear-phase but require a high filter order to achieve the same
magnitude specifications as compared to infinite impulse response (IIR) filters.
Depending on the size of the required transition bandwidth the filter order can
range from tens to hundreds to even thousands. Since the implementation of
the filters in digital domain requires multipliers and adders, high filter orders
translate to a large number of these arithmetic units for its implementation.
Research towards reducing the complexity of FIR filters has been going on for
decades and the techniques used can be roughly divided into two categories;
reduction in the number of multipliers and simplification of the multiplier im-
plementation.

One technique to reduce the number of multipliers is to use cascaded sub-
filters with lower complexity to achieve the desired specification, known as
frequency-response masking (FRM). One of the sub-filters is a upsampled
model filter whose band edges are an integer multiple, termed as the period
L, of the target filter’s band edges. Other sub-filters may include complement
and masking filters which filter different parts of the spectrum to achieve the
desired response. From an implementation point-of-view, time-multiplexing is
beneficial because generally the allowable maximum clock frequency supported
by the current state-of-the-art semiconductor technology does not correspond
to the application bound sample rate. A combination of these two techniques
plays a significant role towards efficient implementation of FIR filters. Part
of the work presented in this dissertation is architectures for time-multiplexed
FRM filters that benefit from the inherent sparsity of the periodic model filters.

These time-multiplexed FRM filters not only reduce the number of multi-
pliers but lowers the memory usage. Although the FRM technique requires a
higher number delay elements, it results in fewer memories and more energy effi-
cient memory schemes when time-multiplexed. Different memory arrangements
and memory access schemes have also been discussed and compared in terms
of their efficiency when using both single and dual-port memories. An efficient

v

vi Abstract

pipelining scheme has been proposed which reduces the number of pipelining reg-
isters while achieving similar clock frequencies. The single optimal point where
the number of multiplications is minimum for non-time-multiplexed FRM filters
is shown to become a function of both the period, L and time-multiplexing fac-
tor, M . This means that the minimum number of multipliers does not always
correspond to the minimum number of multiplications which also increases the
flexibility of implementation. These filters are shown to achieve power reduction
between 23% and 68% for the considered examples.

To simplify the multiplier, alternate number systems like the logarithmic
number system (LNS) have been used to implement FIR filters, which reduces
the multiplications to additions. FIR filters are realized by directly designing
them using integer linear programming (ILP) in the LNS domain in the minimax
sense using finite word length constraints. The branch and bound algorithm,
a typical algorithm to implement ILP problems, is implemented based on LNS
integers and several branching strategies are proposed and evaluated. The filter
coefficients thus obtained are compared with the traditional finite word length
coefficients obtained in the linear domain. It is shown that LNS FIR filters
provide a better approximation error compared to a standard FIR filter for a
given coefficient word length.

FIR filters also offer an opportunity in complexity reduction by implement-
ing the multipliers using Booth or standard high-radix multiplication. Both of
these multiplication schemes generate pre-computed multiples of the multipli-
cand which are then selected based on the encoded bits of the multiplier. In
transposed direct form (TDF) FIR filters, one input data is multiplied with
a number of coefficients and complexity can be reduced by sharing the pre-
computation of the multiplies of the input data for all multiplications. Part
of this work includes a systematic and unified approach to the design of such
computation sharing multipliers and a comparison of the two forms of multipli-
cation. It also gives closed form expressions for the cost of different parts of
multiplication and gives an overview of various ways to implement the select
unit with respect to the design of multiplexers.

Particle filters are used to solve problems that require estimation of a system.
Improved resampling schemes for reducing the latency of the resampling stage
is proposed which uses a pre-fetch technique to reduce the latency between
50% to 95% dependent on the number of pre-fetches. Generalized division-free
architectures and compact memory structures are also proposed that map to
different resampling algorithms and also help in reducing the complexity of the
multinomial resampling algorithm and reduce the number of memories required
by up to 50%.

Populärvetenskaplig

Sammanfattning

Digitala filter är signalbehandlingsalgoritmer som används i många olika typer
av applikationer och system. Som i de flesta fall finns det ett generellt intresse
att göra saker enklare och effektivare. I denna avhandlingen studeras två olika
klasser av filter och förbättringar föreslås för effektivare implementering av dessa
filter.

Den första klassen av filter är så kallade FIR filter. Dessa kräver typiskt
många operationer när det finns strikta krav på filtreringen. Då multiplikatio-
ner är klart mer komplexa än additioner, både var gäller area, tid och effektför-
brukning, så fokuseras arbetet på dessa. Traditionellt finns det två spår för att
förbättre detta: antingen minskar man antalet multiplikationer eller så förenklar
man multiplikationerna. Metoder för bägge områdena föreslås i detta arbetet.

Ett effektivt sätt att konstruera FIR filter med väldigt smalt övergångsband,
dvs avståndet mellan frekvenser som släpps igenom och som dämpas, är att an-
vända frekvensmaskning. I denna typen av filter så använder man ett filter där
många av multiplikationerna är noll och därmed inte behöver beräknas. Detta
filter har nollorna fördelade i ett periodiskt mönster vilket leder till att bete-
endet i frekvensdomänen också blir periodiskt. Fördelen är att komplexiteten
för att skapa ett väldigt smalt övergångsband skalar omvänt proportionellt med
perioden, så ju högre period desto lägre komplexitet. Då det oftast inte är ett pe-
riodiskt filter man vill ha i slutänden så behövs det ytterligare filter som tar bort
de oönskade delarna i frekvensdomänen. Dessa har typiskt högre komplexitet
för högre period, så en lagom avvägning måste hittas.

Trots mycket tidigare arbete på att konstruera sådana filter har väldigt lite
arbete lagts på att implementera dem effektivt. Här har vi speciellt tittat på
fallet där datatakten, som bestäms av applikationen, och kretsens klockfrekvens,
som bestäms av implementeringsteknologin, inte är samma. Specifikt det mest
realistiska fallet att datatakten är lägre än klockfrekvensen. En arktitektur som
tar hänsyn till det periodiska filtret har föreslagits och olika möjligheter har
utretts i detalj. Resultaten visar att vid implementering på en FPGA så mins-
kar mängden minne som används, tvärtemot vad man kan tro. Ett ytterligare
resultat är att effekten minskar ca 80% av minskningen i antal multiplikationer.

vii

viii Populärvetenskaplig Sammanfattning

Ett alternativ för att minska komplexiteten på multiplikationerna är att
använda logaritmiska talsystem (LNS). I dessa blir multiplikationerna bara en
addition av exponenterna. I detta sammanhanget har för första gången optima-
la filter konstruerats direkt i den logaritmiska domänen med ändlig ordlängd.
Att kunna konstruera optimala filter i både den linjära och logaritmiska domä-
nen är en förutsättning för att kunna göra korrekta jämförelser mellan filter
implementerade i de bägge domänerna.

Ytterligare ett alternativ för att minska komplexiteten på multiplikationer-
na är att använda multiplikatorer med högre radix och dela vissa delar mellan
flera multiplikatorer. Vid implementering av FIR filter uppkommer ett mycket
gynnsamt fall för detta. I avhandlingen föreslår vi ett enhetligt sätt att konstru-
era och utvärdera denna typ av multiplikatorer. På så sätt visar vi att tidigare
arbeten bara var specialfall av denna generella metod. Då tidigare arbeten inte
visat hur parametrar valt eller i vissa fall ej ens insett kopplingen till multipli-
katorer med högre radix, kan vi visa hur man bör välja parametrar för bästa
effektivitet.

Till sist behandlas en helt annan typ av digitala filter. Dessa så kallade parti-
kelfilter används för att skatta tillstånd i dynamiska system. Den kritiska delen
för effektiv implementering här är omsamplingssteget. Vi förslår tre metoder för
att förbättra implementeringen av detta. En direkt implementering av omsamp-
ling bygger på att man jämför innehållet i två minnen. Varje cykel läser man
från ett av minnena, vilket beroende på resultatet av tidigare jämförelse. Den
förbättrade metoden bygger på att man läser in extra data från det ena minnet
och kan på så sätt utföra den total jämförelsen snabbare. Med bara ett extra
jämförelseblock kan man statistiskt minska den kritiska tiden med 56%. Den
andra metoden löser problemet med att normalisering av värdena som jämförs,
vilket normalt kräver en division. Istället används enbart multiplikationer och
som en bieffekt så kan vi även skapa sekvenser av sorterade slumptal på ett nytt
effektivt sätt. Till sist visar vi att upp till hälften av minnet som används för att
spara sekvenserna som ska jämföras kan sparas genom att beräkna resultaten i
real-tid.

Acknowledgments

Praise be to Al-Mighty Allah, the most Compassionate, the most Merciful, who
gave me an opportunity to contribute to the vast body of knowledge. Peace
and blessings of Allah be upon the Holy Prophet Muhammad (Peace be upon
Him), the last Prophet of Allah, who has always exhorted his followers to seek
knowledge and whose life is the glorious model for the humanity.

There are a lot of people to whom I would like to express my gratitude. The
following is certainly not exhaustive but an effort to thank those who had the
most impact on my research and life in Linköping:

• My advisor, Dr. Oscar Gustafsson, for having confidence in me by giving
me an opportunity to complete my PhD. I am greatly indebted to him
for his inspiring and valuable guidance, enlightening discussions, his pa-
tience when ever I was short of his standards and constant encouragement
in difficult times, kind and dynamic supervision through out and in all
the phases of this thesis. Working and learning from him was always a
pleasure. Thank you Oscar.

• My co-supervisor, Dr. Kent Palmkvist, for help with FPGA, VHDL and
Linux related issues.

• The former and present colleagues at the old Division of Electronics Sys-
tems, Department of Electrical Engineering, Linköping University for cre-
ating a very friendly environment. They always were kind enough to do
their best to help you.

• The former and present colleagues at the Division of Computer Engi-
neering, Department of Electrical Engineering, Linköping University for
making me feel welcome when I joined their division and helping out when
needed.

• A special thanks to our current and past secretary Gunnel Hässler and
Susanna von Sehlen for helping out in various administrative tasks.

• A special thanks to Doktorand Syed Ahmed Aamir for his support, both
materialistic and spiritual, during my early days in Linköping which im-
mensely helped me in settling in this city.

• My present and former room-mates, Dr. Fahad Qureshi, Doktorand Carl
Ingemarsson and Doktorand Fahim-ul-Haque for putting up with me,

ix

x Acknowledgments

building a good working environment and having discussions on mundane
and technical issues.

• Dr. Muhammad Abbas for his help and guidance at the start of my PhD
studies.

• Doktorand Muhammad Touqir Pasha and Doktorand Fahim-ul-Haque for
proof reading and giving valuable advice while I was writing my thesis.

• Dr. Fahad Qazi, Doktorand Muhammad Touqir Pasha, Dr. Jawad ul Has-
san, Dr. Hafiz Muhammad Sohail, Dr. Nadeem Afzal, Dr. Irfan Kazim,
Dr. Usman Dastageer, Dr. Muhammad Junaid and others for building a
nice social circle without which it would have been hard for me and my
family to live here.

• Finally a special thanks to my family

– My mother, Tanweer Alam, for her immense love, sacrifices, guid-
ance, support and upbringing. Without her I would not be where I
am. Without her life means nothing to me. It was on her encour-
agement that I took the decision to pursue PhD even though living
so far apart was always troubling for her. Thanks Maa, because
without your prayers and support, I would not have been able to
complete my studies.

– My wife, Eyshaa Zehra, you have been a true life partner, bearing
the load of taking care of home and children while I spent long hours
in office, for always showing love, patience, affection to me and for
your immense support and cooperation. You made taking a lot of
tough decisions easy for me.

– A special thanks to my children, Muhammad and Arwaa, whom I
am sure will read this when they grow up, for taking away all the
tiredness and stress with their beautiful smiles, small giggles and
playful gestures while welcoming me home.

– My whole extended family in Pakistan, Canada and the U.S.A, my
in-laws, my aunts and uncles, my cousins etc., for always being there
for me and for making me feel special.

• To those not listed here, I say profound thanks for bringing pleasant
moments in my life.

Syed Asad Alam,
January 21, 2016,

Linköping Sweden.

Abbreviations

2C Two’s complement

ASIC Application specific integrated circuit

ASIP Application specific instruction set processor

BILP Binary integer linear programming

BLE Basic logic element

BMI Brain machine interface

CFGLUT Configurable LUT

CLB Configurable logic block

CPA Carry propagate adder

CPLD Complex programmable logic device

CPU Central processing unit

CSA Carry save adder

CSD Canonic signed digit

CSE Common subexpression elimination

CU Control unit

DA Distributed arithmetic

DAG Directed acyclic adder graphs

DF Direct form

DFT Discrete fourier transform

DSP Digital signal processing

xi

xii Abbreviations

EEPROM Electrically erasable programmable read only memory

EPROM Electrically programmable read only memory

FF Flip flop

FFA Fast FIR

FFT Fast fourier transform

FIFO First in first out

FIR Finite-length impulse response

FPGA Field programmable gate array

FRM Frequency-response masking

FSM Finite state machine

GPC Generalized parallel counter

GPU Graphical processing unit

HDL Hardware description language

HMM Hidden Markov model

HPM High performance multiplier

IC Integrated circuit

ICAP Internal configuration access port

IDFT Inverse DFT

IFIR Interpolated FIR

IIR Infinite impulse response

ILP Integer linear programming

IMHA Independent Metropolis Hastings algorithm

LNS Logarithmic number system

LP Linear programming

LSB Least significant bit

LUT Look-up table

MAC Multiply-accumulate

Abbreviations xiii

MC Monte Carlo

MCM Multiple constant multiplication

MILP Mixed integer linear programming

MPGA Mask programmable gate array

MSB Most significant bit

MSD Minimal signed digit

MSE Mean square error

NP Non-deterministic polynomial

OPR Overlapped partial resampling

PAL Programmable array logic

PAG Pipelined adder graph

PE Processing element

PLA Programmable logic array

PLD Programmable logic device

PMCM Pipelined MCM

PROM Programmable read only memory

RCA Ripple-carry adder

RNA Resampling with nonproportional allocation

RNS Residue number system

RPA Resampling with proportional allocation

RPAG Reduced pipelined adder graph

RSG Reduced slice graph

RSR Residual systematic resampling

RTL Register transfer level

S-ASIC Structured ASIC

SCM Single constant multiplication

SD Signed digit

xiv Abbreviations

SEU Single-event upset

SIMD Single instruction multiple data

SIS Sequential importance sampling

SM Signed magnitude

SMC Sequential Monte Carlo

SPT Signed power of two

SRAM Static random access memory

SSF Single stage FIR

STM State transition model

TDF Transposed direct form

TID Total ionizing dose

ulp Unit of least significant position

VLSI Very large scale integrated

Contents

I Background 1

1 Introduction 3
1.1 Motivation . 3

1.1.1 Reduction in Number of Multipliers 4
1.1.2 Reduction in Multiplier Complexity 5
1.1.3 Improved Particle Filter Resampling Architectures 7

1.2 List of Publications . 7
1.2.1 Other Publications . 8

1.3 Thesis Organization . 8

2 Implementation Aspects of DSP Algorithms 11
2.1 Introduction . 11
2.2 Implementation Platforms . 12

2.2.1 Application Specific Integrated Circuits 13
2.2.2 Field Programmable Gate Arrays 15

2.3 Key Arithmetic Operators in DSP Implementations 25
2.3.1 Adders . 25
2.3.2 Multipliers . 32
2.3.3 Multiple Constant Multiplication 38

2.4 Number Systems . 43

3 Finite-length Impulse Response Filters 47
3.1 Introduction . 47
3.2 Impulse Response of FIR Filters 47
3.3 Linear Phase FIR Filters . 48
3.4 FIR Filters: Input and Output Relationship 49
3.5 FIR Filter Structures . 49
3.6 Design of FIR Filters . 51

3.6.1 Error Approximation . 52
3.6.2 FIR Filter Design by Optimization 53
3.6.3 Remez/Park-McClellan FIR Filter Design 53
3.6.4 FIR Filter Design by Linear Programming 53

xv

xvi Contents

3.6.5 FIR Filter Design by Cascade of Sub-Filters 56

3.6.6 Sparse FIR Filter Design 63

3.7 Fast FIR Filters . 64

3.8 FIR Filter using Alternate Number Systems 69

3.8.1 FIR Filter using Logarithmic Number System 69

3.8.2 FIR Filter using Residue Number System 70

4 Particle Filters 73

4.1 Introduction . 73

4.2 Mathematical Formulation . 74

4.3 Particle Filtering Steps . 75

4.3.1 Time-Update . 76

4.3.2 Measurement-Update . 76

4.3.3 Resampling in Particle Filters 76

5 Summary and Future Work 85

5.1 Summary . 85

5.2 Future Work . 86

References 89

References . 89

II Publications 111

A On the Implementation of Time-Multiplexed Frequency-Response
Masking Filters 113

1 Introduction . 116

2 Frequency-Response Masking Filters 118

3 Design Considerations for Implementing Filters 119

4 Proposed Architecture . 120

4.1 Memory Management . 121

4.2 Type of Memory . 123

4.3 Timing of Read and Write 125

4.4 Pipelining . 126

4.5 Architecture – Narrow-Band FRM Filters 129

4.6 Architecture – Wide-Band FRM Filters 130

4.7 Architecture – Arbitrary-Band FRM Filters 130

5 Results . 131

5.1 Proposed Model Filter and IP based Model Filter 131

5.2 Comparison between FRM Techniques 131

5.3 Effect of Time-Multiplexing 133

5.4 Dual-Port Memories and Single-Port Memories 136

5.5 Effect of Removing Pipeline Registers 137

Contents xvii

5.6 Proposed Architecture vs. Single Stage FIR (SSF) Filter
IP . 137

5.7 ASIC Implementation . 141

6 Conclusion . 141

References . 144

B Design of Finite Word Length Linear-Phase FIR Filters in the
Logarithmic Number System Domain 147

1 Introduction . 150

2 The Logarithmic Number System (LNS) 151

2.1 Finite Word Length Effects 152

3 Proposed Integer Linear Programming Design in the LNS Domain153

3.1 Integer Linear Programming 153

3.2 Linear Programming Design of FIR Filters 154

3.3 ILP Design of FIR Filters in the LNS Domain 155

4 Results . 157

4.1 Comparison of Branching Schemes 157

4.2 Effect of Word Length . 161

4.3 Changing the Base . 163

5 Conclusion . 165

References . 168

C A Unified Approach to the Design and Implementation of Com-
putation Sharing Multipliers 171

1 Introduction . 174

2 Multiplication . 175

2.1 Standard High-Radix Multiplication 176

2.2 Booth Algorithm . 176

3 Cost Models . 178

3.1 Pre-Computer . 178

3.2 Select Unit . 178

3.3 Encoder . 183

3.4 Summation . 183

4 Computation Sharing Multipliers 185

5 Results . 186

5.1 Single Multiplier . 187

5.2 Tri-State Buffer Based Multiplexer 192

5.3 Transposed Direct Form FIR Filters 193

5.4 Complex Multipliers . 195

6 Conclusion . 197

References . 200

xviii Contents

D Improved Particle Filter Resampling Architectures 203
1 Introduction . 206
2 Architectures for Particle Filters 207
3 Resampling in Particle Filters . 210
4 Proposed Techniques . 214

4.1 Reduction in Resampling Latency – Pre-Fetch 214
4.2 Generalized, Division-Free Resampling Architecture . . . 218

5 Results . 221
5.1 Latency Reduction . 221
5.2 Memory Usage by Generalized Division-Free Architecture

for Multinomial Resampling 225
6 Conclusion . 226
References . 227

Part I

Background

Chapter 1

Introduction

The topic of this thesis is techniques for efficient implementation of finite-length
impulse response (FIR) and particle filtering. It encompasses four different
contributions towards fulfilling the requirements of this thesis:

• Proposing an architecture for the implementation of time-multiplexed
frequency-response masking (FRM) filters and analyzing different mem-
ory organization and access schemes involved in this architecture.

• Design of FIR filters by optimizing the filter coefficients in the logarithmic
number system (LNS) domain

• Analysis and unified design of different computation sharing multiplica-
tion schemes and their applications to complexity reduction in FIR filters

• Proposing a scheme and corresponding architecture for the reduction in
the latency of the resampling stage of the particle filter, a generalized
division-free architecture and compact memory structure for its imple-
mentation

This chapter aims to introduce these research topics and motivate their rele-
vancy in modern day applications. It also presents all the research publications
that have resulted as part of the research work done and the thesis organization.

1.1 Motivation

FIR filters are one of the most widely used filters and have played a leading
role in frequency selective digital filtering since its inception [1–4]. They are
inherently stable and free of limit cycle oscillations caused by using finite word
length as long as they are not implemented in a recursive manner. They can
be easily designed to be linear phase and hence achieve constant group delay,
which helps in preserving the integrity of the information carrying signals and
is crucial in communication signals [5].

3

4 Chapter 1. Introduction

However, FIR filters suffer from a major disadvantage as they require a
higher order to achieve narrow transition bands as compared to infinite impulse
response (IIR) filters. This results in more arithmetic operations like multipliers
and adders and also an increase in the number of delay elements. Since the filter
order of an FIR filter is inversely proportional to the transition band-width, any
decrease in band-width increases the computational complexity of the FIR filters
significantly [3].

Due to this high computational complexity of FIR filters, research has been
on going for decades to reduce it [3, 6]. The proposed techniques to reduce the
computational complexity can be broadly divided with respect to the optimiza-
tion goals; reduction in the number of multipliers [7–27] and reduction in the
multiplier complexity [28–42]. The contributions of this thesis are towards both
research fronts.

Another topic covered in this thesis the resampling step of particle filtering.
The execution of the resampling step is a bottleneck as it cannot be executed
in parallel with the other steps in the particle filtering. Furthermore, the multi-
nomial resampling algorithm suffers from high computational cost because its
implementation requires a search through two large sequence of numbers and
their normalization. A number of resampling algorithms has been proposed
that deals with the parallelism problem [43, 44] but none has been proposed
that reduces the computational cost of multinomial resampling algorithm. Fur-
thermore, the bottleneck remains in the implementation of traditional resam-
pling algorithms [45]. The work presented in this thesis proposes solutions to
reduce the latency which can be used to increase the parallelism and reduce the
computational cost of multinomial resampling.

1.1.1 Reduction in Number of Multipliers

A common approach to reduce the number of multipliers is to realize the fil-
ter through the cascade of sub-filters. These sub-filters can either be differ-
ent [46–51] or identical [13, 52–55]. The main premise of these techniques is
that by the use of sub-filters, less stringent requirement with regards to tran-
sition bandwidth will be placed on these sub-filters, thus reducing the number
of distinct multipliers at the cost of an increased order. The non-identical
sub-filter technique uses building blocks having different powers of z−1. The
identical sub-filter technique using identical building blocks and connects them
with the aid of additional adders and multipliers [54]. One of the most popular
techniques utilizing different powers of z−1 is the FRM technique [48]. These
techniques achieve a reduction in the number of multiplications by making use
of a combination of wide transition-band filters generally termed as model filters
and masking filters. The model filter is first upsampled by L by the insertion
of L − 1 zeros between every coefficient, resulting in a filter called the periodic
model filter, which compresses the spectrum of the filter to form the desired
transition band of the target filter but produces images. The images are then
filtered or masked out by the masking filters. The non-identical sub-filters can

1.1. Motivation 5

be combined in different ways to either produce arbitrary, narrow or wide-band
filters. For narrow-band FIR filters, when the pass-band is less than π/2, the
overall filter structure can be further reduced to just one periodic model and
one masking filter [46, 47, 50]. From this narrow-band structure, efficient wide-
band structure can also be derived by the use complementary filter while the
technique of using identical sub-filters with different up-sampling factors have
also been proposed to synthesize narrow and wide-band FRM filters [13].

The design of FRM filters have received considerable attention but only a
few attempts have been made towards the dedicated implementation of these
filters [14, 16, 22, 24, 56–58]. Furthermore, since contemporary state-of-the-
art implementation platforms like application specific integrated circuit (ASIC)
or field programmable gate array (FPGA) allow the circuits to be clocked at
hundreds of MHz upto a few GHz and only rarely do the sampling rate require-
ments of DSP systems correspond to these high frequencies, time-multiplexed
architectures are crucial. These architecture re-use different resources thereby
reducing the number of such resources. Since typically FRM filters have more
delay elements than a single-stage implementation of FIR filters, it is necessary
to study what affects time-multiplexing has on not only the number of multi-
pliers but also on the mapping of these delay elements to memories. Paper A
presents contributions towards the implementation of time-multiplexed FRM
filter where different memory organizations, access schemes, affect of pipelining
on these schemes and the effect of time-multiplexing on the optimal value of L
which gives the minimum number of multipliers are analyzed.

1.1.2 Reduction in Multiplier Complexity

The other method to reduce the complexity in FIR filters is to reduce the
complexity of the multipliers. There are different methods to do this and can
be broadly divided into three categories

1. Single/multiple constant multiplication
2. Number representation
3. Computation sharing

These three techniques can be combined in different ways to further optimize
the multiplications and can also be combined with the techniques outlined in
Section 1.1.1 [32, 59–61].

Single constant multiplication refers to the optimization of the filter coeffi-
cients in the signed power of two (SPT) space [62, 63] because each coefficient
can be represented as a sum of a limited number of SPT terms. The multipli-
cation of each coefficient with the input data can either be implemented as a
general multiplier or by using a fixed shift-add network because typically the
filter coefficients are constant. The number of adders in a shift-add network
is primarily determined by the number of non-zero terms in the representa-
tion of a filter coefficient and a reduction of these non-zero terms is what is
referred to as reduction or minimization in the number of SPT terms and in-

6 Chapter 1. Introduction

teger linear programming (ILP) has been a popular technique to achieve this
minimization [62, 64–70].

Further reduction can be achieved by combining single constant multiplica-
tion (SCM) with across multiple constants, known as multiple constant multi-
plication (MCM). MCM is applicable to the transposed direct form (TDF) FIR
filter whose operation can be modeled as an MCM problem [38]. The reduction
in the number of adders is achieved by extracting common subexpressions within
a filter coefficient and across multiple coefficients. The techniques proposed for
MCM can be broadly divided into two categories, common subexpression elim-
ination (CSE) [71] and the adder graph technique [28].

The CSE technique is based on pattern matching techniques and the result
depends on the initial representation of the filter coefficients where typically
canonic signed digit (CSD) is used as the number representation [29, 30, 72–74].
This is because CSD number representation has only around 33% non-zero digits
relative to the word length as compared to 2′s complement number represen-
tation which has approximately 66%. These techniques have been combined
with integer or mixed integer linear programming [6, 60, 62, 70, 71, 75–78] and
minimum spanning trees [31, 33, 79] to yield even better results in terms of
number of additions required to realize these coefficients.

The adder graph technique is value based and independent of the underlying
number representation [71]. Here partial sums are symbolically represented in
the nodes of the graph while the edges are used to represent the shift amounts
[28]

Furthermore, different number representations have been used to take advan-
tage of the inherent simplification of multiplication in them, like residue number
system (RNS) [80–84] and LNS [85–92]. Most efforts towards utilizing LNS for
digital filters have focused on either implementing the non-linear conversion to
and from LNS, selecting the logarithm basis, or implementing the LNS addition
and subtraction efficiently [92–97]. The finite word length filter design has not
been considered, but instead relied on rounding the obtained coefficients to the
nearest LNS number.

Paper B presents the contribution in this area where an integer linear pro-
gramming (ILP) approach to design optimal finite word length linear-phase FIR
filters in the LNS domain is proposed. Here, instead of optimizing filters in the
linear domain and converting them into LNS with rounding in the LNS, the
filter is directly optimized in the minmax sense in the LNS domain with finite
word length constraints.

Another source of reducing the multiplication complexity is by sharing some
parts of the actual computation when Booth [98–101] or high-radix multipli-
cation [102] is used. A number of proposed techniques have used alphabets
to pre-compute multiples of the multiplicand to be selected based on multi-
plier bits and shared this pre-computer for all multiplications in the TDF FIR
filter [103–109]. However, this approach is a special case of high-radix multipli-
cation when the radix is 16. Similar sharing can also be performed with Booth

1.2. List of Publications 7

multiplication and in Paper C the attempt is made to analyze both of these mul-
tiplications with respect to computation sharing. Furthermore, different design
choices have been discussed that are available while designing different parts of
the multiplier.

1.1.3 Improved Particle Filter Resampling Architectures

The final contribution of this thesis is the proposal of efficient architectures
for the resampling step in particle filtering. In particle filters a weighted set
of particles is propagated that approximates the probability density of the un-
known state conditioned on the observations. This is achieved by the recursive
generation of random measures which are composed of particles drawn from
relevant distributions and of importance weights of the particles [110, 111]. Par-
ticle filters find application in a wide variety of complex problems including
target tracking, computer vision, robotics and channel estimation in digital
communication or any application involving large, sequentially evolving data-
sets [112–115].

Among the three steps that accomplish particle filtering, resampling is the
most crucial to obtain an efficient implementation of the estimation. It presents
a bottleneck in that this step of resampling cannot be executed in parallel with
other steps. A number of research work have focused on different resampling
algorithms [43, 44, 116–121]. However, these contributions do not discuss the
multinomial resampling which is the most basic form of the resampling step.
The current work in Paper D looks into improving different aspects of the re-
sampling stage. The first technique proposed is the proposal of a generalized
division free architecture and compact memory structure which helps in com-
plexity of the multinomial resampling algorithm. In addition to this, a technique
has been proposed to reduce the latency of the resampling stage along with the
required hardware details.

1.2 List of Publications

This thesis contains research work done between March 2010 and January 2016,
and has resulted in the following publications.

Paper A

• S. A. Alam, and O. Gustafsson, “On the implementation of time-multiple-
xed frequency-response masking filters,” IEEE Trans. Signal Process.,
under second review.

Preliminary versions of the above work have been published in

• S. A. Alam and O. Gustafsson, “Implementation of time-multiplexed
sparse periodic FIR filters for FRM on FPGAs,” in Proc. IEEE Inter-
national Symposium on Circuits and Systems (ISCAS), Rio de Janeiro,
Brazil, May 15–18, 2011.

8 Chapter 1. Introduction

• S. A. Alam and O. Gustafsson, “Implementation of narrow-band frequen-
cy-response masking for efficient narrow transition band FIR filters on
FPGAs,” in Proc. NORCHIP, Lund, Sweden, Nov. 14–15, 2011.

Paper B

• S. A. Alam, and O. Gustafsson, “Design of finite word length linear-phase
FIR Filters in the logarithmic number system domain,” VLSI Design, vol.
2014, Article ID 217495, 14 pages, 2014.

Paper C

• S. A. Alam, and O. Gustafsson, “A unified approach to the design and
implementation of computation sharing multipliers,” Manuscript.

Paper D

• S. A. Alam, and O. Gustafsson, “Improved particle filter resampling ar-
chitectures,” IEEE Trans. Signal Process., under review.

A preliminary version of the above work has been published in

• S. A. Alam and O. Gustafsson, “Generalized division-free architecture
and compact memory structure for resampling in particle filters,” in Proc.
Europ. Conf. Circuit Theory Design (ECCTD), Trondheim, Norway,
Aug. 24–26, 2015.

1.2.1 Other Publications

Contributions have also been made in the following publication but the contents
are not relevant to the topic of this thesis.

• F. Qureshi, S. A. Alam and O. Gustafsson, “4k-point FFT algorithms
based on optimized twiddle factor multiplication for FPGAs ,” in Proc.
IEEE Asia Pacific Postgraduate Research on Microelectron. Electron.,
Shanghai, China, Sept.22–24, 2010, pp. 225–228.

1.3 Thesis Organization

The thesis is organized in two parts. The first part establishes the background
of the work. It outlines and summarizes the previous research work that has
been done in the related field and how this work has brought forward the re-
search front. The second part contains the collection of the research publications
outlined above.

The first part of the thesis is organized in five chapters. Chapter 2 out-
lines various areas connected with the implementation of digital signal process-
ing (DSP) algorithms. Specifically it divides these areas into thee distinct fields,
(a) implementation platforms, (b) arithmetic operations and (c) number systems.
The two main platforms discussed in this chapter are ASIC and FPGA. It has

1.3. Thesis Organization 9

been shown that the way these platforms are utilized for implementing DSP al-
gorithms, their key features and their differences. It moves on to describing the
key arithmetic operations involved in the implementation, i.e., adders, multipli-
ers and number systems used to represent data and their effect on the overall
performance of DSP algorithms.

In Chapter 3, a backround of FIR filters is presented. Advantages and chal-
lenges involved in the use of FIR filters is highlighted. To meet these challenges,
a number of techniques have been proposed to design and optimize FIR filters
with respect to its computation complexity and this chapter attempts to high-
light key areas important towards the reduction in the implementation cost of
FIR filters.

An overview of the particle filter algorithm with special focus on the re-
sampling step is presented in Chapter 4. Different algorithms to implement
the resampling step is discussed in this chapter while also highlighting different
hardware architectures presented in various works.

Finally, Chapter 5 concludes the background part and presents future chal-
lenges in the considered work.

Chapter 2

Implementation Aspects of
Digital Signal Processing

Algorithms

2.1 Introduction

The design and synthesis of a DSP algorithm, based on a set of specifications, is
the first step towards the realization of the complete DSP system. The second
step is the mapping of the algorithm to a set of hardware resources like memories,
processing elements (PEs), control and interconnection network. The connec-
tion between these four fundamental elements is shown in Fig. 2.1. The two
most important operations of these PEs, specially for implementation of DSP
algorithms, are the adder and multiplier. The memory also has an important
role to play in the implementation of these algorithms [122]. The third and the
final step is the implementation of these resources on some hardware platform
which require the data to be represented using finite word length based on some
number system.

The organization of this chapter is as follows: in Section 2.2, various hard-
ware platforms available are described along with their main features, advan-
tages and drawbacks. Furthermore an overview of the two primary arithmetic
operators involved in DSP algorithms, the adder and the multiplier is presented
in Section 2.3. Number representation plays an important role in the imple-
mentation of DSP systems and affects the overall performance and cost of im-
plementing them. A brief overview of different number systems is presented in
Section 2.4.

11

12 Chapter 2. Implementation Aspects of DSP Algorithms

Communication

Memory Processing
elements

Control

Figure 2.1: Hardware resources. Redrawn with permission from [122].

2.2 Implementation Platforms

For real world applications, all algorithms need to be implemented on some
kind of hardware platform. With the growing trend of very large scale inte-
grated (VLSI) designs, a number of platforms are available. Each of these
platforms have different levels of programmability. The platform with the high-
est degree of programmability is the general purpose micro-processors such as
Intel R© Core R© processors. On the other hand, dedicated hardware accelerators,
which have a fixed functionality occupy the other end of the spectrum of de-
vices. In general, all implementation platforms can be categorized under ASICs
because every platform is associated with a specific application, only the granu-
larity is different. In terms of integrated circuit (IC) fabrication technologies, an
IC can be classified as full-custom, semi-custom and programmable ICs [123].

The full custom IC is a layout-based technique where the circuit is drawn
manually at the transistor level. Highest layout efficiency and maximum circuit
performance is achieved at the cost of high initial design effort. These circuits
and layouts are collected in libraries together with automatic generation to form
mega-cells, for e.g., state-of-the-art micro-processor cores.

However, such an effort is not necessary for majority of applications. To
achieve the required performance in these applications, circuits can be composed
of pre-designed cells. These cells are made up of elementary logic gates and stor-
age elements. These cells are automatically placed and routed using dedicated
layout strategies. These techniques take the form of either standard-cell, gate-
array/sea-of-gates and FPGA. The design of circuits targeting this level of ab-
straction is generally carried out using hardware description languages (HDLs)
like Verilog or VHDL. Using these languages, the circuit may be described at
the behavioral level, register transfer level (RTL) level or structural level.

Standard-cells are themselves a full-custom design while gate-arrays/sea-of-
gates consist of preprocessed wafers with predefined but unconnected transistors.
Only the metallization is customized which defines the interconnect between the
transistors and is often called an mask programmable gate array (MPGA) [124].
In FPGAs, an array of logic blocks and routing channels are configured or
programmed using a configuration stored in a static memory. Generally, in the
wider electronics engineering community, standard-cell based layout is referred

2.2. Implementation Platforms 13

to as an ASIC and this terminology will also be used here.
Another implementation platform, called structured ASIC (S-ASIC), mar-

ries the benefits of FPGAs and ASICs in terms of cost, capabilities, turn around
time and ease of design [125]. S-ASICs typically contain prefabricated elements
which either implements generic logic (called a tile) or special logic like con-
figurable I/O, microprocessor cores, embedded memories and others [125]. An-
other key differentiator of S-ASIC is the availability of prefabricated metal layers
and the design only needs to specify a few metallization layers to complete the
device.

From a functionality point of view, a central processing unit (CPU) is only
used for general purpose processing. For computation intensive tasks, the main
work load is transferred to hardware accelerators. These hardware accelerators
can again be programmable, for e.g., a graphical processing unit (GPU) or fixed,
for e.g., ASIC [126]. From a signal processing point of view, instead of using a
CPU, there is a need to use a more specific processor which is flexible yet not
very generic like a CPU. This need is filled by either a digital signal processors
(DSPs) or application specific instruction set processors (ASIPs) [127].

DSPs and ASICs occupy the two ends of the spectrum of platforms used to
implement DSP algorithms. DSPs are flexible but slow and power hungry while
ASICs are non-flexible but very fast and power efficient. FPGAs fill the gap
between these two extreme ends. They provide a flexibility not achievable in
an ASIC while being faster and consume less power than a DSP [128, 129].

Here the focus will be on standard-cell based ASICs which is described in
some detail, in Section 2.2.1 while FPGAs find their description in Section 2.2.2.

2.2.1 Application Specific Integrated Circuits

A standard-cell based ASIC, referred to as an ASIC here, uses pre-designed
standard cells, like logic gates (AND, OR, etc.), multiplexers, flip flop, half and
full adders and tri-state buffers, to implement a system.

These cells, arranged as rows, may also be combined with megacells like mi-
crocontrollers, microprocessors and memories. These standard cells are placed
by the ASIC designer who also defines the interconnect. These standard cells
are constructed using full-custom design methods and their use allow the same
performance and flexibility as a full-custom ASIC but reduces design time and
risk. However, all the mask layers of an ASIC are unique and customized for a
particular design.

An ASIC vendor provides all cells in a library called a standard cell library.
Each cell in a library contains the following

• A physical layout
• A behavioral model
• A Verilog and/or VHDL model
• A detailed timing model
• A test strategy
• A circuit schematic

14 Chapter 2. Implementation Aspects of DSP Algorithms

Design

Synthesis

System
partitioning

Floorplanning

Placement

Routing

Figure 2.2: ASIC design flow [124].

• A cell icon (symbol)
• A wire-load model
• A routing model

The behavioral model is needed for simulation while the timing model is
required to determine the performance of an ASIC. Wire-load models are used
to estimate the parasitic capacitance of wires. Circuit schematic and cell icon
is used in schematic based design entry.

A ASIC Design Flow

The ASIC design flow is divided into a number of steps, as shown in Fig. 2.2.
System partitioning can be done before the design steps and there may be
iterations between the different steps. The design entry is typically made using
an HDL while synthesis translates the HDL description into gates.

System partitioning is used to divide a system into multiple sub-systems
while floorplanning is used to estimate the physical sizes and set the initial
relative location of the various blocks. The location of clock- and power networks
and that of the input/output pins are decided in the same stage. The location
of the logic cells is defined in the placement step while setting aside space for
the interconnect and finally routing makes the connections between the logic
cells.

B Implementation of Adders and Multipliers on ASICs

Typically, the standard cell library has four main types of cells [124]. These are
combinational, sequential, data-path and I/O cells. Each of these cells come
with different drive strengths, power specification, capacitance and delay at
different temperatures, supply voltages and threshold voltages (VT).

Combinational cells range from simple inverter, AND, OR, NAND cells to
more complex cells which contain a comhination of different cells. Cells for
efficiently implementing multiplexers, transmission gates and tri-state buffers
are also a part of the combination cell library. Sequential cells typically contain

2.2. Implementation Platforms 15

different types of latches and flip-flops. In addition to the different properties
mentioned above, they are also available with different timing constraints like
pulse width, hold and setup times. Cells for scan-based flip-flops which are
useful for data-path scanning used in testing of VLSI circuits are also available.

As mentioned earlier, the primary arithmetic operators used in DSP algo-
rithms are adders and multipliers. Cells that implement them are part of the
data-path cells [124]. Data-path cells also implement operations that use multi-
ple signals across a data bus. Full-adder and half-adder cells are typically part
of any standard library. They are available with different delays between inputs
and outputs, specially between carry-in and carry-out as it is part of the carry
chain. However, it is not necessary that these cells are used in the actual imple-
mentation, specially if there are tighter timing constraints or logic surrounding
the adder operation, which is typically the case. The synthesizer may well use
other cells or optimize the logic to implement it more efficiently.

In multiplication, the partial product generation stage will use different types
of combinational cells. Depending on the timing and area constraints and how
the design has been entered using any of the HDLs, summation of the partial
products may be implemented using either summation trees or array adders.
Key components of these summation structures is typically the carry-save adder
which avoids carry-propagation of the ripple-carry adder. Other elements that
can be synthesized using data-path cells are multi-input NAND gates, registers,
multi-bit multiplexers, or incrementers/decrementers [124].

2.2.2 Field Programmable Gate Arrays

An FPGA is an integrated circuit designed to be configured by the customer or
a designer after being manufactured making them programmable. The design
entry, similar to that of an ASIC, is typically made using HDLs. Its config-
uration is generally specified using an HDL, which is also used for designing
ASICs. It significantly reduces the design time while also reducing the proto-
typing cost by more than a few decades. FPGAs can be used to implement any
logic function, either combinational or sequential. The ability to re-program
without going through the whole fabrication cycle of an ASIC provides a sig-
nificant advantage, especially for low-volume applications. They can also be
reconfigured if a problem is identified [130, 131]. A general architecture of an
FPGA consisting of blocks implementing digital logic, interconnect resources
and I/O blocks is shown in Fig. 2.3. In more advanced FPGAs, some of the
logic blocks are replaced by specialized blocks like memories and multipliers.

A History

The emergence of FPGAs is connected to the emergence of early programmable
devices which employed regular architecture and flexible functionality. Earlier
types of such devices consisted of cellular and “cutpoint” cellular arrays [132]
where the functionality of each logic cell was programmed in the field through

16 Chapter 2. Implementation Aspects of DSP Algorithms

= I/O block= Logic block
interconnect

= Programmable

Figure 2.3: A general FPGA architecture.

2.2. Implementation Platforms 17

the use of programming currents or photo-conductive exposure [132]. The next
device, made available in the 1970s, was the programmable read only memories
(PROMs) with its two variants of mask-programmable and fuse-programmable
ROMs. However, the area of a PROM is exponentially dependent on the number
of address inputs and thus unfeasible for large number of address inputs.

The first programmable device which had a two-level logic structure was
the programmable logic array (PLA) which had a fixed AND plane and a pro-
grammable OR plane. Sufficient flexibility is provided by a programmable AND
followed by a fixed OR plane, giving rise to the programmable array logic (PAL)
device [133]. However, in order to implement sequential circuits, registers (flip
flops (FFs)) are added to PALs to form a programmable logic device (PLD).
Multiple PLDs are placed on a single chip to form a complex programmable
logic device (CPLD) where they are connected using programmable routing
devices [128].

From these programmable devices emerged the FPGA which not only has
multi-level programmable logic but also has programmable interconnect. Dif-
ferent claims have been made to the origin of the first FPGA [129, 134–137],
however, the first modern era FPGA was introduced by Xilinx in 1984 [135]
with devices like XC2064, XC4000 and XC6200. These FPGAs consisted of an
array of configurable logic blocks (CLBs) and contained around 64–100 such
blocks with 3-input look-up tables (LUTs) and 58 inputs and outputs. With
time, the complexity of FPGA has grown to include hundreds of thousands of
such blocks in addition to large specialized blocks like memories, multipliers
and serial interfaces which has greatly expanded the capability of these devices
and laid the foundation of a new technology and market [129, 138–140].

Xilinx continued unchallenged and had a quick growth from 1985 to the
mid-1990s, when competitors came up, reducing its market-share significantly.
The 1990s were an explosive period of time for the growth FPGAs, both in
sophistication and the volume of production. In the early 1990s, FPGAs were
primarily used in telecommunications and networking. By the end of the decade,
FPGAs found their way into consumer, automotive, and industrial applications
[140].

In the first decade of the new century, extremely complex FPGAs were
marketed, specially by Xilinx and its main competitor Altera. Platforms like
Virtex and Kintex series by Xilinx and Cyclone and Stratix series by Altera
enabled designers to implement extremely complex applications on FPGAs.

B FPGA Programming

As shown in Fig. 2.3, the architecture of a FPGA is similar to a MPGA. MPGAs
are mask programmable which does not give the same flexibility as the field
programmability of FPGA [137]. This programming of FPGAs is done through
programmable switches of which there are a number of types. Historically, the
approaches that have been used to program FPGA include [128, 129] electri-
cally programmable read only memory (EPROM) [141], electrically erasable

18 Chapter 2. Implementation Aspects of DSP Algorithms

programmable read only memory (EEPROM) [142, 143], flash [144], static ran-
dom access memory (SRAM) [135] and anti-fuses [145]. Of these programming
technologies, only the flash (Microsemi, Actel), static memory (Xilinx, Altera,
Lattice) and anti-fuse (Actel) are popular in modern FPGAs, depending on the
type of applications they are employed for.

Typically, SRAM based FPGA are for more mainstream applications like
communication and signal processing while flash is used for low power applica-
tions [146, 147]. Anti-fuse FPGAs, meanwhile, find applications in space appli-
cations where they have been shown to be immune to single-event upsets (SEUs)
and degrading of the characteristics due to total ionizing dose (TID) [148]. How-
ever, anti-fuse FPGAs are only one-time-programmable, a significant drawback
from FPGA perspective.

C Basic Building Blocks

The basic building blocks of an FPGA, as shown in Fig. 2.3, consists of the
following [128, 129, 137]:

• configurable logic block (CLB)
• Programmable interconnect
• I/O block

A single FPGA CLB can be as simple as a transistor [149] or as complex as a
microprocessor [129]. However, there are inherent problems with either of these
two extremes. The kind of fine-grained programmability provided by using
transistor as a CLB will entail large amounts of programmable interconnect
resulting in poor area efficiency, low performance and high power consumption.
On the other end, think of implementing a small adder or multiplier using a
microprocessor. The inherent inefficiency is visible illustrating the problems of
architectures that are too coarse-grained.

In between the fine and coarse-grained architectures lies a full spectrum of
CLB choices that are based on one or more of the following [137]

• NAND gates [150]
• Interconnection of multiplexers [139]
• LUTs [135]
• Wide-fanin AND-OR gates [151]

The CLB consisting of a pair of transistors in shown in Fig. 2.4 [149]. Simi-
larly, the multiplexer based FPGA from Plessey [137] is shown in Fig. 2.5 [150].
These are the examples of fine-grained CLBs. Coarse-grained blocks include a
multiplexer, LUT and wide-fanin gates based CLBs.

The multiplexer based CLB from Actel, shown in Fig. 2.6 [139, 152], is based
on a multiplexer’s ability to implement various logic functions by connecting its
input to either some constant value or to a signal [153]. The functionality of
a LUT based FPGA is similar to distributed arithmetic (DA) where a LUT is
used to implement a truth table [128]. It requires a memory with 2n locations to
implement a n-input function in a LUT. This arrangement is shown in Fig. 2.7
[128]. Typically, a CLB is also used to implement sequential logic thus it will

2.2. Implementation Platforms 19

a b c d

f

Isolation
Transistors

Two−input
NAND

Two−input
NAND

Figure 2.4: Transistor based CLB implementing f = ab + c′d′.

Configuration Memory

D
Q

M
u
x

8
 t

o
 2

In
te

rc
o
n
n
ec

ti
o
n

Figure 2.5: The CLB from Plessey [137] c©1993 IEEE.

have clocked circuits such as flip-flops and latches. A very basic arrangement
of this is shown in Fig. 2.8 [128, 129].

The architecture of different types of CLBs shown in these figures are very
basic. State-of-the-art FPGAs have very advanced and complex CLBs. One
of the earliest FPGAs by Xilinx, the XC3000, had a very complex logic block,
illustrated in Fig. 2.9. It contains a 5-input LUT which can also be configured
as two 4-input LUTs [129].

As the years progressed, the size of the LUT increased. However, it was
important that the effect of this increased size on area and speed is explored. It
was shown in [155] that as the LUT size increases, the number of LUTs required
to implement the circuit decreases. The cost of this decrease is an increase in
the area cost of implementing the logic and routing for each block. A product
of these two cost metrics shows that initially there is a decrease in the total
area before increasing as LUT size is increased [129].

One alternative way to change this level of granularity is to use multiple
LUTs in one CLB, referred to as cluster in [129]. A number of basic logic
elements, as the one shown in Fig. 2.8, are grouped together and a local inter-
connect structure is used to connect them programmably. This arrangement is
shown in Fig. 2.10, which transformed the increase in the logic and routing area
from exponential to quadratic [129].

20 Chapter 2. Implementation Aspects of DSP Algorithms

1

0

1

0

1

0

s3 s4

s2
s1

z

y

x

w

f

Figure 2.6: Multiplexer based CLB from Actel [137] c©1993 IEEE.

Look−up

table

configuration

bits

m
u

x

n

1

output

inputs

2n

Figure 2.7: LUT based CLB. Redrawn with permission from [128].

D Q

Logic

Element
out

Figure 2.8: LUT based CLB with a flip-flop. Redrawn with permission from
[128, 129].

2.2. Implementation Platforms 21

D

Q

R

D

Q

R

5− Input
Look−up

L
o

g
ic

V
ar

ia
b

le
s

DIDATA IN

X

YTable

E
n

ab
le

 C
lo

ck
C

lo
ck

R
es

et

0 (Inhibit)

(Global Reset)

EC

K

RD

Figure 2.9: CLB of Xilinx XC3000 Series [154].

BLE

1

BLE

1

BLEs
N

Outputs

Inputs

Clock

Figure 2.10: BLEs grouped together in a cluster. Redrawn with permission
from [129].

22 Chapter 2. Implementation Aspects of DSP Algorithms

Another technique to achieve a better trade-off between larger LUT and
cluster sizes is to use clusters of different sized LUTs [156–158]. Different com-
binations were realized using this technique achieving a 10% reduction in pin
count [156] and 25% improvement in performance [157].

All these technological advances have resulted in current state-of-the-art
FPGAs employing a variety of the discussed techniques. The Virtex-7 FPGA
provided by Xilinx combines eight LUTs in one CLB by packing four of these
in one slice [159]. Its 6-input LUT can also be configured as two separate 5-
input LUTs, making the architecture both homogeneous and heterogeneous at
the same time. Similary, Altera Stratix II architecture employs a 6-input LUT
which can be configured as either one 6-input, two 4-input and a combinatin of 5
and 3-input LUT [160]. These CLBs also contain high-speed carry propagation
for arithmetic operations and wide multiplexers and LUTs can also be used to
implement memories and shift registers. These memories are commonly referred
to as distributed memories because the memory function is distributed across
a number of LUTs [159].

D FPGAs for DSP Implementation

High parallelism and throughput requirements of DSP algorithms can be re-
alized by specialized ASICs. However, as noted earlier, ASICs do not provide
high flexibility in terms of reconfigurability [161]. FPGAs on the other hand are
inherently built such that they support highly parallel algorithms and provide
a higher degree of flexibility in terms of reconfiguration. The introduction of
dedicated multipliers and multiply-accumulate units has enabled designers to
implement multiplier and multiply-accumulate (MAC) intensive applications in
FPGAs. Among the various DSP algorithms, FIR filters are one of the most
important algorithms which are widely used in numerous applications. Due to
the high amount of MAC operations inherent in an FIR filter, state-of-the-art
FPGAs are often used to implement FIR filters [58, 86, 162–169].

Current FPGAs have numerous specialized blocks which map specifically to
multiply and MAC operations. These are commonly referred to as DSP blocks.
In fact, implementation of digital filters was one of the key factors to push for
the inclusion of these DSP blocks in the FPGA fabric [170] which also helped
in reducing the performance gap between ASICs and FPGAs.

The DSP block comes in various flavors. The DSP block by Xilinx in their
5, 6 and 7 series FPGAs support various functions, shown in Fig. 2.11. It
supports a number of operations, namely a 25 × 18 two’s complement multi-
plier, a 48-bit accumulator, a power saving pre-adder, single instruction multi-
ple data (SIMD) operation, an optional logic unit, pattern detector, optional
pipelining and dedicated buses for cascading DSP blocks (beneficial for FIR
filters) and support for wide multiply operations up to 35×26 by cascading two
DSP blocks [171].

Altera on the other hand has implemented a variable precision DSP block,
the basic structure of which is shown in Fig. 2.12. The functionalities supported

2.2. Implementation Platforms 23

A

B

D

C
Pattern detector

P

+/−

×
+

−

=

25 × 18

Figure 2.11: Basic structure of a Xilinx DSP slice in series-7 FPGAs [171].

by it are, three 9×9 multipliers, two 18×18 multipliers, one 27×27 multiplier, a
64-bit accumulator and adder, chainout adder for cascading, support for storage
of up to eight coefficients storage and a special systolic FIR Mode [172].

The high performance provided by these dedicated DSP blocks have a down-
side. The number of DSP blocks available is limited and the word lengths they
support are limited. Although Altera provides a variable precision DSP block
yet it is still coarse and for applications like video and image processing, which
require 8 to 10 bits of resolution, there will be wasted resources if the multipli-
cations are mapped to these blocks [173]. Furthermore, if there is a need for
large size multiplication, like floating point multiplication with mantissa sizes
of 24 and 54 bits, it will require cascading of multiple DSP blocks. This will
significantly increase the number of required DSP blocks.

Therefore, there is a need to realize multipliers in the soft logic, i.e., using
the programmable CLBs and LUTs for applications where the DSP blocks are
not sufficient or the word size does not match the system requirements. For
example, a method termed as tiling was introduced in [174, 175]. Here, large
multiplications were implemented using several DSP blocks and smaller multi-
plications were implemented using the softcore multipliers to “fill gaps” where
a DSP block is too large.

A number of techniques have been proposed on the efficient use of the logic
elements to implement softcore multipliers. The fast carry chain of modern
FPGAs was used to implement a multiplier in [176] which generates the partial
products using Booth recoding and adds them using ripple carry adder instead
of a compressor tree. To take advantage of 5-input LUTs where two of the
outputs can be used independently, the technique proposed in [177] showed that
it is possible to generate and compress two partial products of a Baugh-Wooley
multiplier [178] which reduces the number of partial products by half, similar
to the Booth multiplier. However, there is no decoding/encoding required in a
Booth multiplier.

The low level logic of FPGAs have been used to efficiently implement the
compressor trees required to add all the partial products. Generalized parallel
counters (GPCs) are used to replace the full-adders used in compressor trees

24 Chapter 2. Implementation Aspects of DSP Algorithms

Internal
Coefficient

Internal
Coefficient

In
p
u
t

re
g
is

te
r

b
lo

ck

O
u
tp

u
t

re
g
is

te
r

b
lo

ck

Chainout adder/
accumulator

+/−

+/−

+/−

×

× +

18 × 18

18 × 18

Figure 2.12: Basic structure of an Altera DSP slice in stratix-V FPGAs [172].

as a means to reduce the combinatorial delay. Heuristics [179] and ILP formu-
lations [180] are proposed for optimizing the delay of compressor trees while
also considering the FPGA carry chain for the implementation of GPC [181].
ILP formulations are also proposed for reduced power consumption by reducing
not only the depth but also the number of GPCs [182, 183] while efforts to
optimize the number of resources for high throughput pipelined designs have
been proposed in [184]. In [173], authors present a technique to completely
avoid the compressor trees by merging the Booth recoding with the ripple-carry
summation of the partial products in a single stage of LUTs, fast carry chains
and flip flops. Futhermore, the presence of LUTs in FPGAs makes it attractive
for distributed arithmetic based DSP systems [169, 185–189].

Details about multiplication, partial products and compressor trees are pre-
sented in Section 2.3.1.

E Reconfigurable DSP Implementation on FPGA

The built-in parallelism of resources in FPGA allows massively parallel appli-
cations to be easily implemented in an FPGA. It allows for a high throughput
even at low MHz clock rates. This has given birth to a new type of process-
ing called reconfigurable processing, where FPGAs perform time intensive tasks
instead of software [161, 166, 189, 190].

Reconfigurable computing consists of a device, such as an FPGA, performing
computations with spatially programmable architectures [191, 192]. It is rapidly
establishing itself as a major discipline that inherits a wide body-of-knowledge

2.3. Key Arithmetic Operators in DSP Implementations 25

from many disciplines including custom hardware design, digital signal pro-
cessing, general purpose computing on sequential and multiple processors, and
computer aided design.

FPGAs are specially useful for dynamic reconfiguration [192]. It allows
for hardware configuration changes during different phases of the computation.
Such reconfiguration is important for different systems like communication and
networking systems where hardware configurations must change to match pro-
tocol needs.

DSP algorithms, specially FIR filters, can also benefit from the reconfigura-
bility provided by FPGAs. For applications like multi-stage filters for decima-
tion and interpolation, polyphase FIR filters [193] or frequency variable filters
for telecommunications and digital audio [194], multiplications with constants
need to reconfigured from time to time [161].

This reconfiguration can only be achieved in ASICs by low-level multiplex-
ing. However, for current FPGAs, there are standard solutions that can provide
internal reconfiguration. One is the internal configuration access port (ICAP)
of Xilinx FPGAs which allows the logic function as well as the routing to be
completely reconfigured during run time. To change the logic only without re-
configuring the routing, for example changing the FIR filter coefficients, Xilinx
FPGAs provide configurable LUT (CFGLUT). These LUTs can be reconfig-
ured in 32 clock cycles by sourcing their contents from block RAM resources
resulting in reconfiguration times of the order of 100 ns as compared to the
ICAP interface where times are in order of microseconds to milliseconds [161].
These LUTs are similar to standard LUTs but provide a reconfiguration inter-
face of data in, data out, clock enable and clock. In [161] and [188], authors have
presented reconfigurable FIR filters using LUT based multiplier and distributed
arithmetic.

2.3 Key Arithmetic Operators in DSP Imple-

mentations

2.3.1 Adders

Adders perform the most fundamental of all operations in digital signal pro-
cessing algorithms. They are used as both standalone operators and as part
of operations. Furthermore, they are not only used to add two input operands
but can also be used to for multi-operand inputs [123]. From a FIR filter point-
of-view, addition appears in two places. First they are needed to add all the
partial products generated in a multiplication operation or when a multiplier is
realized using a shift-add network. Secondly they appear as structural adders
used to add all the products of the multiplication of the filter coefficient with
the input data.

An overview of different adder structures, the relationships and inter depen-
dencies is given in Fig.2.13 [123]. Brief descriptions about these structures are

26 Chapter 2. Implementation Aspects of DSP Algorithms

Array
adder

Tree
adder

Multi
operand
adders

Adder
array

Adder
tree

Carry
save

Carry-save
adders

Ripple
carry

Carry
skip

Carry
select

Conditional
sum

Carry
lookahead

Parallel
prefix

Carry
propagate
adders

Half
adder

Full
ader

(m, k)
compress.

(m, 2)
compress.

1-bit
adders

Figure 2.13: Adder structures and their dependencies.

presented later.

A Fundamental Adder Structures

The primary concern with respect to addition is the efficient speed up of the
carry propagation. This becomes an even greater concern when adding a number
of partial products which typically take the form of multi-operand adders like
array-adders or tree-based adders. To improve the carry-propagation a number
of adders have been proposed in the literature [123, 195–201]. However, central
to all these adders are the 1-bit adder structures which are explained next.

Half-Adder, (2, 2) – Counter The half adder has two inputs and two out-
puts making it a (2, 2) – counter. It is referred to as a counter because it counts
the number of 1’s in the input bits. The two outputs are commonly referred
to as the sum and carry out bit with the relationship between the inputs and
outputs given by:

2cout + s = a + b. (2.1)

The resulting truth table resulting from (2.1) is given in Table 2.1. Since a
half adder does not have any carry input, its use is rather limited. It finds use in

2.3. Key Arithmetic Operators in DSP Implementations 27

Table 2.1: Half Adder Truth Table.

a b cout s

0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

Table 2.2: Full Adder Truth Table.

a b cin cout s

0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

column reduction techniques like those proposed by Wallace [195], Dadda [196]
and the reduced area heuristic [197].

Full-Adder, (3, 2) – Counter A full adder has three inputs, two data inputs
and one carry-in input which can also be a data input and two outputs, one
data output and one carry output. It is also referred to as a (3, 2) – counter as
it also counts the number of 1’s in the input signals. Similar to a half-adder,
the outputs are typically referred to as sum and carry out and relationship is
given by:

2cout + s = a + b + cin. (2.2)

The resulting truth table resulting from (2.2) is given in Table 2.2. A full-
adder can be constructed using a number of structures like half-adders, 2–input
gates, multiplexers or complex gates. For details, refer to [123].

(m, k) – Counter The (3, 2)–counter can be generalized into (m, k)–counter.
The key building block of generalized counters is the full adder. The benefit of
using large counters arises from the associativity of the adder operation which
allows the input bits to be added in any order. This provides a large degree of
flexibility to optimize the speed of addition [123].

28 Chapter 2. Implementation Aspects of DSP Algorithms

B Carry Propagate Adder

Large word length adders are constructed using the basic building blocks de-
scribed earlier. The most basic form of adding n-bit operands is through carry-
propagation. Arithmetically, addition of two n-bit operands can be described
as

2ncout +

n−1∑

i=0

2isi =

n−1∑

i=0

2iai +

n−1∑

i=0

2ibi + cin. (2.3)

Each stage of the addition adds two bits of the operands and the carry from
the previous stage. Each stage either generates (gi) a new carry, propagates (pi)
the carry from the previous stage or kills (ki) it. The logic equations for these
three signals are given below:

gi = aibi

pi = ai ⊕ bi (2.4)

ki = ai + bi

The sum and carry out associated with each bit of the input operands can
be given in terms of the generate and propagate signals

si = pi ⊕ ci

ci+1 = gi + pici

. (2.5)

where c0 = cin and cout = cn−1. Carry-propagate adders are typically used as
vector merging adders at the end of the multiplication unit [201].

There are different types of addition algorithms which implement basic func-
tionality of carry propagate adder with trade-offs in power, speed and area.
Some of these are briefly explained next.

Ripple-Carry Adders Ripple-carry adder (RCA) is the most basic and
straightforward way to perform addition by carry propagation. It is imple-
mented using n full-adder cells connected in series. As the name suggest, the
input carry is propagated throughout the adder stage by stage, i.e., it ripples
through each stage [123, 201].

One of the main disadvantages of an RCA is that the worst case delay is
proportional to the input operand’s word length. To improve the delay, there is
a need of a bit-level pipelining which will increase the area significantly. Without
pipelining though, energy per computation of an RCA is relatively small because
of its simple design [123].

2.3. Key Arithmetic Operators in DSP Implementations 29

FA FA FAFA

a0a1a2an−1 b0b1b2bn−1

c1c2c3cn−1

s0s1s2sn−1

cincout

Figure 2.14: Ripple-carry adder.

4−bit RCA4−bit RCA4−bit RCA4−bit RCA

4−bit RCA4−bit RCA4−bit RCA

(b0, a0)(b3, a3)(b4, a4)(b7, a7)(b8, a8)(b11, a11)(b12, a12)(b15, a15)

s3,0s7,4s11,8s15,12

cin

cout

Figure 2.15: Carry-select adder.

Carry-Select and Conditional Sum Adder To reduce the critical path
of the carry-chain in an RCA, a long adder can be partitioned into fixed-size
adder groups which compute the summation of that group for carry-in values
of both zero and one. Selection of the true output is then based on the correct
carry-in from the previous group. In other words, carry input is used to select
between two groups of addition, hence the name. Using this form of addition,
the critical path of the adder is reduced to the critical path of one group and
G − 1 multiplexers where G is the number of groups the input operands are
divided into. As an example, a 16-bit addition is shown in Fig. 2.15 where
the group size is four. However, more speed-up is obtained if the group size
is irregular. Regular group size has an advantage that the all stages can be
computed by multiplexing the same circuitry if the the clock rate is higher than
the sample rate. If the group size is reduced to only 1-bit adders, the resulting
structure is a conditional sum adder [201].

Carry-Skip Adder A similar concept of dividing the word length into stages
is utilized in the carry-skip adder. Here the propagation of a carry in a group is
skipped if carry-propagate signal, given in (2.5), of that particular group is true.
If it is not, either a carry is generated or killed in that stage. The critical path,
if carry is generated in the first block and is propagated all the way to cout will
be the carry generation of the first block and carry-skip block of the remaining

30 Chapter 2. Implementation Aspects of DSP Algorithms

groups. However, it can change depending whether a carry is either generated,
propagated or killed in a particular group. Similar to carry-select adders, the
group size can be variable.

Carry-Lookahead/Parallel-Prefix Adder The carry generate and propa-
gate signals given in (2.5) can be used to compute the carry signal as given by
(2.5) for stage i + 1. For stage i + 2, the carry expression becomes [201]:

ci+2 = gi+1 + pi+1ci+1

= gi+1 + pi+1(gi + pici)

= gi+1 + pi+1gi + pi+1pici

. (2.6)

Similarly, the carry for the last, nth, stage can also be computed by same
recursive computation of the previous stage carries. This is a typical prefix
problem. In a prefix problem, every output depends on all inputs of equal
or lower order or every input signal influences all outputs of equal or higher
order [123].

As such, addition of two numbers is a prefix problem and the adder using
the prefix property is referred to as carry-lookahead or parallel-prefix adder. In
(2.6) the terms gi+1 +pi+1gi and pi+1pi are termed as group generate and group
propagate respectively. Since these signals are independent of the carry signal,
the carry can be propagated n stages with a delay of an AND and OR gate at
the expense of a complex pre-computation network which grows with n.

This approach can be generalized using the dot or prefix-operation: •, which
is defined as

[
gk

pk

]

=

[
gi

pi

]

•

[
gj

pj

]

,

[
gi + pigj

pipj

]

. (2.7)

The associativity of this operator allows for the individual operations to be
carried out in an arbitrary order. It is this associativity that allows for gen-
erating the group generate and group propagate signals by combining smaller,
possibly overlapping, group generate and propagate signals [201]. The kth carry
signal can thus be written as

ck = G(k+1):l + P(k+1):lcl, (2.8)

where k ≥ l. Similarly, the sum signal can be expressed as

sk = ak ⊕ bk ⊕ ck

= pk ⊕ ck

. (2.9)

It is now obvious that to speed up addition, all group generate and prop-
agate signals originating from the least significant bit (LSB) position should

2.3. Key Arithmetic Operators in DSP Implementations 31

FAFAFAFA

Carry− propagate adder

x0x1x2xn−1 y0y1y2yn−1 z0z1z2zn−1

c1c2c3cn s0s1s2sn−1

Figure 2.16: Carry-save adder (CSA).

be computed. These can either be obtained using a sequential-prefix algorithm
which needs a minimal number of (•) operators at the cost of slow speed. On
the other hand, a parallel-prefix algorithm can be used where all outputs can be
computed separately and in parallel [123]. It decreases the computation time
but increases the number of required (•) operations

Based on the associativity of the (•) operator, the adders can be connected
in various ways to reduce the depth and the number of (•) operators. In Ladner-
Fischer prefix-adder, intermediate signals are computed by a minimal tree struc-
ture and is then distributed in parallel to higher bit positions [198]. This adder
has a high-fanout for some nodes which is reduced in the Brent-Kung [199]
tree-prefix algorithm at the cost of an increased depth. Another approach is
the Kogge-Stone algorithm [200] which has minimal depth and bounded fan-out
but a high number of (•) operations. Details about these and other algorithms
are available in [123].

C Carry Save and Multi-Operand Adder

One way of removing carry-propagation is to avoid it which is achieved in a
carry save adder (CSA) by treating the intermediate carries as outputs instead
of propagating them to the next stage [202]. It is realized using full-adders, is a
redundant adder and plays an important role in multi-operand adders. This is
because since carry is not propagated, it leaves one input of the full-adder cell
unused making it possible to add three input vectors [201]. These multi-operand
adders find application in the summation of the partial products generated in
a multiplication operation.

The output of a CSA is in the form of two vectors: sum and carry. These are
generally added together using a fast carry propagate adder (CPA), as shown
in Fig. 2.16.

To add m input operands using CSA, m − 2 CSAs are required followed by
a fast CPA. These are referred to as array adders [123, 201] and are explained
in more detail, along with tree adders in Section 2.3.2.B. Since carry-save is an
example of a 3, 2-compressor, in general, multi-operand adders are implemented
either using counters or compressors or a combination of both.

32 Chapter 2. Implementation Aspects of DSP Algorithms

FA

FA

a0 a1 a2 a3

sc

cin

cout

Figure 2.17: (4, 2)–compressor using two full-adders.

(m, 2) – Compressors In contrast to counters which produce a true binary
representation of the number of ones in the input, the compressor does not pro-
duce valid binary count [201]. It rather reduces the number of partial products
and has a number of incoming and outgoing carries. An (m, 2) compressor is also
a one bit adder, as shown in Fig. 2.13, which is combined to form multi-operand
adder arrays. Arithmetically, it can be formulated as [123]:

2(c +
m−4∑

l=0

cl
out) + s =

m−1∑

i=0

ai +
m−4∑

l=0

cl
in. (2.10)

No horizontal carry-propagation occurs as cl
in only influences ck>l

out . An
(m, 2)–compressor is built using (m − 2) full-adders. The most frequently used
compressor is the (4, 2)–compressor which is built using two full-adders as shown
in Fig. 2.17.

2.3.2 Multipliers

Multiplication is one of the most basic and widely used arithmetic operations
in various signal processing algorithms. The two operands of the multiplier
are termed as multiplier and multiplicand. A significant amount of research
material is available for the reduction in the implementation cost of this op-
eration. This reduction revolves around the two basic operations in a mul-
tiplication: generation of partial products and their accumulation. Thus, in
order to speed-up the multiplication, one either needs to reduce or the num-
ber of partial products, speed-up their generation or reduce the cost of the
accumulation. Over the decades, various high-speed multipliers have been pro-
posed [98, 195, 196, 203–208].

To reduce the number of partial products, one of the earliest algorithm was
proposed by Booth in 1951 [98]. It forms groups of two consecutive bits with
one overlapping bit from the lower order group. In this way, no partial product
is generated when the multiplier has a group of two zeros or two ones. For other
values, a partial product of X or −X is generated. A number of modifications
to this algorithm have been proposed and is discussed later.

2.3. Key Arithmetic Operators in DSP Implementations 33

SU SU SU SU

Summation

Pre−computer

Encoding

UnitsBank of Select

Product (XY)

Multiplicand (X)

M
u
lt

ip
li

er
 (

Y
)

Figure 2.18: General block diagram of Booth/high-radix multiplier.

While the Booth algorithm analyzes overlapping groups of bits, multiplica-
tion can also be performed by analyzing non-overlapping groups of bits. This is
referred here as high-radix multiplication, which is a misnomer as Booth mul-
tiplication is also a high-radix multiplication. But for brevity, multiplication
where the multiplier is divided into non-overlapping groups of bits is referred
to as high-radix multiplication. An example of high-radix multiplication is the
standard binary multiplication which is referred as radix-2 high-radix multipli-
cation.

The main building blocks of Booth and high-radix multiplication are the
same. The multiplier bits are grouped and encoded by an encoder. Different
integer multiples of the multiplicand is computed by the pre-computer, one of
which is selected for each multiplier group based on the encoding in the select
unit. The selected multiples of the multiplicand are then summed up for the
final product. A unified block diagram representing both Booth and high-radix
multiplication is shown in Fig 2.18.

The summation of the partial products, in general, can be referred as a multi-
operand addition problem. In the literature, it has been solved in various ways:
compressors, array accumulation and tree accumulation [123]. Section 2.3.2.B
provides more details.

A Partial Product Generation

Partial product generation is the first step of multiplication process. Each
bit/groups-of-bits of the multiplier is multiplied with the whole multiplicand to
generate a partial product. Each partial product is shifted by an amount that
is equal to the number of bits of the multiplier considered for the generation of
that partial product.

The formulation of a bit-wise representation of an unsigned multiplication

34 Chapter 2. Implementation Aspects of DSP Algorithms

is:

Z = XY =

WX −1∑

i=0

xi2
i

WY −1∑

j=0

yj2j =

WX −1∑

i=0

WY −1∑

j=0

xiyj2i+j . (2.11)

where WX and WY is the word length of the multiplier and the multiplicand.
Typically, the word length of the final product is the sum of WX and WY .

The total number of partial products is equal to the total number of bits
or groups-of-bits in the multiplier (WY in (2.11)). Two techniques, used to
reduce the number of partial products, i.e., the Booth algorithm and high-radix
multiplication are discussed next.

Booth Algorithm - Original and Modified One of the earlier attempts
to reduce the number of partial products came in the form of Booth algorithm
and its variants. The original algorithm divides the multiplier bits into groups
of two with one overlapping bit with the adjacent groups and encodes them.
A 0 is appended at the LSB side before the encoding. The original Booth
algorithm can be referred to as radix-2 or Booth-1 [209], however, it is rarely
used. An improvement on this encoding was shown in [99] where multiplier bits
were grouped into three and four bits respectively and encoded, thus reducing
the number of partial products to ⌈ WY

2 ⌉ and ⌈ WY

3 ⌉ respectively. Each partial
product, except the first one, was then shifted by two or three positions for
their summation. These techniques can be referred as radix-4/Booth-2 and
radix-8/Booth-3, respectively. The encodings for radix-4 and radix-8 are shown
in Table 2.3(a) and (b), where the Enc. column indicates the values of the
multiples of X to be generated by the pre-computer.

In both of these encodings, the LSB of each group is most significant bit
(MSB) of the previous low-order group. The encoding occurs in parallel as
these multiples have no dependency. In case of radix-4 all the multiples can be
obtained using simple shifts however, the non-trivial multiplies of 3 in radix-8
requires addition.

The partial products can be both positive and negative. For their summa-
tion, the partial products have to be sign extended, a disadvantage as argued
in [209, 210]. However, the problem of sign extension can be avoided be using
the identity −p = p̄−1 which enables one to replace all negative partial products
with an inverted version and adding a compensation vector at the end. Further-
more, because of negative partial products generated for the Booth algorithm,
a sign-bit needs to be added to each partial product.

The pre-computer in Fig. 2.18 produces all the required multiples of the
multiplicand which is then selected by the select unit based on the encodings
produced by the encoder. The select unit consists of a set of multiplexers while
the encoder is a mapper from the input multiplier bits to the encoded digits.
Typically, the pre-computer is required to only produce odd multiples as even
and negative multiples can be obtained shifts and negation. Thus the shift and
negation can be performed after the appropriate odd multiple has been selected.

2.3. Key Arithmetic Operators in DSP Implementations 35

Table 2.3: Booth Encoding with (a) Radix-4 and (b) Radix-8.

(a)

y2k y2k+1 y2k+2 Enc.

0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 2
1 0 0 -2
1 0 1 -1
1 1 0 -1
1 1 1 0

(b)

y2k y2k+1 y2k+2 y2k+3 Enc.

0 0 0 0 0
0 0 0 1 1
0 0 1 0 1
0 0 1 1 2
0 1 0 0 2
0 1 0 1 3
0 1 1 0 3
0 1 1 1 4
1 0 0 0 -4
1 0 0 1 -3
1 0 1 0 -3
1 0 1 1 -2
1 1 0 0 -2
1 1 0 1 -1
1 1 1 0 -1
1 1 1 1 0

It is possible to extend the modified Booth encoding to higher radix which
will reduce the partial products roughly by a factor of r for radix-2r Booth
multiplier [211]. But it involves even more computation of non-trivial multiples
such as 3, 5 and 7 for radix-16, increasing the complexity of the pre-computer.
It will also increase the complexity of the encoders and there is a possibility
that any reduction in the complexity of the partial product summation is offset
by the increase in the complexity of the encoder and the pre-computer. Formal
proofs of the original and modified Booth multipliers appear in [211, 212].

The implementation cost of the pre-computer can be reduced based on the
fact that the multiples of the input multiplicand are known, making it an MCM
problem. Efficient techniques have been proposed to implement MCM using
directed acyclic adder graphs (DAG) and CSE [28, 29, 38]. More details about
MCM techniques are available in Section 2.3.3.

Standard High-Radix Multiplication The multiplier can be divided into
groups of disjoint sets, referred to as standard high-radix multiplication where
the normal binary multiplication can be termed as a radix-2 multiplication.
This can be extended to form groups of r bits, where r ≥ 1, to form radix-2r

standard high-radix multiplier. This will compare with a higher radix Booth
multiplier, where pre-computed multiples can be used to generate the partial
products. Therefore, in case of a radix-4 multiplier, one will need multiples

36 Chapter 2. Implementation Aspects of DSP Algorithms

of 0, 1, 2, 3 times the multiplicand. The encoding will be very simple with the
multiplier being divided into disjoint groups of two bits. Each partial product
will then need to be shifted by two positions for the summation.

A number of papers have been published utilizing the same encoding, how-
ever, the proposed ideas are simply a higher radix multiplication. For example,
in [103–108] the authors present a computation sharing multiplier where the
bank of pre-computers generate odd multiples between 1X and 15X , which is
an example of a radix-16 standard high-radix multiplier with other multiples
being non-trivial and generated using just shifts. Also in [213] authors propose
a common subexpression elimination where the multiples produced are again a
case of radix-8 standard high-radix multiplication.

Standard high-radix multiplier has the same building blocks as the Booth
multiplier, as shown in Fig. 2.18. Again, only odd multiples need to be computed
by the pre-computer. However, standard high-radix multiplication does not
have negative multiples except for the most significant group of bits.

B Partial Product Summation

The next step after partial product generation is the problem of their summa-
tion. This summation can be performed either serially using a serial/parallel
multiplier using carry-save adders [201] or in a parallel manner. The parallel
summation is primarily a problem of multi-operand addition which is solved ei-
ther using (m, 2) compressors, array accumulation and tree accumulation [123].
Within these broad schemes, a number of different techniques have been pro-
posed like Wallace tree adder array using carry-save adders [103, 104, 107, 214],
logarithmic carry-select adder [105] and carry-select adder using dual transition
skewed logic (DTSL) [106, 108].

A brief description of the (m, 2) compressor was given earlier while a brief
description of the remaining methods is given next.

Serial Accumulation of Partial Products For serial accumulation of par-
tial products, they are also generated sequentially and then accumulated succes-
sively as they are generated. Due to this, these multipliers have large latencies
but can be clocked at a high clock rate because, typically, the critical path is
restricted to just one full adder [201].

Serial accumulation has a further advantage of requiring significantly less
area by eliminating wide buses and having simplified routing. Typically, the
multiplier used for serial accumulation is a serial/parallel multiplier where the
multiplicand (X in Fig. 2.18) arrives serially while the multiplier (Y in Fig. 2.18)
arrives in a bit-parallel fashion [201].

Array Accumulation of Partial Products Array accumulation of partial
products has the advantage of producing a regular structure. This will help in
routing of signals and can decrease routing delays. The accumulators consist of
identical cells, typically a full adder. There is no horizontal carry propagation

2.3. Key Arithmetic Operators in DSP Implementations 37

in the initial stages where the output of each stage consists of an intermediate
sum and carry output, carry-save type. Only the final stage requires it which
can be replaced by a fast CPA. A typical example of such an accumulator can
be seen in a Baugh-Wooley multiplier [178]. The problem of signed numbers
requiring sign-extension, similar to the one in Booth-multiplier, is solved by
using the property −p = p̄ − 1.

This approach, however, has its shortcomings. It requires a large area be-
cause of the presence of many full adders. Also, the delay is quite high which
consists of (WY − 1) × TF A for the initial rows and WX × TF A for the final
carry-propagate adder, where TF A is the delay of a full adder. However, unlike
tree accumulation, this technique does not require any vector merging adder.

Tree Accumulation of Partial Products Tree accumulation is a technique
to reduce as many partial products as possible. It utilizes both half- and full-
adders to minimize the number of levels and reduces the word length for the
final vector merging adder. Popular approaches are Wallace [195], Dadda [196]
and reduced area [197]. They use the fact that not all columns in a partial-
product array have the same number of bits as in the final product. The full
and half adders act as carry save adders because the carry generated is only
placed in a higher column to be used in the next level of reduction.

Wallace [195] uses many half adders, which is a drawback. Dadda [196],
instead uses an approach which proposes that full and half adders are only to
be used if required to obtain a number of partial products equal to a value in
the Dadda series. The benefit is the reduction of half adders while at the same
time reducing the number of levels. A compromise between the two approaches
is proposed in [197] where, like Wallace, as many full adders as possible are
introduced in each level while half adders are only introduced to reach the
sequence in the Dadda series or when combining two bits towards the right of
the partial product array. In this way, a minimum number of stages is obtained
with both the length of final adder and number of half adders kept small.

There is, however, a drawback. The reduction trees do not provide any
regularity and thus the routing is complicated. This can increase the delays
and become a limiting factor in the final implementation. Reduction trees that
are more regular include overturned stairs-reduction tree [215] and the high
performance multiplier (HPM) tree [216].

Final Addition The final addition step is used when the partial products
are accumulated using a tree structure. This is also called a vector merging
adder. Its role is to add the outputs of the reduction tree. Generally a carry-
propagation adder can be used. The author in [214] has used an accelerated
carry adder which has a Manchester carry chain circuit. One can use a carry-
select or carry-look-ahead implementation as well.

In a multiplier, the arrival time of different inputs to the final adder will
typically be different and this can be used to optimize the adder delay. In [217],

38 Chapter 2. Implementation Aspects of DSP Algorithms

x(n)

h0 h1 h2 hN−2 hN−1 hN

y(n)
z−1 z−1z−1z−1z−1

Figure 2.19: Transposed direct form FIR filter.

the authors have shown that fast adder designs based on uniform signal delay
profiles can give poor results and that using a hybrid structure for the final adder
that may consist of a variety of different designs will give better results. They
have shown the design based on blocks of ripple-carry, carry-skip and carry-
select adders with an approach that can also be used for multi-level carry-skip
and carry-look-ahead adders.

2.3.3 Multiple Constant Multiplication

The implementation complexity of a multiplication circuit can be reduced if
the multiplier coefficient is a constant. Generation of partial products is not
required and the multiplication is implemented using a shift-add network. This
technique, called SCM can be extended to MCM if multiple constants are being
multiplied with a single input. This type of multiplication is observed in the
TDF FIR filter, as shown in Fig. 2.19.

With MCM, the complexity of FIR filters can be further reduced by utiliz-
ing the potential redundancy between filter coefficients. Complexity reduction
through MCM can be achieved using two techniques, CSE [29] and DAG [28].

A Sub-expression Elimination (CSE)

The CSE technique is based on pattern matching techniques [29, 30, 72–74]
and uses CSD number representation which typically has less number of non-
zero digits as compared to two’s complement (2C) number representation. CSD
number representation is a subset of signed digit (SD) number representation.
However, unlike SD which is redundant, CSD is non-redundant. Each digit,
xi, in a CSD coefficient, X , can take three different values, i.e., xi ∈ −1, 0, 1.
The difference between SD and CSD is that CSD imposes a restriction that no
consecutive digits can be non-zero.

Even for one filter coefficient value, CSE can be used to reduce the implemen-
tation cost. Each coefficient will be represented by a number of digits. Consider
for example, the coefficient, 413/512. In CSD, its representation is 1.01̄01001̄01.
In this representation, 101̄ occurs twice. This is because 101̄ and 1̄01 are con-
sidered the same because addition and subtraction are considered to have the
same complexity [201]. Similary, 100001 also occurs twice. These are termed as

2.3. Key Arithmetic Operators in DSP Implementations 39

>>2 >>4 >>7 >>9

(a)

>>2

>>7

>>4

(b)

>>5

>>2>>4

(c)

Figure 2.20: Constant multiplication with 413/512 = 1.01̄01001̄01 with (a) no
sharing (b) sharing of 101̄ and (c) sharing of 100001.

subexpressions and sharing of these reduce the number of adders required for
their implementation, which is shown in Fig. 2.20

This technique can be extended to multiple filter coefficients where sub-
expressions can be shared across them. Consider the coefficient set 3/32, 13/32,
25/32 where 3/32 = 0.00101̄, 13 = 0.101̄01 and 25 = 1.1̄001. Here the most
common subexpression is 101̄. Sharing of this subexpression can reduce the
number of adders from five to three, as shown in Fig. 2.21.

This procedure can be performed in a systematic way by finding and count-
ing possible subexpressions, typically picking the one with highest frequency of
occurrence and introducing a new symbol in its place. If some subexpressions
were replaced, this procedure is repeated. If no subexpression is replaced, the
procedure is aborted [29, 73]. However, this greedy approach might not be
optimal [201].

The subexpression sharing problem can also be solved using ILP. The objec-
tive function to minimize in such problems is the number of additions required
to form each subexpression and the total number of subexpressions [71]. Fur-
ther improvements can be achieved by not restricting the coefficients to CSD
as more non-zero digits allow for more common subexpressions to exist [201].

Different techniques and heuristics have been proposed to solve MCM using
CSE. In [29], the authors propose a method which uses only two types of subex-
pressions, i.e. 101 and 101̄, as they are the most frequent. A greedy solution,
which selects the subexpression with the highest frequency is presented in [73]
while in [30], the authors present a technique which extracts all the large subex-
pressions, i.e. with most non-zero digits, and selects the one with the highest
frequency. Then the number of non-zero digits are decreased and the algorithm
is repeated. In [74] authors propose an ILP model where subexpressions are
restricted to have at most two non-zero bits.

40 Chapter 2. Implementation Aspects of DSP Algorithms

>>3 >>5 >>1 >>3 >>5 >>2 >>5

13

3

25

(a)

>>2

>>3>>5

>>1

3 1325

(b)

Figure 2.21: Multiple constant multiplication with 3/32, 13/32, 25/32 with (a)
no sharing and (b) CSE.

A comparison of a number of MCM techniques was made in [218] and two
new algorithms were proposed. One was an extension of the two term approach
of [29] where at first the algorithm was applied to each coefficient separately.
The technique of [29] was again applied to the result of the first step. It also ex-
plored a large number of different combinations of minimal signed digit (MSD)
representations and compared the results to the proposed technique of [219]
which eliminates subexpressions using MSD number representation. MSD num-
ber representation requires the same number of adders as CSD, however the
restriction of not having consecutive non-zero digits is removed.

B Directed Acyclic Adder Graphs (DAGs)

Another form of MCM, having the same underlying technique of sharing/ elim-
inating of common subexpressions, is the adder graph technique [28, 72, 220].
The difference between adder graphs and CSE is that it is value based and inde-
pendent of the underlying number representation used [71] and usually achieves
better solutions than CSE. Here partial sums are symbolically represented in the
nodes of the graph while the edges are used to represent the shift amounts [28].

The key concept behind DAGs is the use of graph representation to imple-
ment multiplier blocks and was introduced in [72]. Graph-based optimization
has been used for single coefficients and shown to be superior to CSD repre-
sentation [221]. The same concept has been extended for MCM in [28, 220] by
using the concept of multiplier blocks for TDF FIR filter.

The graph-based technique to implement multiplication consists of vertices
and edges representing adders and multiplication by a power of two, respectively.
A comparison of realizing a multiplication by 45 using CSD and the techniques
proposed in [221] is shown in Fig. 2.22. The number of adders required is
reduced from three to two using the improved technique. In this graph, the
values assigned to each vertex is termed as a fundamental with 4 and 8 in

2.3. Key Arithmetic Operators in DSP Implementations 41

1 1 1

−4
−16

64

−3 −19 45
(a)

1 1

4 8

455 1 1 459

8 4

(b)

Figure 2.22: Representation of 45 using (a) CSD and (b) technique proposed
in [221].

8

−1

7 16 16

1

32 33
1 5

4

1 21

16

(a)

8

−1

7

2

211

1

16
16

33

(b)

Figure 2.23: Multiple constant multiplication with 7, 16, 21, 33 with (a) no
sharing and (b) DAG.

Fig. 2.22(b) being intermediate fundamentals.

The same concept is used when implementing MCM problems, like FIR
filters. The multiplier block consists of a network of shifts and adds where
sharing of network happens across multiple constants. As an example, Fig. 2.23
shows multiplication by four constants, first implemented as separate multipliers
and then as a single multiplier block with a sharing of the shift-add network
resulting in a reduction in the number of adders required.

Different heuristics have been proposed in works published during the last
few decades. In [72], which is the first known contribution, the authors propose
four MCM algorithms: add, add/subtract, add/shift and add/subtract/shift
with the last one being the most generic. The fundamentals in the graph are
arranged in only ascending order, i.e., intermediate nodes cannot be obtained
from other intermediate nodes using right shifts and that as intermediate fun-
damentals, only those values are allowed that are smaller than the set which
contains all constants to be realized (target set). As soon as a constant is real-
ized, it is removed from the target set. Typically, a target set is reduced to only
contain positive odd numbers as even and negative numbers can be realized
using shifts and subtraction.

This algorithm was improved in [221] by relaxing the constraints described
above in [72]. It also synthesizes the target constants in order of increasing
complexity in terms of adders which was determined by using a precomputed
LUT. This algorithm was further improved in [28] which relaxed some of the
constraints and used a table of precomputed optimal SCM decompositions ob-
tained by an exhaustive search of the method described in [221]. A more com-
putationally expensive but a better heuristic was proposed in [220] which does

42 Chapter 2. Implementation Aspects of DSP Algorithms

not use an optimal SCM look-up table. It improves the synthesis of constants
which require more than one adder to be synthesized.

C MCM on FPGAs

FPGAs, as mentioned in Section 2.2.2, have dedicated hardware blocks suitable
for the implementation of DSP systems. However, there is a disadvantage in
using these dedicated blocks. They are limited in number and restricted in
terms of word length. Many applications do not require such types of large
multipliers leading to a need of soft-core multipliers which use the general fabric
of the FPGA.

Apart from different methods of implementing softcore multipliers men-
tioned earlier, contributions have also been made towards efficient implemen-
tation of MCM problems on FPGAs [40, 41, 222–225]. Although the presence
of a LUT indicates that a DA based FIR filter will be beneficial, it has been
shown that MCM based FIR filters achieve better results as compared to DA
based methods [223, 226].

The problem of implementing MCM problems on FPGAs is the efficient use
its resources; the LUTs, full-adder logic with fast carry chains and flip-flops.
For high-speed implementation, it is necessary to introduce pipelining as the
critical path is equal to the maximum number of adders in one path (two in
case of Figs. 2.21 and 2.23). In other words, each adder needs to be a registered
adder. Typically the resources identified are contained in one unit. Thus, when
pipelining an adder, the flip-flop in the unit can be utilized requiring no further
addition to the implementation cost. Thus the main problem is the efficient
pipelining so that there is a reduced resource usage.

Different heuristics and optimization based solutions have been proposed in
various works. In [223], a hand optimization of pipelining was proposed which
showed that pipelined adder graphs proposed in [28] is beneficial when compared
to pipelined DA based FIR filters. Optimization routines were first used in [227]
to propose a reduced slice graph (RSG) algorithm. It was also based on the
method proposed in [28] but used a low adder depth resulting in a low usage
of FPGA resources. A method based on CSE was proposed in [226] which was
called the Add/Shift method. Binary integer linear programming (BILP) was
used in [40] to optimize the pipelining by finding the best scheduling as well as
adder duplication. Adder duplication means that an adder can be eliminated
in the adder graph if it is computed again in a later stage. Gate level BILP
optimization is proposed in [228] to further reduce the cost. These methods
though are applied on an existing MCM problem. A direct optimization of
these pipelined adder graphs (PAGs) is proposed in [41] called reduced pipelined
adder graph (RPAG). Here it is shown that pipelined MCM (PMCM) is a
generalization of the MCM problem with limited adder depth and the proposed
heuristic produces better results as compared to those presented in [40] and
[228].

2.4. Number Systems 43

2.4 Number Systems

The choice of number system in any digital system has an impact on its imple-
mentation cost and power consumption. The most common ways to represent
numbers in DSP systems is to use representations based on radix-two, i.e., where
the weight of each is digit is a certain power of two. Typically for DSP systems
numbers are fractional rather than integer. A common number system is the
unsigned binary number system where each digit takes on two values 0, 1 and a
number of digits combine to form a number as:

X =

F∑

i=1

xi2
−i, (2.12)

where F is the number of fractional bits. The LSB in this case, commonly
referred as unit of least significant position (ulp) has a weight of Q = 2−F and
X has a range of 0 ≤ X ≤ 1−Q. However, to represent negative numbers there
are several different number representations. The two most common among
them is the signed magnitude (SM) and 2C number representation.

SM, as the name suggests represents the sign and magnitude of the number
separately. The MSB is used to represent the sign, where a one represents a
negative sign and zero a positive. The other bits are used to represent the
magnitude of a number. For example, −5 = 1101 and 5 = 0101 in SM number
representation. The benefit of SM representation is the simplicity with which
a transition can be made between negative and positive numbers of the same
magnitude. There is only a change in one bit position which has a positive
effect on the switching activity and hence the power consumption. One the
other hand, addition and multiplication are more involved as there is a need
to explicitly determine the sign of the result. The number range of SM is
−(1 − Q) ≤ X ≤ 1 − Q and can be expressed mathematically as

X = (−1)x0

F∑

i=1

xi2
−i. (2.13)

2C number representation on the other hand uses a weighted MSB to repre-
sent signed numbers. This helps in making addition and multiplication simpler
as their is no need of explicitly handling the sign of the answer. Furthermore,
one can add an arbitrary long sequence of numbers in any order as long as the
final result is within the range of the representation because any intermediate
overflows/underflows will cancel out. The range of 2C is −1 ≤ X ≤ 1 − Q and
can be represented as

X = −x0 +
F∑

i=1

xi2
−i. (2.14)

The number representations described so far are non-redundant number rep-
resentations, i.e., for each number there is only one representation. There is

44 Chapter 2. Implementation Aspects of DSP Algorithms

another category where each number can have multiple representations and is
referred to as redundant representation. An example of a redundant representa-
tion is the SD number representation which was briefly described in Section 2.3.2
and another is the carry-save representation. The benefit of redundant number
representation is the ability to add two numbers without any carry-propagation
and in constant time.

In contrast to regular number systems like 2C, SM and SD, there are number
systems which have benefits with respect to the operation of multiplication and
addition [229–231]. The two most common number systems are LNS and RNS.

The most expensive operation in any DSP system is the multiplication and
the LNS takes advantage of the fact that multiplications become additions. It
also simplifies other operations like division, roots and powers. This, however,
comes at the cost of increased complexity to implement addition. However,
the simplification of the multiplication operation to addition is a major benefit
which has been utilized to implement DSP systems [85–92, 95, 96, 232–235].

The LNS representation of a number X consists of a triplet X as follows [93]:

X = (zx, sx, mx) , (2.15)

where zx is a one-bit flag to indicate if X is zero, sx is the sign of X and
mx = logb |X | is the base-b logarithm of the absolute value of X [90]. Represen-
tation capabilities, computational complexity and conversion to and from LNS
numbers greatly depend on the choice of the base [230].

As stated before, the motivation behind using LNS is the simplicity of im-
plementing the multiplication of X and Y which is reduced to the computation
of the triplet Z [90]:

Z = (zz, sz, mz) , (2.16)

where zz = zx or zy, i.e., the zero flag of the output, sz = sx xor sy, i.e., the
sign of the output and the output itself, mz = mx + my.

The addition and subtraction are more complex and are given by (2.17) and
(2.18).

add = max (mx, my) + logb

(

1 + b−|mx−my|
)

, (2.17)

sub = max (mx, my) + logb

(

1 − b−|mx−my|
)

. (2.18)

RNS simplifies the addition and multiplication operation by eliminating
carry propagation and allowing for constant operation time. It achieves this
by using the Chinese remainder theorem of modular arithmetic and uses po-
sitional bases m1, m2, . . . , mP which are relatively prime [236] to represent a
number. Each number has a unique RNS representation given by

X → ((x)m1
, (x)m2

, . . . , (x)mP
) , (2.19)

where (x)mi
= X mod i. To perform any operation (addition, multiplication

or division) on the RNS number, the operation is performed modulo on each

2.4. Number Systems 45

moduli (mi). So for example, to represent the number 49 in RNS with bases
5, 3, 2, the resulting RNS number will be 49 mod 5 = 4, 49 mod 3 = 1 and
49 mod 2 = 1, i.e., [4, 1, 1]. To add 49 to, for example, 29 ([4, 2, 1]), one will
perform modulo addition on each digit, i.e.,

(1 + 1)mod2 → 0

(2 + 1)mod3 → 0

(4 + 4)mod5 → 3

i.e., [3, 0, 0] which is the RNS representation of 78. The speed of the RNS
depends on the largest moduli in the base and not on the magnitude of the
number [237]. This is because although there is no carry propagation between
the RNS digits, in order to implement RNS in hardware, each moduli will be
implemented as binary numbers and there will be carry propagation within each
moduli. Therefore small moduli will result in a cost-effective implementation
of arithmetic operations. However, if each moduli is small, then to ensure a
sufficient dynamic range, given by m1m2 . . . mP , a large number of them will
be required [238].

However, there are disadvantages as well. Input/output conversion from
binary to RNS is non-trivial and exhibits a significant overhead, solutions for
which has been proposed in [239, 240]. A direct conversion of the analog signal
to residue representation and vice versa has also been proposed in [241].

Determination of the sign of a number is complex. This imposes restrictions
on how efficient arithmetic operations can be performed with signed numbers
and thus limits its applications. However, despite its limitations, RNS has been
used to design and implement DSP systems because they are chiefly composed
of multiplication and additions [80–82, 84, 236, 242, 243].

Chapter 3

Finite-length Impulse Response
Filters

3.1 Introduction

The filtering of digital data is the most fundamental and oldest technique in
the field of digital signal processing. Filtering is the process of changing the
signal’s original spectral content by processing it in the time-domain. Typically
it involves allowing certain frequencies within the signal to pass while attenuat-
ing other frequencies, referred to as frequency selective filtering. These digital
filters can be categorized in to finite-length impulse response (FIR) and infinite
impulse response (IIR) filters. As the name suggests, FIR filters have a finite
length impulse response, i.e., an input impulse will produce a response that will
eventually become zeros. The fundamental arithmetic operation used by FIR
filters to calculate output is multiplication and addition and the most simplest
form of an FIR filter is the averaging operation. As compared to IIR filters,
FIR filters are guaranteed to be stable, can be designed to have a linear-phase
response and to require shorter data word lengths [2]. However, these filters
require higher filter orders resulting in higher implementation cost to meet the
same specifications as compared to IIR filters.

3.2 Impulse Response of FIR Filters

The impulse response of FIR filters completely defines its behavior and is of
finite length. For an order N filter, it lasts for N + 1 samples [2]. A typical
impulse response for 8th order filter is shown in Fig. 3.1(a).

The poles of a FIR filter are always located at the origin of the z-plane,
making it inherently stable. The zeros are typically located on the unit circle or

47

48 Chapter 3. Finite-length Impulse Response Filters

Impulse response

-2 -1 0 1 2 3 4 5 6 7 8 9 10

h
(n

)

0

0.1

0.2

0.3
(a)

Real Part

-2 0 2

Im
ag

in
ar

y
 P

ar
t

-2

-1

0

1

2

8

(b)

Figure 3.1: Low-pass FIR filter with N = 8 (a) Impulse response (b) Pole-zero
configuration.

as mirrored pairs as shown in Fig. 3.1(b). The transfer function and frequency
response of a FIR filter can be written as

H (z) =
N∑

n=0

h(n)z−n, (3.1)

H
(
ejωT

)
=

N∑

n=0

h(n)e−jωT n. (3.2)

3.3 Linear Phase FIR Filters

FIR filters can be designed to achieve linear phase. This leads to that the
impulse response either exhibits symmetry or anti-symmetry [5]. The impulse
response shown in Fig. 3.1(a) exhibits symmetry, i.e., h(n) = h (N − n), except
for the mid-tap. The impulse response can also exhibit antisymmetry if h(n) =
−h (N − n).

Based on the filter order and symmetry/anti-symmetry property of the im-
pulse response, four different types of FIR filters can be obtained that have
linear phase [2]:

Type I : h(n) = h (N − n) , N even

Type II : h(n) = h (N − n) , N odd

Type III : h(n) = −h (N − n) , N even

Type IV : h(n) = −h (N − n) . N odd

(3.3)

Figure 3.2 shows typical impulse responses for different types of FIR filters
exhibiting symmetry and anti-symmetry.

3.4. FIR Filters: Input and Output Relationship 49

h
(n

)

0

0.1

0.2

0.3

0.4
(a)

h
(n

)

0

0.1

0.2

0.3

0.4
(b)

h
(n

)

-0.2

-0.1

0

0.1

0.2

(c)

h
(n

)
-0.2

-0.1

0

0.1

0.2

(d)

Figure 3.2: FIR filter impulse responses. (a) Type I, (b) type II, (c) type III,
and (d) type IV.

3.4 FIR Filters: Input and Output Relationship

An FIR filter applies filtering to an input signal, x(n), to produce an output
signal, y(n), by convolving the input signals with the impulse response of the
filter, also known as filter coefficients, h(k). Mathematically, this operation can
be formulated as the convolution:

y(n) =

N∑

k=0

h(k)x(n − k), (3.4)

where N is the filter order.
In a convolution, in order to multiply the filter coefficients with the input

data samples, the time order of the input samples is flipped and stepped across
the filters coefficients [5].

3.5 FIR Filter Structures

The basic arithmetic operation involved in the computation of the output of a
FIR filter is multiplication and addition, as evident in (3.4). Since the input
data sequence is to be flipped and stepped across the filter coefficients, a direct,
isomorphic mapping of (3.4) will result in the structure, known as direct form
(DF) FIR filter structure , shown in Fig. 3.3.

Another form of implementing FIR filter is derived from the DF FIR filter by
applying certain transformations [122], known as TDF FIR filter, and is shown

50 Chapter 3. Finite-length Impulse Response Filters

x(n)

h0 h1 h2 hN−2 hN−1 hN

y(n)

z−1z−1z−1z−1z−1

Figure 3.3: Direct form FIR filter.

x(n)

h0 h1 h2 hN−2 hN−1 hN

y(n)
z−1 z−1z−1z−1z−1

Figure 3.4: Transposed direct form FIR filter.

in Fig. 3.4.

As stated earlier, FIR filters can realize an exact linear phase response re-
sulting in a symmetric/anti-symmetric impulse response. Implementation com-
plexity of FIR filters can be reduced by exploiting the symmetric coefficients by
reducing the number of multiplications. Such a linear-phase structure is shown
in Fig. 3.5 using DF FIR structure. A TDF linear phase structure can also be
derived from the structure shown in Fig. 3.5.

Other structures to realize FIR filters is to cascade several low-order filters,
lattice structures and FFT based filter structures [2].

x(n)

h0 h1 h2
h⌈ N

2 ⌉−1 h⌈ N
2 ⌉

y(n)

z−1

z−1z−1 z−1 z−1

z−1z−1z−1z−1

Figure 3.5: Direct form linear phase FIR filter.

3.6. Design of FIR Filters 51

3.6 Design of FIR Filters

The design of FIR filter is primarily concerned with obtaining filter coefficients
that meet certain design specifications. These design specifications may be a
desire magnitude or phase response [3]. A measure of “goodness” is established
by which the nearness of the approximating response to the given response is
determined. This is generally expressed in the form of an error measure which
normally can take two different forms

• Minimax error
• Least-squared error

The specifications against which a filter is designed is typically specified in
the frequency domain. For example, in the lowpass case, the desired magnitude
response is usually given by:

D (ωT) =

{

1 ωT ∈ [0, ωcT]

0 ωT ∈ [ωsT, π]
, (3.5)

where ωcT and ωsT are the pass-band and stop-band edges of the desired mag-
nitude response. Since the filter design is an approximation to the required
response, there will be deviations. These deviations or errors are termed as
ripples, δc in the pass-band and δs in the stop-band. The amplitudes of these
ripples is usually given in decibels in terms of the maximum pass-band variation
and the minimum stop-band attenuation and is formulated as [3]:

Amax = 20 log10

(
1 + δc

1 − δc

)

dB, (3.6)

Amin = −20 log10 (δs) dB. (3.7)

The specifications of designing a filter can then be stated for the most general
case as

Dc (ωT) − δc (ωT) ≤
∣
∣H

(
ejωT

)∣
∣ ≤ Dc (ωT) + δc (ωT) , ωT ∈ Xc

∣
∣H

(
ejωT

)∣
∣ ≤ δs (ωT) , ωT ∈ Xs (3.8)

where Xc and Xs denote the pass-band and stop-band regions of the filter respec-
tively, δc (ωT) is the permissible deviation from the desired pass-band response
Dc (ωT) and δs (ωT) is the allowed deviation from zero in the stop-band region.
These specifications can be reformulated to include a weight function W (ωT).
This weighting function specifies the cost of the deviation from the desired func-
tion and allows obtaining different deviations in ripples in different frequency
bands. The larger this function, the smaller is the ripple and can be included
in the specification as [3]:

52 Chapter 3. Finite-length Impulse Response Filters

−δc ≤ Wc (ωT)
[∣
∣H

(
ejωT

)∣
∣ − Dc (ωT)

]
≤ δc, ωT ∈ Xc

Ws (ωT)
∣
∣H

(
ejωT

)∣
∣ ≤ δs. ωT ∈ Xs (3.9)

These specifications can be combined to give the following form [3]:

|E (ωT)| ≤ ǭ ωT ∈ X = Xc ∪ Xs, (3.10)

where
E (ωT) = W (ωT)

[∣
∣H

(
ejωT

)∣
∣ − D (ωT)

]
, (3.11)

ǭ = δc, (3.12)

D (ωT) =

{

Dc (ωT) ωT ∈ Xc

0 ωT ∈ Xs

, (3.13)

W (ωT) =

{

Wc (ωT) ωT ∈ Xc

δc

δs
Ws (ωT) ωT ∈ Xs

. (3.14)

Equation (3.11) can also be written in terms of the real zero-phase frequency
response HR (ωT) because |H

(
ejωT

)
| = |HR (ωT) | [2].

E (ωT) = W (ωT) [HR (ωT) − D (ωT)] . (3.15)

3.6.1 Error Approximation

As stated earlier, normally the approximation of the deviation between the
desired and achieved response can take two different forms. Each form is briefly
described in this section.

A Minimax Error Designs

In minimax error designs, the filter coefficients are optimized to minimize the
maximum error between the approximating and the desired response. This is
also referred to as Chebyshev approximation and can be, in reference to (3.15),
stated as [3]:

ǫ = max
wT ∈X

|E (ωT)| . (3.16)

B Least-Squared Error Designs

In least-squared error designs, the function to minimize is the L2 norm of the
error between the approximating and the desired response, described in (3.15)
and can be formulated as [3, 63]

E2 =

∫

X

W (ωT) [HR (ωT) − D (ωT)] . (3.17)

3.6. Design of FIR Filters 53

3.6.2 FIR Filter Design by Optimization

FIR filters are also designed using the windowing technique where the Fourier
series of an ideal filter is truncated and smoothed using a window function.
However, this technique does not produce optimal filters in terms of complexity.
One of the most common method to design linear phase FIR filter is to use
numeric optimization procedures like linear programming [4, 6, 66, 75, 244–
255]. Such methods are primarily used for minimax designs where the typical
optimization goal is to minimize the maximum error between the approximating
and desired response as given by (3.16). One of the most famous algorithms to
design FIR filters using optimization is the one proposed by McClellan, Parks
and Rabiner [256].

The specifications are the same as given by (3.9), except that |H
(
ejωT

)
|

can be replaced by |HR (ωT) |, as mentioned in Section 3.6. The specification
in (3.9) is for a general case. For low-pass filter, it can be translated into

1 − δc ≤ HR (ωT) ≤ 1 + δc, ωT ∈ [0, ωcT]

−δs ≤ HR (ωT) ≤ δs, ωT ∈ [ωsT, π] (3.18)

where δc, δs, ωcT and ωsT denote the pass-band ripple, stop-band ripple, pass-
band edge and stop-band edge respectively [2].

3.6.3 Remez/Park-McClellan FIR Filter Design

The Park-McClellan FIR filter design method, also known as Remez Exchange,
requires the specification of the filter order, N , all pass-band and stop-band
edges and the ratios between the values of the peak desired pass-band and stop-
band errors [256]. It then finds the unique set of filter coefficients that minimizes
the weighted error function given in (3.16). In other words, it minimizes the
maximum of the (Chebyshev) error function given by (3.15), where the desired
function, D (ωT), typically has the value one in the pass-band and zero in the
stop-band.

3.6.4 FIR Filter Design by Linear Programming

Design of FIR filters can also be viewed as constrained optimization problems
which can be solved using linear programming (LP), integer linear programming
(ILP) and mixed integer linear programming (MILP) methods [60, 62, 70, 75,
248, 253, 256]. These methods provide greater flexibility, as compared to Parks-
McClellan method, of applying additional constraints on the frequency response
and filter coefficients.

Linear programming problems are constrained optimization problems where
the goal is to either minimize or maximize a certain objective function subject
to a finite number of constraints. Mathematically, for a maximization problem,
it can be stated as

54 Chapter 3. Finite-length Impulse Response Filters

maximize cT x

subject to Ax ≤ b

x ≥ 0

x, c ∈ R
n, b ∈ R

m, A ∈ R
n×m (3.19)

where cT x is the object function, A is a n × m matrix with m constraints and
n optimization variables. A number of real world problems requires integer
variables. If all the variables are integers, then we have an ILP problem which
can be stated as (3.19) with the addition constraint of x ∈ Z

n.
The design of FIR filters with finite word length constraint can be modeled

as an ILP problem because even though all filter coefficients are fixed point frac-
tional numbers, they can be modeled as integers. MILP problem is formulated
if there is a non-integer variable like scaling or pass-band gain. There are two
important algorithms for solving ILPs: branch and bound (BB) and cutting
plane.

In ILP, the FIR optimization problem is same as in the linear programming
case with the addition of a constraint that all coefficients will now be integers. A
general FIR optimization problem can be stated as the following minimization
problem [2]:

minimize δ

subject to −δ ≤ E (ωiT) ≤ δ, i = 1, 2, . . . , K (3.20)

where δ is the approximation error, K is the number of frequency points and

E (ωiT) = W (ωiT) [HR (ωiT) − D (ωiT)] , ωiT ∈ Ω (3.21)

where Ω is the union of the passband and stopband regions and is a dense set
of frequency samples taken from the passbands and stopbands, including the
band edges. D (ωiT) is the desired function to be approximated by HR (ωiT).
Formulations for D (ωiT) and W (ωiT) are given in (3.5) and (3.14).

As stated earlier, additional constraints can be applied to either the fre-
quency response or the filter coefficients to, for e.g., reduce the arithmetic com-
plexity of implementing the FIR filters. In case of additional constraints in the
frequency domain, specific values of frequency can have a prescribed value, like
zero. This constraint is utilized in designing sparse filters where some of the
coefficients are reduced to zero [9–11, 15, 25–27].

An additional constraint on the filter coefficients typically take the form of
a finite word length constraint [253–255, 257, 258]. FIR filters realized using
Park-McClellans method gives infinite precision filter coefficients which cannot
be implemented in hardware. One of the ways is to round the coefficients which
is a non-optimal approach. A better way is to use linear programming with
the additional finite word length constraint. A comparison of a filter realized

3.6. Design of FIR Filters 55

0 0.2 0.4 0.6 0.8 1
−120

−100

−80

−60

−40

−20

0

20

M
ag

n
it

u
d
e,

 d
B

Normalized Frequency

Optimized

Rounded

Figure 3.6: Magnitude response of FIR filter. Coefficients obtained by linear
programming with finite word length constraints and rounding of coefficients
obtained by Park-McClellans method. N = 40, Q = 10.

using Park-McClellans method where the coefficients are rounded to 10-bits and
another one realized using linear programming with finite word length constraint
is shown in Fig. 3.6. It can be seen that the optimized filter achieves lower stop-
band attenuation as compared to the rounded one.

Apart from constraining the filter design problem to finite word length, it is
beneficial from implementation complexity point of view to reduce the number of
non-zero digits within a coefficient [62–67, 70], normally referred to as reducing
the number of signed power of two (SPT) in a coefficient. Reduction in the
number of non-zero digits reduces the number of adders required to realize
the multiplication with a coefficient using a shift-add network. Typically CSD
number representation is used while solving these type of problems. This is
because a B-bit CSD code has, on average, B/3 number of non-zero digits as
compared to 2’s complement number representation which on average has B/2
non-zero bits [122].

To optimize the number of SPT terms in a coefficients, the fixed-point coeffi-
cient of wordlength B can be represented as a sum of SPT terms in the general
form [70]

hm =

B∑

i=1

sm,i2
−i, (3.22)

where si ∈ −1, 0, 1. To make the formulation of the optimization linear, it is
beneficial to represent the SPT terms using 0/1 variables as

56 Chapter 3. Finite-length Impulse Response Filters

hm =

B∑

i=1

(
a+

m,i − a−
m,i

)
2−i, (3.23)

where a+
m,i ∈ 0, 1 and a−

m,i ∈ 0, 1. It leads to the following constraint to ensure
CSD coefficients

a+
m,i + a−

m,i + a+
m,i+1 + a−

m,i+1 ≤ 1 (3.24)

and the objective function can be formulated as

minimize

M∑

i=1

B∑

i=1

(
a+

m,i + a−
m,i

)
, (3.25)

where M = N
2 + 1 for a type-I FIR filter.

These techniques of reducing the number of SPT terms has been further
extended to combine with sub-expression sharing where the filters are designed
such that not only the number of SPT terms are minimized, the resulting shift-
add network is also shared optimally [77, 78, 259].

3.6.5 FIR Filter Design by Cascade of Sub-Filters

To reduce the implementation cost of an FIR filter, it can be designed using cas-
cade of sub-filters as building blocks. It not only allows the frequency response
of the composite filter to be better than that of the sub-filters but also leads
towards the reduction in the implementation complexity [54].

One approach to cascade sub-filters is to use filters with different powers
of z−1. [12, 13, 18, 47–51]. Another approach is to design the filter by inter-
connecting a number of identical sub-filters in the form of a tapped cascaded
interconnection with the help of additional adders and multipliers [52–54].

This section briefly describes the periodic sub-filter approach in Section A
as it is most relevant to the work presented in this work. For details regarding
tapped cascade interconnection of identical sub-filters, refer to [3].

A Periodic Sub-filters

The basic building block to realize an FIR filter using periodic sub-filters is the
periodic filter. It is a filter whose transfer function is obtained by replacing
z−1 with z−L, i.e., there are L delays between successive filter taps, where L is
termed as the upsampling factor. The transfer function is of the form [3]:

G
(
zL

)
=

NG∑

n=0

g[n]z−nL, g [NG − n] = f [n] . (3.26)

The resulting frequency spectrum is a compressed version of G (z), i.e., the
interval [0, Lπ] is squeezed onto [0, π]. An example of the difference between in
the spectrum between G (z) and G

(
zL

)
is shown in Fig. 3.7.

3.6. Design of FIR Filters 57

0 0.2 0.4 0.5 1

Normalized frequency

-120

-100

-80

-60

-40

-20

0
M

ag
n

it
u

d
e,

 d
B

(a)

0 0.1 0.4 0.5 1

Normalized frequency

-120

-100

-80

-60

-40

-20

0

(b)

Figure 3.7: (a) Model filter, G (z) with ωcT = 0.2, ωsT = 0.4 and (b) periodic

model filter, G (z)
L

with L = 4.

F1(z)z−K

x(n) y(n)G(zL) F0(z)

Figure 3.8: Block diagram of arbitrary-band FRM filter.

As the spectrum shows, in addition to a compression of the band edges of
the filter, there are additional components, called images in the spectrum. This
means that the periodic filter cannot be a stand-alone solution and needs to be
combined with conventional non-periodic filters to achieve the desired response.

The combining of period filters with non-periodic filters gives rise to the
technique of FRM, proposed in [48]. The general FRM structure shown in
Fig.3.8 allows the implementation of arbitrary-band FIR filters [48]. It uti-
lizes a periodic model filter, G (z), the complement of the periodic model filter,

Gc

(
zL

)
= z−

NGL

2 − G
(
zL

)
, and two masking filters, F0 (z) and F1 (z), with a

transfer function

H (z) = G
(
zL

)
F0 (z) + Gc

(
zL

)
F1 (z) , (3.27)

where G (z) is termed the model filter and G
(
zL

)
the periodic model filter.

One or several pass-bands of the periodic model filters are extracted by the
two masking filters, F0 (z) and F1 (z). The transition band of the overall filter
is equal to the transition band of one of the transition bands of either G

(
zL

)

(type-1) or Gc

(
zL

)
(type-2) [48]. Note that NG must to be even. The filter

order required for the model and masking filter is considerably lower than a
normal single stage implementation. The delay line of the model filter is used
to implement the delay needed for the complementary filter. The structure of
FRM technique is shown in Fig. 3.8.

Important to note that for a given set of band edges, ωcT and ωsT and

58 Chapter 3. Finite-length Impulse Response Filters

0 0.2 0.4 0.6 0.8 1
−150

−100

−50

0

50

M
ag

n
it

u
d

e,
 d

B

(a)

G(z)

G
c
(z)

0 0.2 0.4 0.6 0.8 1
−150

−100

−50

0

50
(b)

G(z
L
)

G
c
(z

L
)

0 0.2 0.4 0.6 0.8 1
−150

−100

−50

0

50

Normalized frequency

M
ag

n
it

u
d

e,
 d

B

(c)

F

0
(z)

F
1
(z)

0 0.2 0.4 0.6 0.8 1
−150

−100

−50

0

50

Normalized frequency

(d)

Figure 3.9: Magnitude response of type-1 FRM FIR filter with wcT = 0.33π,
wsT = 0.34π and L = 8. (a) Model, G (z) and complementary filter, Gc (z), (b)
periodic model, G

(
zL

)
and complementary filter, Gc

(
zL

)
, (c) masking filters,

F0 (z) and F1 (z) and (d) target filter, H (z).

upsampling factor L, only one of type-1 or type-2 will yield a valid solution. And
there is also a possibility that for some choice of L, neither yield a valid solution.
The magnitude response of various sub-filters and the target specification for
type-1 and type-2 FRM FIR filter is shown in Figs. 3.9 and 3.10.

The general structure shown in Fig. 3.8 can be simplified for narrow-band
(ωcT ≤ π/2 for low-pass filters) and wide-band (ωcT ≥ π/2 for low-pass filters)
FIR filters [47, 50]. This simplified structure only consists of a periodic model
and masking filter for narrow-band implementation and an additional comple-
mentary filter for wide-band implementation. The narrow-band implementation
is also termed as interpolated FIR (IFIR) and the transfer function is given by:

H (z) = G
(
zL

)
F (z) , (3.28)

where G (z), the model filter, has its band edges at L times the band edges of
the target filter. This considerably lowers the filter order required to realize
G (z). The structure of IFIR is shown in Fig. 3.11 and the magnitude response
of the sub-filters and target filter is shown in Fig. 3.12.

3.6. Design of FIR Filters 59

0 0.2 0.4 0.6 0.8 1
−150

−100

−50

0

50

M
ag

n
it

u
d

e,
 d

B

(a)

G(z)

G
c
(z)

0 0.2 0.4 0.6 0.8 1
−150

−100

−50

0

50
(b)

G(z
L
)

G
c
(z

L
)

0 0.2 0.4 0.6 0.8 1
−150

−100

−50

0

50

Normalized frequency

M
ag

n
it

u
d

e,
 d

B

(c)

F

0
(z)

F
1
(z)

0 0.2 0.4 0.6 0.8 1
−150

−100

−50

0

50

Normalized frequency

(d)

Figure 3.10: Magnitude response of type-2 FRM FIR filter with wcT = 0.33π,
wsT = 0.34π and L = 4. (a) Model, G (z) and complementary filter, Gc (z), (b)
periodic model, G

(
zL

)
and complementary filter, Gc

(
zL

)
, (c) masking filters,

F0 (z) and F1 (z) and (d) target filter, H (z).

y(n)x(n) G(zL) F (z)

Figure 3.11: Narrow-band FRM filter block diagram.

60 Chapter 3. Finite-length Impulse Response Filters

0 0.2 0.4 0.6 0.8 1
−150

−100

−50

0

50

M
ag

n
it

u
d
e,

 d
B

(a)

0 0.2 0.4 0.6 0.8 1
−150

−100

−50

0

50
(b)

0 0.2 0.4 0.6 0.8 1
−200

−150

−100

−50

0

50
(c)

M
ag

n
it

u
d
e,

 d
B

Normalized frequency

0 0.2 0.4 0.6 0.8 1
−200

−150

−100

−50

0

50

Normalized frequency

(d)

Figure 3.12: Magnitude response of IFIR filter with wcT = 0.03π, wsT = 0.04π
and L = 6. (a) Model filter, G (z), (b) periodic model filter, G

(
zL

)
, (c) masking

filter, F (z) and (d) target filter, H (z).

3.6. Design of FIR Filters 61

z−K

G(zL)x(n) y(n)F (z)

Figure 3.13: Wide-band FRM filter block diagram.

0 0.2 0.4 0.6 0.8 1
−150

−100

−50

0

50
(a)

M
ag

n
it

u
d
e,

 d
B

Normalized frequency

0 0.2 0.4 0.6 0.8 1
−150

−100

−50

0

50
(b)

Normalized frequency

Figure 3.14: Magnitude response of IFIR filter with wcT = 0.95π, wsT = 0.955π
and L = 6. (a) High-pass masking filter, F (z) and (d) target filter, H (z).

Wide-band (WB) filters are obtained by computing the complementary trans-
fer function, as shown in Fig. 3.13, with a transfer function as [2]:

H (z) = z−K − G
(
zL

)
F (z) . (3.29)

As mentioned earlier, the implementation of z−K , where K is the delay
through G

(
zL

)
and Fz , can be obtained from the delay line implementing

G
(
zL

)
. This is because the filter order of G

(
zL

)
is typically more than twice

the filter order required for F (z). The magnitude response of G (z) and G
(
zL

)

for a wide-band FRM filter is same as that shown in Fig. 3.12. The masking
filter is a high-pass filter which when cascaded with G

(
zL

)
produces a narrow-

band high-pass filter. The complementary filter then realizes the wide-band
low-pass filter as shown in Fig. 3.14.

At the heart of the reduction in the implementation cost is the upsampling
factor, L. The higher the value of L, the lower the implementation cost of the
model filter. However, an important question to ask here is whether arbitrarily
increasing the value of L will reduce the cost of the overall structure. To answer
this question, one needs to look at the relationship between L and complexity of
the masking filter(s). As L increases, more images are introduced in [0, π]. This
increases the requirement on the masking filter, i.e., the transition width of the
masking filter reduces, thereby increasing its filter order and its implementation
cost. Initially, with an increasing L, the decrease in the implementation cost
of the model filter will dominate, reducing the overall implementation cost of
FRM. However, a further increase in the value of L will make the implemen-

62 Chapter 3. Finite-length Impulse Response Filters

tation cost of the masking filter to dominate, thus increasing the overall cost
of implementing FRM FIR filters. This leads to that there is an optimal value
of L which gives the least implementation cost. This is shown Fig. 3.15 and
also compared with the implementation cost of a single stage FIR (SSF) filter
realization.

Period, L
0 5 10

N
o
.
o
f

m
u
lt

s.

0

20

40

60

80

H(z) G(z
L
) F(z) H(z)

FRM

Figure 3.15: Point of minimum complexity for narrow-band FRM for wcT =
0.05π and wsT = 0.1π.

One of the dis-advantages of the FRM technique is that the overall filter
order required is high, primarily because of upsampling. This leads to a large
number of delay elements leading to a higher register usage when implemented
either on an ASIC or FPGA. However, high clock rates obtainable using current
state-of-the-art hardware platforms typically do not correspond to the required
sample rate of the target application. This leads to time-multiplexed architec-
tures where hardware resources are re-used to further reduce the implementation
cost. It has been shown in Paper A that even though FRM has a high register
cost, when time-multiplexed, it requires less memory than single-stage imple-
mentation due to better utilization of memories. Beyond the regular design
of FIR filters using the FRM technique, a number of optimizations have been
published in the literature to further improve the reduction in the implementa-
tion cost. The original idea of FRM was generalized in [260] where additional
savings were obtained by interpolating the masking filters and using a common
masking filter which removes the images introduced by the interpolation of the
masking filters.

A multi-stage FRM technique was used to implement the model and comple-
mentary model filter in [7] and criterion was established for selecting the opti-
mum number of stages. It was shown that the optimal value of L approaches e
as the number of stages increase. A similar technique to implement the masking
filters using a cascade of a common sub-filter and a equalizer which equalizes
the transition-band of the masking filters was proposed in [261].

The IFIR approach proposed in [50] also proposes a multi-stage realization

3.6. Design of FIR Filters 63

of the masking filter. The IFIR approach has also been incorporated in the
design of the periodic model filter, also known as the shaping filter, to further
lower the requirement on the model filter. A similar technique, based on the
pre-filter equalizer, has been used to to design different sub-filters [56] where
either the periodic model filter, masking filters or all sub-filters are replaced by
the pre-filter equalizer pair.

IFIR filter is also used in the approach proposed by [262], where the shaping
filter is decoupled from the masking filters with the insertion of a decoupling
filter between them. The shaping filter in the FRM can also be implemented
using a cascade of two or three short filters [58]. This balances the length of each
sub-filter and helps improve the throughput in a direct-form implementation.
This is because the shaping filter has the largest length of all the sub-filters in
the original FRM technique and has the greatest influence on the throughput.

Design of FIR filters using the FRM technique without the use of masking
filters has been proposed for narrow-band [12], for both narrow-band and wide-
band [13] and for all types of FRM technique [18]. In these papers, the authors,
instead of using a cascade of periodic model and masking filters, used a cascade
of a number of same periodic model filters with different values of L. The
idea behind using the same filter is to use the same arithmetic structure which
can be multiplexed to reduce the required number of multipliers and adders.
Furthermore, optimization procedures were utilized to minimize the filter order.

Use of optimization and linear programming has also been used to design
the sub-filters. Typically, each of the sub-filter is designed by optimization
separately. A significant reduction in the implementation cost can be achieved
by simultaneously optimizing the sub-filters together [20]. Joint optimization
has been applied to both the original FRM [48] and the generalized FRM [260].

Further contributions towards the design of FIR filters using the FRM
technique has involved MILP design with few SPT terms [60], development
of new optimization procedures with finite word-length constraints [21], non-
periodic sub-filters [26, 27] and implementation on hardware platforms like
FPGAs [16, 24, 58, 263, 264].

3.6.6 Sparse FIR Filter Design

The implementation complexity of a FIR filter is primarily influenced by the
multiplication of the filter coefficient with the input data. The complexity
can be reduced if some of the filter coefficients are forced to zero while de-
signing a filter to meet a certain specification. Filters realized through this
technique are referred to as sparse FIR filters [265]. This class of filters include
the Nyquist or M th-band filters and non-periodic sparse filters. A number of
different techniques have been proposed for the design and implementation of
such filters [9–11, 15, 22, 265–271]. The periodic model or the shaping filter of
the FRM/IFIR technique is also a sparse filter.

The M th-band linear phase FIR filters are filters whose every M th filter
coefficient is zero except the middle coefficient. Hence they are typically even

64 Chapter 3. Finite-length Impulse Response Filters

order filters [272]. They find application in intersymbol interference rejection,
perfect reconstruction filter banks and in interpolation and decimation by a
factor M . However there are some additional constraints imposed by a M th-
band filter design. One of them is that the transition width of the filter should
be symmetric across π/M and that the pass-band (δc) and stop-band (δs) ripples
should be equal. These additional constraints may lead to an overly constrained
solution as compared to the original solution [10]. Thus these filters are not used
for more general applications [267]. It has been shown that it is possible to
replace a M th-band filter with a general FIR filter by increasing the stop-band
attenuation and transition width. A class of M th-band filter is the half-band
filter where every other coefficient is zero. By relaxing the constraints on the
pass-band ripple and edge, half-band like non-periodic sparse filters have been
designed which achieve lower complexity as compared to half-band filters [10].

Non-periodic sparse filters have also been designed by forcing coefficients
which make small or no contribution to the spectrum shaping of the filter [265]
which can also be used for sub-filters in an FRM design [26, 27]. Approxi-
mate methods for obtaining reasonably sparse filters have also been proposed
to reduce the computation time of the optimization routines. Included in this
technique is to re-optimize a non-sparse filter after forcing small valued coeffi-
cients to zero [273], determine those coefficients that can be permitted to be
zero [15] and successively thinning the impulse response of a pre-designed filters
and re-optimizing the remaining coefficients [268]. A direct-form implementa-
tion of these filters have been shown to provide improvement with moderately
wide pass-bands and transition widths by providing a significant improvement
in the stop-band attenuation given a fixed number of multipliers [267].

Typically, the design of all these filters employ LP techniques and use meth-
ods like branch-and-bound [268]. Additional constraints are added to the filter
design problem in the form on non-zero binary variables xi ∈ [0, 1]. The objec-
tive is then to minimize the sum of these variables. Additional variable indicat-
ing the filter order can be included in the objective function of the optimization
routine to jointly optimize the filter order resulting in further reduction in the
implementation complexity [10, 271].

3.7 Fast FIR Filters

The process of FIR filtering can be seen as a convolution operation given by the
following equation

y(n) =

N∑

k=0

h(k)x(n − k). (3.30)

This convolution can also be seen as a polynomial multiplication when x(n)
and h(n) are realized as polynomials in the z-domain which transforms the
convolution into multiplication as:

3.7. Fast FIR Filters 65

Y (z) = H(z)X(z). (3.31)

To visualize a polynomial multiplication, consider a P - and a Q-term poly-
nomials:

p(x) = aP −1xP −1 + · · · + a1x + a0, (3.32)

q(x) = bQ−1xQ−1 + · · · + b1x + b0, (3.33)

and the product is defined as:

u(x) = cN−1xN−1 + · · · + c1x + c0. (3.34)

Multiplication of a P - and a Q-term polynomial will produce P Q multipli-
cations. However, the multiplications can be performed more efficiently in a
three step process; evaluation of the input polynomial at N = P + Q − 1 points,
point wise multiplication and reconstruction of the product, u(x). The first
and the last step can be referred to as pre-computation and post-computation,
respectively. In this way there will be a total of P + Q − 1 multiplications with
some non-trivial constant multiplications.

Evaluation at N = P + Q − 1 points is needed because multiplication of a
P - and a Q-term polynomials produces an output polynomial of N = P + Q − 1
terms and that will be uniquely defined at N points. Consider the polynomials
where P = Q = 2 with their product:

p(x) = a1x + a0

q(x) = b1x + b0

u(x) = c2x2 + c1x + c0 = (a1x + a0) (b1x + b0) . (3.35)

The product polynomial is a 3-term polynomial and can be uniquely defined
by three points. Evaluation of u(x) at x = 0, 1, ∞ gives

x = 0 ⇒ c0 = a0b0 (3.36)

x = 1 ⇒ c2 + c1 + c0 = (a1 + a0) (b1 + b0) (3.37)

x = ∞ ⇒ c2 = a1b1. (3.38)

This can be represented in matrix form:

a0b0

(a1 + a0) (b1 + b0)
a1b1

 =

1 0 0
1 1 1
0 1 1

c0

c1

c2

 , (3.39)

where the matrix of ones and zeros can be inverted to determine the output
polynomial coefficients

66 Chapter 3. Finite-length Impulse Response Filters

P
re

−
co

m
p
u
ta

ti
o
n

P
o
st

−
co

m
p
u
ta

ti
o
n

m
u
lt

ip
li

ca
ti

o
n

P
o
in

t−
w

is
e

a0

a1

aP −1

c0

c1

cN−1

Figure 3.16: Three step polynomial multiplication with pre-computation, point-
wise multiplication and post-computation.

c0

c1

c2

 =

1 0 0
−1 1 −1
0 0 1

a0b0

(a1 + a0) (b1 + b0)
a1b1

 . (3.40)

The second matrix on the right hand side can be further transformed into a
diagonal matrix consisting only of coefficients p(x), a single column matrix of
coefficients of q(x) and a matrix connecting the two.

c0

c1

c2

 =

post-comp.
︷ ︸︸ ︷

1 0 0
−1 1 −1
0 0 1

a0 0 0
0 a1 + a0 0
0 0 a1

︸ ︷︷ ︸

mult.

pre-comp.
︷ ︸︸ ︷

1 0
1 1
0 1

[
b0

b1

]

, (3.41)

where the three stages are also highlighted. The post-computation is required
because the point-wise multiplication will produce extra terms which needs to
be removed to achieve the correct output polynomial. A general structure to
achieve polynomial multiplication is shown in Fig. 3.16. The length of the
number of polynomials can also be different.

Similarly, if the polynomial is interpolated at X = e
−j2πk

G where G is the dis-
crete fourier transform (DFT) size and k ∈ 0 . . . G−1, it will result in DFT-based
polynomial multiplication. In other words, two compute the multiplication of
two polynomials, one can compute the DFT of the two polynomials, perform
point-wise multiplication and compute the inverse DFT (IDFT), thus imple-
menting a convolution in time-domain through multiplication in the frequency
domain. The inverse matrix shown as post-computation in (3.41) will be an
IDFT matrix while the pre-computation matrix will be a DFT matrix. It can
be formulated as:

c = IDFTG (diag{DFTGa}DFTGb) , (3.42)

3.7. Fast FIR Filters 67

where a = [a0 a1 . . . aP −1], b = [b0 b1 . . . bQ−1] and DFT and IDFT are
matrices in G points. The vectors a and b can be appended be zeros to make
G a power of two, which will make the DFT and IDFT matrices simpler. The
number of multiplications in the matrix operations can be large but they can
be efficiently implemented using an fast fourier transform (FFT) algorithm.

To realize an FIR filter using polynomial multiplication, the z-transform
formulation shown in (3.31) can be transformed as a polynomial product where
the polynomial weights/coefficients are the polyphase components [274]. It is
given as:

F −1∑

i=0

Yi

(
zF

)
z−i =

F −1∑

k=0

Hk

(
zF

)
z−k

F −1∑

j=0

Xj

(
zF

)
z−j , (3.43)

where each of Yi(z
F)z−i, Hk(zF)z−k and Xj(zF)z−j is itself a polynomial in

zF [275].
This polynomial can also be evaluated at some arbitrary points or at points

given by Z−1 = e
−j2πk

G for a DFT based implementation. Consider, for the case
of F = 2,

Y (z) = Y0

(
z2

)
+ z − 1Y1

(
z2

)

=
(
H0

(
z2

)
+ z − 1H1

(
z2

)) (
X0

(
z2

)
+ z − 1X1

(
z2

))

= c0 + z−1c1 + z−2c2, (3.44)

which leads to:

Y0

(
z2

)
= c0 + z−2c2

Y1

(
z2

)
= c1. (3.45)

which is known as overlap-ad. In general, for F polyphase branches:

F −1∑

i=0

Yi

(
zF

)
z−i =

F −1∑

j=0

[(
cj + cF +jz−F

)
z−j

]
(3.46)

where an F parallel implementation entails execution at F times lower sample
rate, reducing z±F to z±1. Evaluation (3.44) at ±1, 0 will result in the following
formulation

[
Y0(z)
Y1(z)

]

=

overlap-add
︷ ︸︸ ︷
[
1 0 z−1

0 1 0

]

1 0 0
0 1

2 − 1
2

−1 1
2

1
2

diag

H0(z)
H0(z) + H1(z)
H0(z) − H1(z)

1 0
1 1
1 −1

[
X0(z)
X1(z)

]

. (3.47)

68 Chapter 3. Finite-length Impulse Response Filters

H0(z)+H1(z)
2

H0(z)−H1(z)
2

X0(z)

X1(z)

Y0(z)

Y1(z)

H0(z)

z−1

Figure 3.17: FIR filter implementation using polynomial multiplication.

G-point

G-point

G-point

DFT

DFT

IDFT

Overlap-save/

overlap-add

x(n)

h(n)

y(n)

Figure 3.18: FIR implementation using DFT.

The resulting structure is given in Fig. 3.17. If the evaluation points were
based on DFT, then the resulting filters will be complex. Thus the FIR filter
equation is transformed as a product of two finite degree polynomials where the
computation is broken down into three main parts. First is interpolation of the
input polynomials at different points, the actual filtering which is performed
on the F polyphase branches of the FIR filter and reconstruction of the filter
output [276]. Finally, an overlap-add operation is needed to obtain Yi(z) [5].

The result is the breaking up of the filter into a number of sub-filters which
operate in parallel to reduce the computational load. This is known as fast FIR
(FFA). Each sub-filter in the resulting design can be further divided into ever
shorter length sub-filters which reduces the arithmetic complexity, as argued
in [277].

In fact, the typical implementation of FIR filtering using DFT, as shown
Fig. 3.18, is the same as discussed above, but with evaluation points based in
the complex domain on the unit circle. For fast computation, DFT can be
replaced by FFT [276]. The use of transforms for fast processing of convolution
was first proposed in [278].

For DFT based implementation, evaluation at G = 2g points produces simple
matrix. The DFT sizes G shown in Fig. 3.18 must be equal and dependent on
the filter order and size of the input data. For a FIR filter, h(n) is of a finite
duration of Q = N + 1. Assuming x(n) to be finite of duration L, the duration
of the output sequence y(n) is L + Q − 1. Thus G ≥ L + Q − 1, and x(n) and
h(n) must be zero-padded to make their lengths equal to G.

However, for all practical purposes, the size of the input x(n) is so large that
it needs to be partitioned into multiple blocks of length L, denoted by xm(n),

3.8. FIR Filter using Alternate Number Systems 69

and processed individually. Thus DFT based FIR filtering is also referred to as
block convolution.

The overlapping operation is needed because either there will be overlapping
output blocks or some part of the block will have corrupted data. For overlap-
ping output blocks, overlap-add method is used and for the later, overlap-save
method is used.

For overlap-add method, both h(n) and the input block, xm(n), are zero-
padded to make their length equal to G. The short convolutions between the
two sequences will be of length G which will map to the structure shown in
Fig. 3.18. However, there will be overlap between the output blocks. This is
because the first convolution will be defined for 0 ≤ l ≤ L + Q − 2 while the
second convolution will be defined for L ≤ l ≤ 2L + Q − 2 and so on, meaning
there is an overlap of Q − 1 samples. These overlapping samples are added,
given the method the name overlap-add.

Instead of performing linear convolutions of size L + Q − 1, a circular con-
volution can be performed of length L. However, since the circular convolution
length is smaller than L + Q − 1, there will be aliasing or in simpler words, the
first Q−1 samples will not correspond to the linear convolution term and will be
rejected. To save from this aliasing, the first input block, x0(n) will have Q − 1
zeros padded at the beginning while Q − 1 samples from each input block will
be padded to the beginning of the next block, resulting in overlapping blocks
of length L + Q − 1. This is the overlap-save method since a part of each input
block is being saved for the next.

3.8 FIR Filter using Alternate Number Systems

Two alternate number systems, the LNS and RNS were introduced in Chapter 2.
These number systems reduce the complexity of implementing multiplication
which dominates the complexity cost of implementing FIR filters. A brief de-
scription of the use of these number systems in implementing FIR filters is given
in Sections 3.8.1 and 3.8.2, respectively.

3.8.1 FIR Filter using Logarithmic Number System

The inherent simplification of the multiplication operation to an addition has
made LNS an attractive option to implement FIR filters [82, 85, 86, 90–92,
95, 96, 279]. This simplification of the multiplication allows a high speed imple-
mentation of FIR filters over a wide dynamic range. Numbers represented using
LNS have been shown to have a higher dynamic range [85] and better round-off
noise performance [280–282] as compared to floating-point based numbers for a
given number of bits.

It has been shown that LNS requires a reduced data word length to achieve
the same SNR when compared to fixed point representations [90, 92], with a
reported power saving of nearly 60% in some cases. In [283], the authors analyze

70 Chapter 3. Finite-length Impulse Response Filters

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x1

x
2

Figure 3.19: Example solution space for ILP with LNS (⋄) and linear (×) inte-
gers with three fractional bits with valid region in gray and the line representing
the pareto front.

the round-off error accumulation in the direct realization of LNS based recursive
digital filters and have shown that LNS gives superior filtering performance as
compared to floating-point number system of equivalent word length and range.

One of the drawbacks of using LNS is the complexity of implementing
additions/subtractions which typically require LUTs to implement them. In
[92], the authors propose techniques for low-power implementation of addi-
tion/subtraction for LNS and quantify the impact of partitioning LUTs on com-
plexity, performance and power dissipation. Furthermore, in [92], techniques for
low power implementation of LNS MAC units are investigated.

The design of FIR filters directly in the LNS domain, however, is different to
designing them using linear numbers like 2C, CSD and other. This is because
the search space of for an LNS ILP problem is different from that of a linear
representation, as shown in Fig. 3.19. In Paper B, an approach to directly design
FIR filter using ILP in the LNS domain with finite word length constraint is
presented and is shown to achieve better approximation error as compared to a
standard FIR filter designed by optimization in the linear domain.

3.8.2 FIR Filter using Residue Number System

The RNS, introduced in [237], are well known for fast multiplication and ad-
dition [80]. This property suits the implementation of FIR filters in applica-
tions, like communication systems, which demand speed and low-power con-
sumption [83]. Furthermore, FIR filters implemented using RNS produces out-

3.8. FIR Filter using Alternate Number Systems 71

Converter

to RNS

Binary

Converter

Binary

RNS to

FIR filter mod

FIR filter mod

FIR filter mod

x(n) y(n)

m1

m2

mP

Figure 3.20: RNS FIR filter.

puts with full precision which is attractive for a number of applications radar
and image processing [80].

RNS allows the division of the dynamic range into smaller ranges, operations
on which can be performed in parallel. This allows for high-speed parallel
implementation. The power consumption can also be reduced by taking the
advantage of this parallelism [284]. Although RNS has its shortcomings, it is
well suited to applications that are primarily composed of multiplications and
additions, of which FIR filter is the best example [284].

To implement FIR filter using RNS, the filter is decomposed into P filters
working in parallel, where P is the number of moduli used in the RNS represen-
tation [83]. This is shown in Fig. 3.20.

One of the earliest attempts to implement FIR filters using RNS is reported
in [80]. In it, the authors propose a hardware implementation of the chinese
remainder theorem for conversion of RNS coded outputs into binary numbers.
In [83], it is shown that FIR filters implemented using RNS is smaller and con-
sumes less power that the traditional FIR filter at the same clock rate when
the number of taps is larger than one. Authors in [284] use a voltage reduction
scheme operating at a specified sample speed which becomes increasingly favor-
able as the word-length is increased. In [82], the feasibility of implemented RNS
based FIR filters on FPGAs was demonstrated including the conversion to and
from binary using 12-bit word length and a base set of 5, 7, 11, 13. A low power
and low leakage implementation of RNS FIR filters is reported in [285] which
takes the properties of RNS to reduce static power dissipation when implement-
ing the filter on 90 nm CMOS technology.

Chapter 4

Particle Filters

4.1 Introduction

In problems where the state of a system cannot be determined analytically
because it is hidden, filtering refers to estimation of the state of a system, from
a set of observations that are corrupted by noise. The system is modeled as a
Markov process and the model where the states are unknown or hidden is known
as hidden Markov model (HMM). In other words, it refers to determining the
distribution at time n, given observations up to n [44, 110, 111, 286].

The specific nature of the estimation depends greatly on the state to be
estimated, the evolution of state with time and relationship between the state
to the observations and noise sources. The model that captures the evolution
of states is called the state transition model (STM). Conceptually, estimation
makes a prediction and refines/validates it with an observation over a long
period of time. Particle filtering is used when the state transition and the
observation models are non linear and noise is non-Gaussian, in contrast to
Kalman filters where the state transition is linear and noise Gaussian [287].

At the core of the estimation work, particle filters use sequential Monte
Carlo (SMC) methods, of which sequential importance sampling (SIS) is the ba-
sis for most SMC filters developed. It is a technique for implementing a recursive
Bayesian filter by Monte Carlo (MC) simulations and is based on importance
sampling. The main idea is the recursive generation of random measures which
are composed of a weighted set of particles drawn from relevant distributions
that approximates the posterior distribution, p (x1:n|y1:n), and particularly the
filtering distribution, p (xn|y1:n), of the unknown state conditioned on the ob-
servations [110, 111, 288]. Different types of estimates of the unknowns, like
mean and variance is possible by the use of these measures.

73

74 Chapter 4. Particle Filters

A number of complex problems employ particle filters including target track-
ing, computer vision, robotics and channel estimation in digital communication
or any application involving large, sequentially evolving data-sets [112–115, 289].

4.2 Mathematical Formulation

Particle filtering involves tracking states of dynamic state-space models, given
some observation. More formally, given a hidden Markov process and a se-
quence of observations, x0, x1, x2, . . . , xn and y1, . . . , yn, respectively, all the
information about the process can be obtained from the posterior probability.
The evaluation is performed recursively in time as successive observations yn

become available [110, 111].
The evolution of the STM (xn) and the noisy measurements (yn) through

which it is estimated can be modeled by:

xn = f (xn−1, zn−1)

yn = g (xn, vn) , (4.1)

where zn and vn are independent noise vectors with known distributions and
f(.) and g(.) are known functions.

The estimation of the STM is also referred to as the tracking problem [286]
and from a Bayesian perspective, the recursive estimation requires a construc-
tion of the posterior distribution p (xn|y1:n). This can be done in two steps.
First step is the prediction step which uses the posterior distribution at n − 1
to obtain the prior at n. At n = 0, the prior probability is p (x0). When at n,
observation yn becomes available, the prior is updated to produce the posterior
based on Bayes’ rule and is given by [111]:

p (xn|y1:n) =
p (yn|xn) p (xn|y1:n−1)

p (yn|y1:n−1)
, (4.2)

where p (yn|xn) is the likelihood function, p (xn|y1:n−1) is the prior obtained in
the prediction step and p (yn|y1:n−1) is the normalizing constant. This posterior
distribution is also referred to as marginal or filtering distribution [286]. The
full posterior probability is given by

p (x1:n|y1:n) = p (x1:n−1|y1:n−1)
p (xn|xn−1) p (yn|xn)

p (yn|y1:n−1)
. (4.3)

However, this recursive estimation of the posterior is only tractable analyti-
cally for a few restrictive cases. In other cases, this is numerically approximated
and particle filter is one of the methods of this approximation.

For approximating either (4.3) or (4.2), particle filters updates a random

measure {xm
n , wm

n }
M

m=1, which consists of M particles xm
n and their normalized

weights wm
n defined at time n, recursively. The weights are typically normalized

4.3. Particle Filtering Steps 75

estimate

ResamplingTime-update
Measurement

update

Input observations

xn

yn

wn x̃n, w̃n

Output

Figure 4.1: Overall structure of particle filter.

Time−update

Measurement−updateMeasurement−update

Time−update

Resampling

Resampled particles

n
Lr

Lt Lm

Mcycles

Mcycles

Mcycles

Figure 4.2: Basic scheduling of different steps in particle filter.

such that their sum is one by dividing the non-normalized weights (ŵm
n) with

the sum of all the non-normalized weights, given as [111, 112, 290]:

wm
n =

ŵm
n

∑M

i=1 ŵm
i

. (4.4)

4.3 Particle Filtering Steps

To achieve the required approximation to the posterior using particle filters,
three steps are involved, namely:

• Time-update (particle generation/sampling)
• Measurement-update (weight computation)
• Resampling

The order in which each step is executed is shown in Fig. 4.1 and the basic
scheduling of the three steps is shown in Fig. 4.2, where Lt, Lm and Lr are the
latencies of the time-update, measurement-update and resampling steps.

76 Chapter 4. Particle Filters

4.3.1 Time-Update

The time-update step is also referred as particle generation or importance sam-
pling step. Initially, particles xm

n will be drawn from an importance density.
Subsequently, after each iteration, the particles resampled in the resampling
step is used to update the new set of particles for the next iteration [286].

4.3.2 Measurement-Update

In this step, weights associated with each particles are generated dependent on
the input observations yn as shown in Fig. 4.1. The weights generated are non-
normalized which can be normalized as given in (4.4). The weight computation
step involves the computation of trignometric and exponential functions and is
the most computationally intensive of all the particle filtering steps [286].

4.3.3 Resampling in Particle Filters

A typical problem with SIS methodology is that with time, the variance of the
estimates increases exponentially [286]. In other words, particles will negligible
weights will dominate over particles with significant weight. This implies that a
large computational effort is required in updating particles whose contribution
to the estimation is negligible [110] and will lead to a poorer approximation on
the posterior density and leading to inferior estimates. This is referred to as the
degeneracy probelm and one of the ways to limit degeneracy of the algorithm
is to select the importance density such that the variance is minimized [111].
Another method is the resampling techniques which are a important component
of SMC methods and is part of the work presented in this dissertation.

The operation is called resampling because it involves sampling from an al-
ready sampled approximation, πn (xn). In other words, some of the particles
generated in the particle generation step are replicated which have large weights
and those particles with negligible weights are discarded. This leads to better
approximation and estimates and is achieved by modifying the weighted approx-
imate density πn (xn) to an un-weighted density π̂n (xn). More formally [291]:

πn (xn) =

M∑

m=1

wm
n δ (x − xm

n) (4.5)

is replaced by

π̂n (xn) =

M∑

k=1

1

M
δ

(
x − xk

n

)
=

M∑

m=1

cm
n

M
δ (x − xm

n) , (4.6)

where cm
n is the number of copies of the original particle xm

n in the new set
of particles xm

k . The weight associated with each particle is typically 1/M .
In resampling, cm

n is proportional to the normalized particle weight, wm
n , a

constraint known as the unbiasedness condition [292]. This can be stated as:

4.3. Particle Filtering Steps 77

E (cm
n |wm

n) = Nwm
n , (4.7)

where N is the number of particles after resampling, which for traditional re-
sampling algorithms is equal to M [292].

Although resampling removes degeneracy, it introduces other problems, out-
lined below [111]:

• Limits the opportunity to parallelize the implementation of resampling
with other steps since it requires all particles and weights to be generated

• Particles having large weights are statistically selected many times reduc-
ing the diversity and may lead to sample impoverishment

• Because of sample impoverishment and loss of diversity, estimates based
on these particles can degenerate

There are techniques to overcome these problems. For parallelism, tech-
niques like overlapped partial resampling (OPR), which uses a threshold based
algorithm [43] or independent Metropolis Hastings algorithm (IMHA) based
resampling algorithm [44] have been proposed to introduce parallelism. Tech-
niques like resample-move [293] and regularization [294] have been proposed to
deal with the sample impoverishment problem.

A Resampling Algorithms

Different resampling algorithms have been proposed which can be classified
based on different criteria. An exhaustive list of resampling algorithms and
their classification is available in [292]. Among different types and categories
listed in [292], work in this dissertation is concerned with the resampling al-
gorithms categorized as single distribution sampling methods. In this category,
all particles are resampled by using a single-distribution. Intuitively, particles
are resampled by comparing their weights with some values generated from a
random function generator. The difference in how the values are generated from
the random function generator and how it is used for resampling differentiates
between the resampling algorithms listed below:

• Multinomial [290]
• Stratified [112, 295]
• Systematic [111, 295]
• Residual [296]
• Residual systematic [116]
• Branch-kill/branching [297, 298]
• Rounding-copy [299]

Multinomial resampling is the basic approach which uses uniformly dis-
tributed random numbers to select xm

k . These numbers are generated according
to [291]:

ur = ũr with ũr ∼ U [0, 1) . (4.8)

The complexity of multinomial resampling is of the order of M × N where
N arises from the search of the index of the particle to be replicated. In other

78 Chapter 4. Particle Filters

0 1

Systematic Stratified Multinomial

Figure 4.3: Standard uniformly distributed samples for M = 10.

words, the random numbers need to traversed multiple times to find all the
replicated indices [292]. However, this high complexity can be reduced to at
most of 2M by ordering these random numbers which will result in only one
traversal of the random numbers.

Stratified divides the interval into uniform intervals, also termed as stratifi-
cation, which helps the samples to be more uniformly distributed. Each value
is then picked from each interval with a random offset. This can be mathemat-
ically stated as [291]:

ur =
1

M
(k − 1) + ũr, with ũr ∼ U

[

0,
1

M

)

(4.9)

Systematic resampling is an extended view of stratified resampling where
the the offset is same resulting in the following formulation of generation of
random numbers [291]:

ur =
1

M
(k − 1) + ũ, with ũ ∼ U

[

0,
1

M

)

. (4.10)

The different random samples used by multinomial, stratified and systematic
methods are shown in Fig. 4.3.

Typically in the resampling process, the weights need to be normalized. This
requires M divisions per resampling process which has a high hardware cost.
In [118], the authors proposed a modified systematic resampling scheme whereby
M divisions are replaced by one division by drawing the uniform random num-
ber from a distribution spanning

[
0, WM

M

)
, where WM is the sum of weights

(
∑M

k=1 ŵk
n

)

and then updating it by WM

M
, as given in (4.11). However, there is

still one division, making it only attractive when M is a power of two, in which
case division is a binary shift.

ur =
WM

M
(k − 1) + ũ, with ũ ∼ U

[

0,
WM

M

)

. (4.11)

Multinomial, stratified and systematic resampling algorithms can be rep-
resented in a unified way using a flow chart, as shown in Fig. 4.4, where a

4.3. Particle Filtering Steps 79

Initialize
variables

k ← 0, r ← 0

S ← wm

n
,

R ← ur

k ≤M
Resampling
Complete

R ≤ Sk ← k + 1

S ← wm

n

Output k

r ← r + 1

R ← ur

No

Yes

Yes

No

Figure 4.4: Flow chart of resampling.

normalized weight is read into variable S and a random number into R and
comparison of them either fetches a new normalized weight or a new random
number. In this figure, the random number generator can be based on any one
of the three methods.

Residual resampling calculates the replication factor for each particle in two
steps [291]. The number of replications of a particle is determined by the trun-
cated product of M and wk while the remaining partilces are sampled in the
second step using one of the earlier described resampling algorithms. A mod-
ified version of this, called the residual systematic resampling (RSR), reduces
the number of steps from two to one by including the systematic resampling
principle to to update the random number [43, 116]. It uses the knowledge of
the fixed intervals between two consecutive random function values generated
in systematic resampling to calculate the replication factors which reduces the
number of random numbers fetched. In this way, RSR reduces the number of
iterations in the right side loop of the flow graph shown in Fig. 4.4 by reduc-
ing the number of times a value is fetched from the random number generator.
A comparison of the four dominant resampling algorithms, i.e., multinomial,
stratified, systematic and residual resampling is reported in [291].

Some more variations of the single-distribution sampling methods have been
proposed [297–299]. These techniques, known as branch-kill [298] or branching
[297] and rounding-copy [299], do not keep the particle size M constant at
every time step and allows it to vary. Some threshold based algorithms have
also been proposed in [43] which can be mapped to distributed architectures.
Four algorithms are proposed and they differ in ways the threshold is defined.
In all these schemes, a high threshold Th and a low threshold Tl is defined. The

80 Chapter 4. Particle Filters

replicated particles can either be dominating and negligible particles or only
dominating particles.

One of the threshold based methods proposed [43] is named as OPR, which
defines a set of threshold for resampling. The particles are classified while their
weights are computed allowing the overlap of this step with the measurement-
update step while actual resampling is performed after the sum of weights is
available, allowing some parallelism. However, it is not known how many cy-
cles after the measurement-update step is needed to complete the resampling.
But since the particles are classified into distinct groups, the execution of the
resampling can be distributed. However, memory requirements will be high for
this algorithm. A variation of the threshold based partial resampling algorithm
which uses only one threshold was reported in [121]. The major difference be-
tween the proposed algorithms in [43] and [121] is that in [121], the weights of
the particles after resampling is equal which is not in [43].

Resampling based on IMHA was proposed in [44] which instead of using
normalized weights, works with ratio of importance weights which allows the
resampling step to start parsing through the particles as they are generated and
not wait for the first two steps to be completed. This allowed for a pipelined im-
plementation which resulted in significant speed-up as compared to systematic
resampling. However, no results was shown which can compare the tracking
performance of the two resampling schemes.

B Architectural Concerns for Resampling

In terms of architecture, all resampling algorithms mentioned above use a weight
memory, a random number generation unit, resampling unit and a control unit
as is shown in Fig. 4.6 together with the time-update unit.

Based on the type of resampling algorithm, the random number generation
unit and the resampling unit will be modified. Multinomial resampling requires
a random number generator and a memory to hold it during the resampling step
while the control unit will then generate address for this memory. Stratified and
systematic only need a generator and an accumulator. For stratified, as given in
(4.9), a new random number is produced every cycle while for systematic, as in
(4.10), one random number is produced at the start of the resampling process.

For the residual resampling algorithm the second step will require a random
number generator and memory for the weights while for RSR, a similar ran-
dom number generator is required as used by systematic resampling. However,
for these two algorithms, the resampling unit will be different to multinomial,
stratified and systematic resampling algorithms.

They key bottleneck in implementing particle filters is the fact that the
resampling step cannot be executed in parallel with other steps, the time-update
and measurement-update, as mentioned earlier and shown in Fig. 4.2. In the
worst case, single-distribution sampling methods take 2M −1 cycles to complete,
meaning that at least after the first M cycles, the first particle will be resampled.
this allows a partial parallelism between the resampling step of the current

4.3. Particle Filtering Steps 81

CU

PE3

PE1 PE2

PE4

Figure 4.5: Particle filter architecture with parallel PEs [300].

iteration and the start of the next iteration, as shown in Fig. 4.2.
Several algorithm level techniques have been published to introduce or in-

crease parallelism in the execution of the different steps, as mentioned in the
preceding section. An implementation level technique is be to reduce the la-
tency of the resampling step such that the parallelism shown in Fig. 4.2 can be
increased. A technique to achieve this is presented in Paper D.

Different architecture level techniques have been proposed to improve the
implementation of the particle filtering, specifically the resampling step. In
a straight forward implementation, there is a requirement of two memories of
depth M , one to store the particles after the time-update step and one for storing
the resampled particles. One of the techniques proposed in [119] for systematic
resampling uses one dual port memory for the two tasks. This means that
for resampling, particles are read and written to the same memory and read
and write pointers are used to guarantee the correctness of the implementation.
However, this scheme requires two smaller memories for storing the indices of the
resampled and discarded particles. Indices of the resampled particles is needed
for reading the correct particle from the dual-port memory while discarded
particles indices are required to write the replicated particles.

In [119], another proposed technique is to split the resampling into two
parallel resampling. This is because for systematic resampling, the initial and
final value generated by the random number generator is known which can be
used to split the resampling. However, this technique requires duplicating the
hardware resources required. For RSR, the memory scheme proposed stores the
replicated particles along with the replication factors in such a way that the
replicated particles are stored in the beginning of the memory while discarded
particles, with replication factors of zero, are written at addresses after the
replicated particles. However, a complex resampling unit is required for this
technique which consists of two counters to control the part of the memory
being currently accessed.

A distributed architecture for implementing particle filtering is proposed
in [45, 300]. It uses the fact the the time-update and measurement-update states
are deterministic and data independent. Thus they can be easily executed using
multiple PEs, as shown Fig. 4.5 where the control unit (CU) synchronizes the
operation between the PEs.

82 Chapter 4. Particle Filters

Comparator

m
em

o
ry

w
ei

g
h
t

N
o
rm

al
iz

ed
N

o
rm

al
iz

at
io

n
an

d
cu

m
u

la
ti

v
e

su
m

P
ar

ti
cl

e

m
em

o
ry

an
d
 t

im
e

u
p
d
at

e

S
am

p
le

u
n
it

g
en

er
at

io
n

n
u
m

b
er

R
an

d
o
m

co
m

p
u

ta
ti

o
n

st
ag

e
w

ei
g

h
t

F
ro

m

u
n

it

C
o

n
tr

o
l

R
es

am
p
li

n
g

M
em

o
ry

 a
d

d
re

ss
u
n
it

W
ei

g
h
t

m
em

o
ry

 a
n
d

ra
n
d
o
m

 n
u
m

b
er

 g
en

er
at

io
n

T
im

e
u
p
d
at

e
u
n
it

R
ep

li
ca

te
d

/

D
is

ca
rd

ed
/

fa
ct

o
rs

R
ep

li
ca

ti
o

n
−

m
em

o
ry

w
m n

F
ig

u
re

4
.6

:
B

a
si

c
a
rc

h
it

ec
tu

re
to

im
p
le

m
en

t
th

e
re

sa
m

p
li
n
g

st
ep

to
g
et

h
er

w
it

h
th

e
ti

m
e-

u
p

d
a
te

u
n
it

.

4.3. Particle Filtering Steps 83

The distribution of the work load for the resampling step has been also
been proposed in [300]. Two techniques proposed are named as distributed re-
sampling with proportional allocation (RPA) and distributed resampling with
nonproportional allocation (RNA). In RPA, the sample space is divided into
disjoint set and resampling is carried out in two steps. First, the number of
particles each set will replicate is calculated using RSR, referred to as inter-
resampling. Second, resampling is carried out within each set, referred to as
intra-resampling. However, the resampling is still non-deterministic because the
resampling is dependent on the total weight of particles within each group and
there is a need of exchange of particles between groups based on the number
of particles allocated to each group. RNA, on the other hand, is a much more
deterministic technique as the routing of particles is determined prior to the ex-
ecution. In RNA, particle generation, weight computation, normalization and
resampling is done in parallel for each group. However, performance results in
terms of lost tracks and mean square error (MSE) for bearings only tracking
problems is shown only for RNA and compared to systematic resampling. Al-
though the results are comparable, systematic resampling achieves better results
as compared to the proposed techniques. Architectures for implementing these
techniques have also been proposed and speed-up and memory requirements for
the proposed techniques analyzed.

Memory organization schemes and design of the CU in Fig. 4.5 to support
the proposed techniques in [300] is reported in [120]. This proposed technique
can support up to four PEs. An FPGA based implementation of auxiliary par-
ticle filters for neural signal processing in the implementation of brain machine
interface (BMI) has been reported in [301]. Here the parallelism offered by
FPGAs is utilized to have parallel particle processors which implement the first
two steps of the particle filter. Resampling though is still sequential.

Chapter 5

Summary and Future Work

5.1 Summary

Efforts towards complexity reduction of FIR filters, one of the two focus areas of
this thesis, has been going on for decades and various methods to reduce its im-
plementation cost has been reported. In this thesis, the research front has been
brought forward by proposing techniques to reduce the cost of implementation
of FIR filters.

The techniques to reduce the complexity of implementing FIR filters is
roughly divided into two categories; reduction in the multiplier complexity and
in the number of multipliers, FRM being an example of the later. However,
FRM has high order filters resulting in a significant amount of delay elements.
An isomorphic mapping of it onto hardware platforms like ASICs and FPGAs
will result in a large register usage. However, seldom is the case when the input
sample rate is high enough to match the obtained clock frequency to warrant a
fully parallel and isomorphic implementation. Instead, the implementation can
be time-multiplexed to enable the system to run at a high clock frequency while
supporting a low input sample rate allowing the reuse of hardware resources.

In this time-multiplexed implementation, the large number of delay elements
required by the FRM technique will map to memories and in order to analyze
this mapping, its effect on the number of multipliers, overall complexity, and
power consumption, time-multiplexed architecture for FIR filters realized using
the FRM technique is proposed in this technique. All basic types of FRM
structures have been realized and analyzed with respect to different types of
memory and memory access schemes, pipelining and reduction in the number
of multipliers. It is shown that not only FIR filters realized using the FRM
technique achieve lower multiplier usage but a better utilization of memory
leads to a reduced LUTs usage. The power consumption, as a result, decreased

85

86 Chapter 5. Summary and Future Work

in the range of 23% and 68% when implemented on FPGAs, 80% of which is
due to multiplier reduction.

The LNS can be used to reduce the multiplier complexity because of its
inherent nature of transforming multiplications into additions. In this thesis, a
filter design technique has been proposed using ILP in the LNS domain which
are optimal in the minimax sense under finite word length constraints. The
branch and bound algorithm has been implemented based on LNS integers and
various node selection schemes have been proposed and analyzed. The effect of
changing the word length in the LNS domain is analyzed and it is shown that
four integer bits provide the best result, with three being applicable for larger
approximation errors. Furthermore, filters realized in the LNS domain provided
better approximation error as well as required a lower word length as compared
to finite word length filters optimized in the linear domain.

The implementation cost of FIR filters can also be reduced by the use of
computation sharing multipliers and an analysis and a unified design of such
multipliers based on the Booth and high-radix multiplication schemes has been
presented. Cost models for the implementation of different part of the multi-
plier are proposed while each multiplier is analyzed with respect to changing
word length and multiplier radix. It is shown that if for a higher radix, the
implementation cost per FIR filter tap is less than lower radix, the overall cost
of the higher radix will eventually be lower with increasing filter length and
word length for a given ratio between the cost of adders and multiplexers. The
analysis has also been extended to the use of tri-state buffers to implement
multiplexers and use of computation sharing in complex multipliers.

Particle filters and in particular the resampling step of particle filters is the
second focus area of this thesis. Contributions have been made towards effi-
ciently implementing existing resampling algorithms. A new technique, called
the pre-fetch technique, has been proposed which significantly reduces the la-
tency of the resampling step by up to 95%, dependent on the number of pre-
fetches. Associated hardware architectures required to implement this technique
has also been proposed. Furthermore, a division free architecture and a compact
memory scheme has also been proposed in this thesis which helps in reducing
the complexity of the multinomial resampling algorithm and reduce the number
of memories required by up to 50%.

5.2 Future Work

The areas covered in this thesis can be extended in different aspects. Some
suggestions are listed below:

• The time-multiplexed architecture proposed for the FRM technique as-
sumes a single stage implementation of the sub-filters. This technique
can be extended to cases where the sub-filters are themselves composed
of FRM filters. These sub-filters will be shorter in length and hence it
will be interesting to analyze the relationship between the length of the

5.2. Future Work 87

subfilters, total complexity and memory usage.
• FIR filters optimized in the LNS domain have been shown to require

lower word length as compared to fixed-point implementation. This can
be extended to analyze whether this word length reduction translates to
better hardware implementation as compared to fixed point implementa-
tion, specially considering that additions in LNS are expensive.

• Cost model for the encoder block in Booth and standard high-radix mul-
tiplier can be developed which will help increase the accuracy of the com-
plexity numbers evaluated using these models. Furthermore, the granu-
larity of the pipelining needs to be evaluated and its effect on speed, area
and power consumption analyzed.

• The latency reduction achieved due to the pre-fetch technique is stochastic.
From an architecture design and implementation perspective, there is a
need for a closed form expression for the average latency reduction. It
can be further extended to determine the distribution of the latency and
formulate closed form expressions of other parameters.

References

[1] S. K. Mitra, Digital Signal Processing. University of California, Santa Barbara:
TATA McGraw-Hill, 2006.

[2] L. Wanhammar and H. Johansson, Digital Filters. Department of Electrical
Engineering: Linköping University, 2007.

[3] T. Saramäki, “Finite impulse response filter design,” in Handbook for Digital
Signal Processing, S. K. Mitra and J. F. Kaiser, Eds. Wiley-Interscience, 1993,
pp. 155–277.

[4] T. N. Davidson, “Enriching the art of FIR filter design via convex optimization,”
IEEE Signal Process. Mag., vol. 27, no. 3, pp. 89–101, 2010.

[5] R. G. Lyons, Understanding Digital Signal Processing, 3rd ed. Pearson Prentice
Hallq, 2011.

[6] T. Saramäki and J. Yli-Kaakinen, “Design of digital filters and filter banks by
optimization: Applications,” in Proc. Europ. Signal Process. Conf., 2000, pp.
1–2.

[7] Y. C. Lim and Y. Lian, “The optimum design of one- and two-dimensional FIR
filters using the frequency response masking technique,” IEEE Trans. Circuits
Syst. II, vol. 40, no. 2, pp. 88–95, 1993.

[8] M. G. Bellanger, “Improved design of long FIR filters using the frequency mask-
ing technique,” in Proc. IEEE Int. Conf. Acoust. Speech Signal Process., vol. 3,
1996, pp. 1272–1275.

[9] J. H. Webb and J. Munson, D. C., “Design of sparse FIR filters using linear
programming,” in Proc. IEEE Int. Symp. Circuits Syst., Chicago, IL, May 1993,
pp. 339–342.

[10] O. Gustafsson, L. S. DeBrunner, V. DeBrunner, and H. Johansson, “On the
design of sparse half-band like FIR filters,” in Proc. Asilomar Conf. Signals
Syst. Comput., Nov. 2007, pp. 1098–1102.

[11] Y.-S. Song and Y. H. Lee, “Design of sparse FIR filters based on branch-and-
bound algorithm,” in Proc. IEEE Midwest Symp. Circuits Syst., vol. 2, Aug.
1997, pp. 1445–1448.

[12] O. Gustafsson, H. Johansson, and L. Wanhammar, “Design and efficient imple-
mentation of narrow-band single filter frequency masking FIR filters,” in Proc.
Europ. Signal Process. Conf., vol. 1, 2000, pp. 4–8.

89

90 References

[13] ——, “Narrow-band and wide-band single filter frequency masking FIR filters,”
in Proc. IEEE Int. Symp. Circuits Syst., vol. 2, 2001, pp. 181–184.

[14] Y. Lian, “A new frequency-response masking structure with reduced complexity
for FIR filter design,” in Proc. IEEE Int. Symp. Circuits Syst., vol. 2, 2001, pp.
609–612.

[15] D. Mattera, F. Palmieri, and S. Haykin, “Efficient sparse FIR filter design,” in
Proc. IEEE Int. Conf. Acoust. Speech Signal Process., vol. 2, Orlando, FL, May
1993, pp. 1537–1540.

[16] L. Cen and Y. Lian, “Low-power implementation of frequency response masking
based FIR filters,” in Proc. Joint Conf. Int. Conf. Inf. Comm. Signal Process.
and Pacific Rim Conf. Multimedia, vol. 3, 2003, pp. 1898–1902.

[17] O. Gustafsson, H. Johansson, and L. Wanhammar, “Single filter frequency mask-
ing high-speed recursive digital filters,” Circuits Syst. Signal Process., vol. 22,
no. 2, pp. 219–238, 2003.

[18] ——, “Single filter frequency-response masking FIR filters,” J. Circuits Syst.
Comput., vol. 12, no. 05, pp. 601–630, 2003.

[19] T. Saramäki and Y. C. Lim, “Use of the Remez algorithm for designing FRM
based FIR filters,” Circuits Syst. Signal Process., vol. 22, no. 2, pp. 77–97, 2003.

[20] T. Saramäki, J. Yli-Kaakinen, and H. Johansson, “Optimization of frequency-
response masking based FIR filters,” J. Circuits Syst. Comput., vol. 12, no. 05,
pp. 563–591, 2003.

[21] Y. C. Lim, Y. J. Yu, K. L. Teo, and T. Saramäki, “FRM-based FIR filters with
optimum finite word-length performance,” IEEE Trans. Signal Process., vol. 55,
no. 6, pp. 2914–2924, Jun. 2007.

[22] S. G. Patronis and L. S. DeBrunner, “Sparse FIR filters and the impact on FPGA
area usage,” in Proc. Asilomar Conf. Signals Syst. Comput., Pacific Grove, CA,
Oct. 2008, pp. 1862–1866.

[23] Z. U. Sheikh and H. Johansson, “Wideband linear-phase FIR differentiators
utilizing multirate and frequency-response masking techniques,” in Proc. IEEE
Int. Symp. Circuits Syst., Taipei, May 2009, pp. 293–296.

[24] S. Li and J. Zhang, “Efficient FPGA implementation of sharp FIR filters using
the FRM technique,” IEICE Electron. Express, vol. 6, no. 23, pp. 1656–1662,
Dec. 2009.

[25] W.-S. Lu and T. Hinamoto, “Digital filters with sparse coefficients,” in Proc.
IEEE Int. Symp. Circuits Syst., 2010, pp. 169–172.

[26] Z. U. Sheikh and O. Gustafsson, “Design of narrow-band and wide-band
frequency-response masking filters using sparse non-periodic sub-filters,” in Proc.
Europ. Signal Process. Conf., Aalborg, Denmark, Aug. 2010, pp. 1704–1707.

[27] Z. U. Sheikh, O. Gustafsson, and L. Wanhammar, “Design of sparse non-periodic
narrow-band and wide-band FRM-like FIR filters,” in Proc. IEEE Int. Conf.
Green Circuits Syst., Shanghai, China, Jun. 2010, pp. 279–282.

[28] A. G. Dempster and M. D. Macleod, “Use of minimum-adder multiplier blocks
in FIR digital filters,” IEEE Trans. Circuits Syst. II, vol. 42, no. 9, pp. 569–577,
1995.

References 91

[29] R. I. Hartley, “Subexpression sharing in filters using canonic signed digit multi-
pliers,” IEEE Trans. Circuits Syst. II, vol. 43, no. 10, pp. 677–688, 1996.

[30] R. Pasko, P. Schaumont, V. Derudder, S. Vernalde, and D. Durackova, “A new
algorithm for elimination of common subexpressions,” IEEE Trans. Comput.-
Aided Design Integr. Circuits Syst., vol. 18, no. 1, pp. 58–68, 1999.

[31] O. Gustafsson and L. Wanhammar, “A novel approach to multiple constant mul-
tiplication using minimum spanning trees,” in Proc. IEEE Int. Midwest Symp.
Circuits Syst., vol. 3, 2002.

[32] O. Gustafsson and A. Dempster, “On the use of multiple constant multiplication
in polyphase FIR filters and filter banks,” in Proc. IEEE Nordic Signal Process.
Symp., Espoo, Finland, Jun. 2004, pp. 53–56.

[33] O. Gustafsson, H. Ohlsson, and L. Wanhammar, “Improved multiple constant
multiplication using a minimum spanning tree,” in Proc. Asilomar Conf. Signals
Syst. Comput., vol. 1, 2004, pp. 63–66.

[34] O. Gustafsson, A. G. Dempster, K. Johansson, M. D. Macleod, and L. Wanham-
mar, “Simplified design of constant coefficient multipliers,” Circuits Syst. Signal
Process., vol. 25, no. 2, pp. 225–251, Apr. 2006.

[35] R. Guo, L. Wang, and L. S. DeBrunner, “A novel FIR filter implementation using
truncated MCM technique,” in Proc. Asilomar Conf. Signals Syst. Comput.,
2009, pp. 718–722.

[36] R. Guo, L. S. DeBrunner, and K. Johansson, “Truncated MCM using pattern
modification for FIR filter implementation,” in Proc. IEEE Int. Symp. Circuits
Syst., 2010, pp. 3881–3884.

[37] P. K. Meher and Y. Pan, “MCM-based implementation of block FIR filters for
high-speed and low-power applications,” in Proc. IEEE/IFIP Int. VLSI System-
on-Chip Conf., 2011, pp. 118–121.

[38] F. Xu, C.-H. Chang, and C.-C. Jong, “Contention resolution—a new approach
to versatile subexpressions sharing in multiple constant multiplications,” IEEE
Trans. Circuits Syst. I, vol. 55, no. 2, pp. 559–571, 2008.

[39] M. Faust and C.-H. Chang, “Minimal logic depth adder tree optimization for
multiple constant multiplication,” in Proc. IEEE Int. Symp. Circuits Syst., 2010,
pp. 457–460.

[40] M. Kumm and P. Zipf, “High speed low complexity FPGA-based FIR filters
using pipelined adder graphs,” in Proc. IEEE Int. Conf. Field Programmable
Technology., 2011, pp. 1–4.

[41] M. Kumm, P. Zipf, M. Faust, and C.-H. Chang, “Pipelined adder graph opti-
mization for high speed multiple constant multiplication,” in Proc. IEEE Int.
Symp. Circuits Syst., 2012, pp. 49–52.

[42] I. Hatai, I. Chakrabarti, and S. Banerjee, “An efficient constant multiplier archi-
tecture based on vertical-horizontal binary common sub-expression elimination
algorithm for reconfigurable FIR filter synthesis,” IEEE Trans. Circuits Syst. I,
vol. 62, no. 4, pp. 1071–1080, 2015.

[43] M. Bolić, P. M. Djurić, and S. Hong, “Resampling algorithms for particle fil-
ters: A computational complexity perspective,” EURASIP J. Advances Signal
Process., vol. 2004, no. 15, pp. 2267–2277, 2004.

92 References

[44] A. C. Sankaranarayanan, A. Srivastava, and R. Chellappa, “Algorithmic and
architectural optimizations for computationally efficient particle filtering,” IEEE
Trans. Image Process., vol. 17, no. 5, pp. 737–748, May 2008.

[45] M. Bolić, “Architectures for efficient implementation of particle filters,” Ph.D.
dissertation, The Graduate School of Electrical Engineering, Stony Brook Uni-
versity, 2004.

[46] Z. Jing and A. T. Fam, “A new structure for narrow transition band, lowpass
digital filter design,” IEEE Trans. Acoust., Speech, Signal Process., vol. 32, no. 2,
pp. 362–370, 1984.

[47] Y. Neuvo, D. Cheng-Yu, and S. Mitra, “Interpolated finite impulse response
filters,” IEEE Trans. Acoust., Speech, Signal Process., vol. 32, no. 3, pp. 563–
570, May 1984.

[48] Y. C. Lim, “Frequency-response masking approach for the synthesis of sharp
linear phase digital filters,” IEEE Trans. Circuits Syst., vol. 33, no. 4, pp. 357–
364, Apr. 1986.

[49] G. Rajan, Y. Neuvo, and S. K. Mitra, “On the design of sharp cutoff wide-band
FIR filters with reduced arithmetic complexity,” IEEE Trans. Circuits Syst.,
vol. 35, no. 11, pp. 1447–1454, Nov. 1988.

[50] T. Saramäki, T. Neuvo, and S. K. Mitra, “Design of computationally efficient
interpolated FIR filters,” IEEE Trans. Circuits Syst., vol. 35, no. 1, pp. 70–88,
1988.

[51] T. Saramäki and A. T. Fam, “Subfilter approach for designing efficient FIR
filters,” in Proc. IEEE Int. Symp. Circuits Syst., 1988, pp. 2903–2915.

[52] J. Kaiser and R. Hamming, “Sharpening the response of a symmetric nonre-
cursive filter by multiple use of the same filter,” IEEE Trans. Acoust., Speech,
Signal Process., vol. 25, no. 5, pp. 415–422, 1977.

[53] S. Nakamura and S. Mitra, “Design of FIR digital filters using tapped cascaded
FIR subfilters,” Circuits Syst. Signal Process., vol. 1, no. 1, pp. 43–56, 1982.

[54] T. Saramäki, “Design of FIR filters as a tapped cascaded interconnection of
identical subfilters,” IEEE Trans. Circuits Syst., vol. 34, no. 9, pp. 1011–1029,
Sep. 1987.

[55] ——, “A systematic technique for designing highly selective multiplier-free FIR
filters,” in Proc. IEEE Int. Symp. Circuits Syst., 1991, pp. 484–487.

[56] Y. Lian, “Complexity reduction for FRM-based FIR filters using the prefilter-
equalizer technique,” Circuits Syst. Signal Process., vol. 22, no. 2, pp. 137–155,
2003.

[57] Y. C. Lim, Y. J. Yu, H. Q. Zheng, and S. W. Foo, “FPGA implementation
of digital filters synthesized using the FRM technique,” Circuits Syst. Signal
Process., vol. 22, no. 2, pp. 211–218, 2003.

[58] Y. Lian, “A modified frequency-response masking structure for high-speed
FPGA implementation of sharp FIR filters,” J. Circuits Syst. Comput., vol. 12,
no. 5, pp. 643–654, 2003.

[59] O. Gustafsson, H. Ohlsson, and L. Wanhammar, “Minimum-adder integer mul-
tipliers using carry-save adders,” in Proc. IEEE Int. Symp. Circuits Syst., vol. 2,
2001, pp. 709–712.

References 93

[60] O. Gustafsson, H. Johansson, and L. Wanhammar, “MILP design of frequency-
response masking FIR filters with few SPT terms,” in Proc. Int. Symp. Control
Comm. Signal Process., 2004, pp. 405–408.

[61] O. Gustafsson, K. Johansson, H. Johansson, and L. Wanhammar, “Implementa-
tion of polyphase decomposed FIR filters for interpolation and decimation using
multiple constant multiplication techniques,” in Proc. IEEE Asia-Pacific Conf.
Circuits Syst., 2006, pp. 924–927.

[62] Y. Lim and S. Parker, “FIR filter design over a discrete powers-of-two coefficient
space,” IEEE Trans. Acoust., Speech, Signal Process., vol. 31, no. 3, pp. 583–591,
1983.

[63] Y. C. Lim and S. Parker, “Discrete coefficient FIR digital filter design based
upon an LMS criteria,” IEEE Trans. Circuits Syst., vol. 30, no. 10, pp. 723–739,
1983.

[64] N. Benvenuto, L. Franks, and F. S. Hill, Jr., “On the design of FIR filters with
powers-of-two coefficients,” IEEE Trans. Commun., vol. 32, no. 12, pp. 1299–
1307, 1984.

[65] Q. Zhao and Y. Tadokoro, “A simple design of FIR filters with powers-of-two
coefficients,” IEEE Trans. Circuits Syst., vol. 35, no. 5, pp. 566–570, 1988.

[66] H. Samueli, “An improved search algorithm for the design of multiplierless FIR
filters with powers-of-two coefficients,” IEEE Trans. Circuits Syst., vol. 36, no. 7,
pp. 1044–1047, Jul. 1989.

[67] Z. Jiang, “FIR filter design and implementation with powers-of-two coefficients,”
in Proc. IEEE Int. Conf. Acoust. Speech Signal Process., 1989, pp. 1239–1242.

[68] A. Mahmood and J. R. Kunk, “Design of nearly optimum power-of-two coeffi-
cient cascaded filters,” in Proc. IEEE Int. Midwest Symp. Circuits Syst., 1990,
pp. 1083–1086.

[69] W. J. Oh and Y.-H. Lee, “Implementation of programmable multiplierless FIR
filters with powers-of-two coefficients,” IEEE Trans. Circuits Syst. II, vol. 42,
no. 8, pp. 553–556, Aug. 1995.

[70] O. Gustafsson, H. Johansson, and L. Wanhammar, “An MILP approach for the
design of linear-phase FIR filters with minimum number of signed-power-of-two
terms,” in Proc. Europ. Conf. Circuit Theory Design, 2001.

[71] O. Gustafsson and L. Wanhammar, “ILP modelling of the common subexpres-
sion sharing problem,” in Proc. IEEE Int. Conf. Electron. Circuits Syst., vol. 3,
2002, pp. 1171–1174.

[72] D. R. Bull and D. H. Horrocks, “Primitive operator digital filters,” IEE Proc. G
Circuits Devices Syst., vol. 138, no. 3, pp. 401–412, 1991.

[73] M. Potkonjak, M. B. Srivastava, and A. P. Chandrakasan, “Multiple constant
multiplications: efficient and versatile framework and algorithms for exploring
common subexpression elimination,” IEEE Trans. Comput.-Aided Design Integr.
Circuits Syst., vol. 15, no. 2, pp. 151–165, 1996.

[74] A. Yurdakul and G. Dündar, “Multiplierless realization of linear DSP transforms
by using common two-term expressions,” J. VLSI Signal Process. Syst. Signal
Image Video Techn., vol. 22, no. 3, pp. 163–172, 1999.

94 References

[75] Y. C. Lim, S. Parker, and A. G. Constantinides, “Finite word length FIR filter
design using integer programming over a discrete coefficient space,” IEEE Trans.
Acoust., Speech, Signal Process., vol. 30, no. 4, pp. 661–664, 1982.

[76] Y. C. Lim, “Design of discrete-coefficient-value linear phase FIR filters with op-
timum normalized peak ripple magnitude,” IEEE Trans. Circuits Syst., vol. 37,
no. 12, pp. 1480–1486, 1990.

[77] O. Gustafsson and L. Wanhammar, “Design of linear-phase FIR filters combining
subexpression sharing with MILP,” in Proc. IEEE Int. Midwest Symp. Circuits
Syst., vol. 3, Aug. 2002, pp. III–9–III–12.

[78] Y. J. Yu and Y. C. Lim, “Design of linear phase FIR filters in subexpression
space using mixed integer linear programming,” IEEE Trans. Circuits Syst. I,
vol. 54, no. 10, pp. 2330–2338, 2007.

[79] H. Ohlsson, O. Gustafsson, and L. Wanhammar, “Implementation of low com-
plexity FIR filters using a minimum spanning tree,” in Proc. IEEE Mediter-
ranean Electrotech. Conf., vol. 1, 2004, pp. 261–264.

[80] W. Jenkins and B. Leon, “The use of residue number systems in the design of
finite impulse response digital filters,” IEEE Trans. Circuits Syst., vol. 24, no. 4,
pp. 191–201, 1977.

[81] R. Krishnan, G. A. Jullien, and W. C. Miller, “Computation of generalized FIR
filter structure using the modified quadratic residue number system,” IEEE
Trans. Circuits Syst. II, vol. 39, no. 1, pp. 58–62, 1992.

[82] G. Loonawat and R. E. Siferd, “FPGA implementation of a FIR filter using
residue arithmetic,” in Proc. IEEE National Aerospace Electron. Conf., vol. 1,
1996, pp. 286–290.

[83] G. Cardarilli, A. Nannarelli, and M. Re, “Reducing power dissipation in FIR
filters using the residue number system,” in Proc. IEEE Midwest Symp. Circuits
Syst., vol. 1, 2000, pp. 320–323.

[84] A. Mirshekari and M. Mosleh, “Hardware implementation of a fast FIR filter
with residue number system,” in Proc. Int. Conf. Industrial Mechatronics Au-
tomation, vol. 2, Wuhan, China, May 2010, pp. 312–315.

[85] N. Kingsbury and P. Rayner, “Digital filtering using logarithmic arithmetic,”
Electron. Lett., vol. 7, no. 2, pp. 56–58, Jan. 1971.

[86] P. Lee, “An FPGA prototype for a multiplierless FIR filter built using the loga-
rithmic number system,” in Proc. Int. Conf. Field-Programmable Logic Applicat.,
1995, vol. 975, pp. 303–310.

[87] V. Paliouras and T. Stouraitis, “Logarithmic number system for low-power arith-
metic,” in Proc. Int. Workshop Power Timing Modeling Optimization Simula-
tion, vol. 1918, 2000, pp. 285–294.

[88] ——, “Low-power properties of the logarithmic number system,” in Proc. IEEE
Symp. Comput. Arithmetic, Jun. 2001, pp. 229–236.

[89] A. Heřmánek, Z. Pohl, and J. Kadlec, “FPGA implementation of the adaptive
lattice filter,” in Proc. Int. Conf. Field-Programmable Logic Applicat., ser. Lec-
ture Notes in Computer Science, 2003, pp. 1095–1098.

References 95

[90] C. Basetas, I. Kouretas, and V. Paliouras, “Low-power digital filtering based on
the logarithmic number system,” in Proc. Int. Workshop Power Timing Modeling
Optimization Simulation, 2007, vol. 4644, pp. 546–555.

[91] Y. Sun and M. S. Kim, “A high-performance 8-Tap FIR filter using logarithmic
number system,” in Proc. IEEE Int. Conf. Comm., 2011, pp. 1–5.

[92] I. Kouretas, C. Basetas, and V. Paliouras, “Low-power logarithmic number sys-
tem addition/subtraction and their impact on digital filters,” IEEE Trans. Com-
put., vol. 62, no. 11, pp. 2196–2209, 2013.

[93] E. Swartzlander Jr. and A. Alexopoulos, “The sign/logarithm number system,”
IEEE Trans. Comput., vol. C-24, no. 12, pp. 1238–1242, Dec. 1975.

[94] J. H. Lang, C. A. Zukowski, R. O. Lamaire, and C. H. An, “Integrated-circuit
logarithmic arithmetic units,” IEEE Trans. Comput., vol. C-34, no. 5, pp. 475–
483, May 1985.

[95] O. Vainio and Y. Neuvo, “Logarithmic arithmetic in FIR filters,” IEEE Trans.
Circuits Syst., vol. 33, no. 8, pp. 826–828, Jan. 2003.

[96] O. Vainio, “Biased logarithmic arithmetic in FIR filters,” Electron. Lett., vol. 41,
no. 10, pp. 580–581, Jun. 2005.

[97] K. Johansson, O. Gustafsson, and L. Wanhammar, “Implementation of ele-
mentary functions for logarithmic number systems,” IET Comput. Digit. Tech.,
vol. 2, no. 4, pp. 295–304, Jun. 2008.

[98] A. D. Booth, “A signed binary multiplication technique,” Quart. Journ. Mech.
and Applied Math, vol. 4, no. 2, pp. 236–240, 1951.

[99] O. L. MacSorley, “High-speed arithmetic in binary computers,” Proc. IRE,
vol. 49, no. 1, pp. 67–91, Jan. 1961.

[100] H. Sam and A. Gupta, “A generalized multibit recoding of two’s complement
binary numbers and its proof with application in multiplier implementations,”
IEEE Trans. Comput., vol. 39, no. 8, pp. 1006–1015, 1990.

[101] D. Crookes and R. M. Jiang, “A low-power high-radix serial-parallel multiplier,”
in Proc. Europ. Conf. Circuit Theory Design, 2007, pp. 460–463.

[102] D. Guevorkian, A. Launiainen, V. Lappalainen, P. Liuha, and
K. Punkka, “A method for designing high-radix multiplier-based pro-
cessing units for multimedia applications,” IEEE Trans. Circuits Syst.
Video Technol., vol. 15, no. 5, pp. 716–725, 2005. [Online]. Available:
Designofdigitalfiltersandfilterbanksbyoptimization:Applications

[103] H. Choo, K. Muhammad, and K. Roy, “Decision feedback equalizer with two’s
complement computation sharing multiplication,” in Proc. IEEE Int. Conf.
Acoust. Speech Signal Process., vol. 2, 2001, pp. 1245–1248.

[104] ——, “Two’s complement computation sharing multiplier and its applications
to high performance DFE,” IEEE Trans. Signal Process., vol. 51, no. 2, pp.
458–469, 2003.

[105] I. Jongsun Park, H. Choo, K. Muhammad, S. Choi, Y. Im, and K. Roy, “Non-
adaptive and adaptive filter implementation based on sharing multiplication,” in
Proc. IEEE Int. Conf. Acoust. Speech Signal Process., vol. 1, 2000, pp. 460–463.

Design of digital filters and filter banks by optimization: Applications

96 References

[106] I. Jongsun Park, W. Jeong, H. Choo, H. Mahmoodi-Meimand, Y. Wang, and
K. Roy, “High performance and low power FIR filter design based on sharing
multiplication,” in Proc. Int. Symp. Low Power Electron. Design., 2002, pp.
295–300.

[107] I. Jongsun Park, K. Muhammad, and K. Roy, “High-performance FIR filter
design based on sharing multiplication,” IEEE Trans. VLSI Syst., vol. 11, no. 2,
pp. 244–253, 2003.

[108] J. Park, W. Jong, H. Mahmoodi-Meimand, Y. Wang, H. Choo, and K. Roy,
“Computation sharing programmable FIR filter for low-power and high-
performance applications,” IEEE J. Solid-State Circuits, vol. 39, no. 2, pp. 348–
357, Feb. 2004.

[109] S.-W. Hsu and Y.-H. Huang, “Sd-based computation sharing programmable FIR
filter for software radio,” in Proc. Int. Conf. Comm. Circuits Syst. IEEE, 2009,
pp. 435–438.

[110] A. Doucet, S. Godsill, and C. Andrieu, “On sequential Monte Carlo sampling
methods for Bayesian filtering,” Stat. Comput., vol. 10, no. 3, pp. 197–208, 2000.

[111] M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “A tutorial on particle
filters for online nonlinear/non-Gaussian Bayesian tracking,” IEEE Trans. Signal
Process., vol. 50, no. 2, pp. 174–188, 2002.

[112] A. Doucet, N. de Freitas, and N. Gordon, Eds., Sequential Monte Carlo methods
in practice. Springer Verlag, New York, 2001.

[113] B. Ristic, M. S. Arulampalam, and N. Gordon, Beyond the Kalman Filter: Par-
ticle Filters for Tracking Applications. Artech House, Norwood, 2004.

[114] A. Doucet and X. Wang, “Monte Carlo methods for signal processing: a review
in the statistical signal processing context,” IEEE Signal Process. Mag., vol. 22,
no. 6, pp. 152–170, 2005.

[115] Z.-G. Shi, S.-H. Hong, J.-M. Chen, K.-S. Chen, and Y.-X. Sun, “Particle filter-
based synchronization of chaotic colpitts circuits combating AWGN channel dis-
tortion,” Circuits Syst. Signal Process., vol. 27, no. 6, pp. 833–845, 2008.

[116] M. Bolić, P. M. Djurić, and S. Hong, “New resampling algorithms for particle
filters,” in Proc. IEEE Int. Conf. Acoust. Speech Signal Process., vol. 2, 2003.

[117] A. Athalye, M. Bolić, S. Hong, and P. M. Djurić, “Architectures and memory
schemes for sampling and resampling in particle filters,” in Proc. IEEE Digital
Signal Process. Workshop and Proc. IEEE Signal Process. Edu. Workshop., 2004,
pp. 92–96.

[118] M. Bolić, A. Athalye, P. M. Djurić, and S. Hong, “Algorithmic modification of
particle filters for hardware implementation,” in Proc. Europ. Signal Process.
Conf., 2004, pp. 1641–1644.

[119] A. Athalye, M. Bolić, S. Hong, and P. M. Djurić, “Generic hardware architec-
tures for sampling and resampling in particle filters,” EURASIP J. Appl. Signal
Process., vol. 2005, no. 17, pp. 2888–2902, 2005.

[120] S. Hong, S.-S. Chin, P. Djurić, and M. Bolic, “Design and implementation of
flexible resampling mechanism for high-speed parallel particle filters,” J. VLSI
Signal Process. Syst., vol. 44, no. 1–2, pp. 47–62, 2006.

References 97

[121] S.-H. Hong, Z.-G. Shi, J.-M. Chen, and K.-S. Chen, “A low-power memory-
efficient resampling architecture for particle filters,” Circuits Syst. Signal Pro-
cess., vol. 28, no. 1, pp. 155–167, 2010.

[122] L. Wanhammar, DSP Integrated Circuits. Academic Press, 1999.

[123] R. Zimmermann, “Binary adder architectures for cell-based VLSI and ttheir
synthesis,” Ph.D. dissertation, Swiss Federal Institute of Technology (ETH),
Hartung-Gorre Verlag, Zurich, 1998.

[124] M. J. S. Smith, Application-specific integrated circuits. Addison-Wesley, 1997.

[125] B. Zahiri, “Structured ASICs: opportunities and challenges,” in Proc. IEEE Int.
Conf. Comput. Design., 2003, pp. 404–409.

[126] K. Gulati and S. P. Khatri, Hardware Acceleration of EDA Algorithms. Springer,
2010.

[127] D. Liu, Embedded DSP Processor Design: Application Specific Instruction Set
Processors. Morgan Kaufmann Publishers, 2008.

[128] W. Wolf, FPGA-Based System Design. Upper Saddle River, NJ, USA: Prentice-
Hall, 2004.

[129] I. Kuon, R. Tessier, and J. Rose, FPGA Architecture: Survey and Challenges,
Foundations and Trends R©in Electronic Design Automation. now Publishers
Inc., 2007, vol. 2, no. 2.

[130] J. Rose, R. J. Francis, D. Lewis, and P. Chow, “Architecture of field-
programmable gate arrays: the effect of logic block functionality on area effi-
ciency,” IEEE J. Solid-State Circuits, vol. 25, no. 5, pp. 1217–1225, 1990.

[131] D. Chinnery and K. Keutzer, Closing the gap between ASIC and Custom tools
and techniques for High-Performance ASIC Design. Kluwer Academic Publish-
ers, 2002.

[132] R. Minnick, “A survey of microcellular research,” J. ACM, vol. 14, pp. 203–241,
Apr. 1967.

[133] J. M. Birkner and H. T. Chua, “Programmable array logic circuit,” United
States of America Patent 4 124 899, 1978.

[134] S. E. Wahlstrom, “Programmable logic arrays – cheaper by the millions,” Elec-
tronics, vol. 40, pp. 90–95, Dec. 1967.

[135] W. Carter, K. Duong, R. H. Freeman, H. Hsieh, J. Y. Ja, J. E. Mahoney, L. T.
Ngo, and S. L. Sze, “A user programmable reconfigurable gate array,” in Proc.
IEEE Custom Integrated Circuits Conf., 1986.

[136] R. H. Freeman, “Configurable electrical circuit having configurable logic ele-
ments and configurable interconnect,” United States of America Patent 4 870 302,
1989.

[137] J. Rose, A. El Gamal, and A. Sangiovanni-Vincentelli, “Architecture of field-
programmable gate arrays,” Proc. IEEE, vol. 81, no. 7, pp. 1013–1029, 1993.

[138] H. Hsieh, K. Duong, J. Ja, R. Kanazawa, L. Ngo, L. Tinkey, W. Carter, and
R. Freeman, “A second generation user programmable gate array,” in Proc. IEEE
Custom Integrated Circuits Conf., 1987, pp. 515–521.

98 References

[139] A. El Gamal, J. Greene, J. Reyneri, E. Rogoyski, K. A. El-Ayat, and A. Mohsen,
“An architecture for electrically configurable gate arrays,” IEEE J. Solid-State
Circuits, vol. 24, no. 2, pp. 394–398, 1989.

[140] C. Maxfield, The Design Warrior’s Guide to FPGAs. Elsevier, 2004.

[141] D. Frohman-Bentchkowsky, “A fully-decoded 2048-bit electrically-
programmable MOS ROM,” in Proc. IEEE Int. Solid-State Circuit Conf.,
1971, pp. 80–81.

[142] R. Cuppens, C. D. Hartgring, J. F. Verwey, H. L. Peek, F. A. H. Vollebragt,
E. G. M. Devens, and I. A. Sens, “An EEPROM for microprocessors and custom
logic,” IEEE J. Solid-State Circuits, vol. 20, no. 2, pp. 603–608, 1985.

[143] A. Scheibe and W. Krauss, “A two-transistor SIMOS EAROM cell,” IEEE J.
Solid-State Circuits, vol. 15, no. 3, pp. 353–357, 1980.

[144] D. C. Guterman, I. H. Rimawi, T.-L. Chiu, R. D. Halvorson, and D. J. McElroy,
“An electrically alterable nonvolatile memory cell using a floating-gate structure,”
IEEE Trans. Electron Devices, vol. 26, no. 4, pp. 576–586, 1979.

[145] J. a. Birkner, A. Chan, H. Chua, A. Chao, K. Gordon, B. Kleinman, P. Kolze,
and R. Wong, “A very-high-speed field-programmable gate array using metal-
to-metal antifuse programmable elements,” Microelectron. J., vol. 23, no. 7, pp.
561–568, 1992.

[146] “Flash FPGAs in the value-based market,” Actel, Tech. Rep., Jan. 2005.
[Online]. Available: http://www.microsemi.com/

[147] T. Morin, “Flash FPGAs give designers more flexibility,” Mi-
crosemi Corp., Tech. Rep., Jan. 2015. [Online]. Available:
http://www.embedded.com/electronics-blogs/

[148] K. Neil, “Antifuse FPGA technology: Best option for satel-
lite applications,” Actel, Tech. Rep., Dec. 2003. [Online]. Available:
http://www.cotsjournalonline.com/articles/view/100087

[149] D. Marple and L. Cooke, “An MPGA compatible FPGA architecture,” in Proc.
IEEE Custom Integrated Circuits Conf., 1992.

[150] ERA60100 preliminary data sheet, Plessey Semiconductor, 1989.

[151] S. C. Wong, H. C. So, J. H. Ou, and J. Costello, “A 5000-gate CMOS epld
with multiple logic and interconnect arrays,” in Proc. IEEE Custom Integrated
Circuits Conf., 1989.

[152] M. Ahrens, A. El Gamal, D. Galbraith, J. Greene, S. Kaptanoglu, K. Dhar-
marajan, L. Hutchings, S. Ku, P. McGibney, J. McGowan, A. Sanie, K. Shaw,
N. Stiawalt, T. Whitney, T. Wong, W. Wong, and B. Wu, “An FPGA family
optimized for high densities and reduced routing delay,” in Proc. IEEE Custom
Integrated Circuits Conf., 1990.

[153] S. S. Yau and C. K. Tang, “Universal logic modules and their applications,”
IEEE Trans. Comput., vol. C-19, no. 2, pp. 141–149, 1970.

[154] “XC3000 series field programmable gate arrays,” Nov. 1998. [Online]. Available:
http://www.xilinx.com/support/documentation/data_sheets/3000.pdf

http://www.microsemi.com/
http://www.embedded.com/electronics-blogs/
http://www.cotsjournalonline.com/articles/view/100087
http://www.xilinx.com/support/documentation/data_sheets/3000.pdf

References 99

[155] E. Ahmed and J. Rose, “The effect of LUT and cluster size on deep-submicron
FPGA performance and density,” IEEE Trans. VLSI Syst., vol. 12, no. 3, pp.
288–298, Mar. 2004.

[156] J. He and J. Rose, “Advantages of heterogeneous logic block architecture for
FPGAs,” in Proc. IEEE Custom Integrated Circuits Conf., 1993.

[157] J. Cong and S. Xu, “Delay-optimal technology mapping for FPGAs with hetero-
geneous LUTs,” in Proc. Design Automation Conf., 1998, pp. 704–707.

[158] A. Kaviani and S. Brown, “The hybrid field-programmable architecture,” IEEE
Des. Test. Comput., vol. 16, no. 2, pp. 74–83, 1999.

[159] “7 Series FPGAs configurable logic block – user guide,” Xilinx, Tech. Rep.,
Nov. 2014. [Online]. Available: http://www.xilinx.com/support/documentation

[160] D. Lewis, E. Ahmed, G. Baeckler, V. Betz, M. Bourgeault, D. Cashman, D. Gal-
loway, M. Hutton, C. Lane, A. Lee, P. Leventis, S. Marquardt, C. McClin-
tock, K. Padalia, B. Pedersen, G. Powell, B. Ratchev, S. Reddy, J. Schleicher,
K. Stevens, R. Yuan, R. Cliff, and J. Rose, “The Stratix II logic and routing ar-
chitecture,” in Proc. ACM/SIGDA Int. Symp. Field-program. Gate Arrays, ser.
FPGA ’05. New York, NY, USA: ACM, 2005, pp. 14–20.

[161] M. Kumm, K. Moller, and P. Zipf, “Dynamically reconfigurable FIR fil-
ter architectures with fast reconfiguration,” in Proc. Int. Workshop Reconfig.
Communication-Centric Systems-on-Chip., 2013, pp. 1–8.

[162] J. B. Evans, “Efficient FIR filter architectures suitable for FPGA implementa-
tion,” IEEE Trans. Circuits Syst. II, vol. 41, no. 7, pp. 490–493, 1994.

[163] S. Mohanakrishnan and J. B. Evans, “Automatic implementation of FIR filters
on field programmable gate arrays,” IEEE Signal Process. Lett., vol. 2, no. 3,
pp. 51–53, 1995.

[164] C. H. Dick and F. Harris, “Implementing narrow-band FIR filters using FPGAs,”
in Proc. IEEE Int. Symp. Circuits Syst., vol. 2, 1996, pp. 289–292.

[165] Y.-Y. Tzou and H.-J. Hsu, “FPGA realization of space-vector PWM control IC
for three-phase PWM inverters,” IEEE Trans. Power Electron., vol. 12, no. 6,
pp. 953–963, 1997.

[166] R. Baines and D. Pulley, “A total cost approach to evaluating different reconfig-
urable architectures for baseband processing in wireless receivers,” IEEE Com-
mun. Mag., vol. 41, no. 1, pp. 105–113, 2003.

[167] S.-S. Jeng, H.-C. Lin, and S.-M. Chang, “FPGA implementation of FIR filter
using m-bit parallel distributed arithmetic,” in Proc. IEEE Int. Symp. Circuits
Syst., 2006.

[168] A. Benkrid and K. Benkrid, “Novel area-efficient FPGA architectures for FIR
filtering with symmetric signal extension,” IEEE Trans. VLSI Syst., vol. 17,
no. 5, pp. 709–722, 2009.

[169] S. Y. Park and P. K. Meher, “Efficient FPGA and ASIC realizations of a DA-
based reconfigurable FIR digital filter,” IEEE Trans. Circuits Syst. II, vol. 61,
no. 7, pp. 511–515, 2014.

[170] M. Kumm, M. Hardieck, J. Willkomm, P. Zipf, and U. Meyer-Baese, “Mul-
tiple constant multiplication with ternary adders,” in Proc. Int. Conf. Field-
Programmable Logic Applicat., 2013, pp. 1–8.

http://www.xilinx.com/support/documentation

100 References

[171] “7 Series DSP48E1 slice – user guide,” Xilinx, Tech. Rep., Nov. 2014.

[172] Stratix V device handbook, Altera, Jun. 2015.

[173] M. Kumm, S. Abbas, and P. Zipf, “An efficient softcore multiplier architecture
for Xilinx FPGAs,” in Proc. IEEE Symp. Comput. Arithmetic, 2015, pp. 18–25.

[174] F. de Dinechin and B. Pasca, “Large multipliers with fewer DSP blocks,” in
Proc. Int. Conf. Field-Programmable Logic Applicat., 2009, pp. 250–255.

[175] S. Banescu, F. de Dinechin, B. Pasca, and R. Tudoran, “Multipliers for floating-
point double precision and beyond on FPGAs,” SIGARCH Comput. Archit.
News, vol. 38, no. 4, pp. 73–79, Jan. 2011.

[176] S. Kumar, K. Forward, and M. Palaniswami, “A fast-multiplier generator for
FPGAs,” in Proc. Int. Conf. VLSI Design., 1995, pp. 53–56.

[177] H. Parandeh-Afshar and P. Ienne, “Measuring and reducing the performance
gap between embedded and soft multipliers on FPGAs,” in Proc. Int. Conf.
Field-Programmable Logic Applicat., 2011, pp. 225–231.

[178] C. R. Baugh and B. A. Wooley, “A two’s complement parallel array multiplica-
tion algorithm,” IEEE Trans. Comput., vol. C-22, no. 12, pp. 1045–1047, 1973.

[179] H. Parandeh-Afshar, P. Brisk, and P. Ienne, “Efficient synthesis of compressor
trees on FPGAs,” in Proc. Asia and South Pacific Design Automation Conf.,
2008, pp. 138–143.

[180] ——, “Improving synthesis of compressor trees on FPGAs via integer linear
programming,” in Proc. Design Automation Test Europe, 2008, pp. 1256–1261.

[181] H. Parandeh-Afshar, A. Neogy, P. Brisk, and P. Ienne, “Compressor tree syn-
thesis on commercial high-performance FPGAs,” ACM Trans. Reconfigurable
Technol. Syst., vol. 4, no. 4, pp. 39:1–39:19, Dec. 2011.

[182] T. Matsunaga, S. Kimura, and Y. Matsunaga, “Power and delay aware synthesis
of multi-operand adders targeting LUT-based FPGAs,” in Proc. Int. Symp. Low
Power Electron. Design., 2011, pp. 217–222.

[183] ——, “A exact approach for GPC-based compressor tree synthesis,” IEICE
Trans. Fundamentals Electron. Comm. Comp. Sci.., vol. E96-A, no. 12, pp. 2553–
2560, Dec. 2013.

[184] M. Kumm and P. Zipf, “Pipelined compressor tree optimization using integer
linear programming,” in Proc. Int. Conf. Field-Programmable Logic Applicat.,
2014, pp. 1–8.

[185] S. Zohar, “New hardware realizations of nonrecursive digital filters,” IEEE
Trans. Comput., vol. C-22, no. 4, pp. 328–338, 1973.

[186] A. Peled and B. Liu, “A new hardware realization of digital filters,” IEEE Trans.
Acoust., Speech, Signal Process., vol. 22, no. 6, pp. 456–462, 1974.

[187] W. Sen, T. Bin, and Z. Jun, “Distributed arithmetic for FIR filter design on
FPGA,” in Proc. Int. Conf. Comm. Circuits Syst., 2007, pp. 620–623.

[188] M. Kumm, K. Moller, and P. Zipf, “Partial LUT size analysis in distributed
arithmetic FIR filters on FPGAs,” in Proc. IEEE Int. Symp. Circuits Syst.,
2013, pp. 2054–2057.

References 101

[189] ——, “Reconfigurable FIR filter using distributed arithmetic on FPGAs,” in
Proc. IEEE Int. Symp. Circuits Syst., 2013, pp. 2058–2061.

[190] A. Saha and A. Sinha, “An FPGA based architecture of a novel reconfigurable
radio processor for software defined radio,” in Proc. Int. Conf. Education Tech-
nology Comput., 2009, pp. 45–49.

[191] T. Todman, A. G. Constantinides, S. J. E. Wilton, W. Mencer, O. Luk, and
P. Y. K. Cheung, “Reconfigurable computing: architectures and design meth-
ods,” IEE Proceedings-Computers and Digital Techniques, vol. 152, no. 2, pp.
193–207, 2005.

[192] R. Tessier, K. Pocek, and A. DeHon, “Reconfigurable computing architectures,”
Proc. IEEE, vol. 103, no. 3, pp. 332–354, 2015.

[193] M. Faust, O. Gustafsson, and C.-H. Chang, “Reconfigurable multiple constant
multiplication using minimum adder depth,” in Proc. Asilomar Conf. Signals
Syst. Comput., 2010, pp. 1297–1301.

[194] P. Lowenborg and H. Johansson, “Minimax design of adjustable-bandwidth
linear-phase FIR filters,” IEEE Trans. Circuits Syst. I, vol. 53, no. 2, pp. 431–
439, 2006.

[195] C. S. Wallace, “A suggestion for a fast multiplier,” IEEE Trans. Electron. Com-
put., vol. EC-13, no. 1, pp. 14–17, 1964.

[196] L. Dadda, “Some schemes for parallel multipliers,” Alta Frequenza, vol. 34, no. 5,
pp. 349–356, 1965.

[197] K. C. Bickerstaff, M. J. Schulte, and E. E. Swartzlander Jr, “Parallel reduced
area multipliers,” J. VLSI Signal Process. Syst., vol. 9, no. 3, pp. 181–191, 1995.

[198] R. E. Ladner and M. J. Fischer, “Parallel prefix computation,” J. ACM, vol. 27,
no. 4, pp. 831–838, 1980.

[199] R. P. Brent and H. Kung, “A regular layout for parallel adders,” IEEE Trans.
Comput., vol. C-31, no. 3, pp. 260–264, 1982.

[200] P. M. Kogge and H. S. Stone, “A parallel algorithm for the efficient solution of
a general class of recurrence equations,” IEEE Trans. Comput., vol. C-22, no. 8,
pp. 786–793, 1973.

[201] O. Gustafsson and L. Wanhammar, “Arithmetic,” in Handbook of signal pro-
cessing systems, S. S. Bhattacharyya, E. Deprettere, R. Leupers, and J. Takala,
Eds. Springer Science, 2013, pp. 593–637.

[202] T. G. Noll, “Carry-save architectures for high-speed digital signal processing,”
J. VLSI Signal Process. Syst. Signal Image Video Techn., vol. 3, no. 1-2, pp.
121–140, 1991.

[203] M. Mehta, V. Parmar, and E. Swartzlander Jr, “High-speed multiplier design us-
ing multi-input counter and compressor circuits,” in Proc. IEEE Symp. Comput.
Arithmetic. IEEE, 1991, pp. 43–50.

[204] A. Avizienis, “Signed-digit number representations for fast parallel arithmetic,”
IRE Trans. Electron. Comput., vol. EC-10, no. 3, pp. 389–400, Sep. 1961.

[205] H. Makino, Y. Nakase, H. Suzuki, H. Morinaka, H. Shinohara, and K. Mashiko,
“An 8.8-ns 54×54-bit multiplier with high speed redundant binary architecture,”
IEEE J. Solid-State Circuits, vol. 31, no. 6, pp. 773–783, 1996.

102 References

[206] T. N. Rajashekhara and O. Kal, “Fast multiplier design using redundant signed-
digit numbers,” Int. J. Electron., vol. 69, no. 3, pp. 359–368, 1990.

[207] S. Kuninobu, T. Nishiyama, H. Edamatsu, T. Taniguchi, and N. Takagi, “Design
of high speed MOS multiplier and divider using redundant binary representa-
tion,” in Proc. IEEE Symp. Comput. Arithmetic, 1987, pp. 80–86.

[208] N. Ohkubo, M. Suzuki, T. Shinbo, T. Yamanaka, A. Shimizu, K. Sasaki, and
Y. Nakagome, “A 4.4-ns CMOS 54 × 54-b multiplier using pass-transistor mul-
tiplexer,” IEEE J. Solid-State Circuits, vol. 30, no. 3, pp. 251–257, 1995.

[209] N. Besli and R. G. Deshmukh, “A novel redundant binary signed-digit (RBSD)
Booth’s encoding,” in Proc. IEEE SoutheastCon. Institute of Electrical &
Electronics Engineers (IEEE), 2002, pp. 426–431.

[210] D. Villeger and V. G. Oklobdzija, “Evaluation of Booth encoding techniques for
parallel multiplier implementation,” Electron. Lett., vol. 29, no. 23, pp. 2016–
2017, 1993.

[211] D. R. Noaks and D. P. Burton, “A high-speed, asynchronous, digital multiplier,”
Radio and Electronic Engineer, vol. 36, no. 6, pp. 357–365, 1975.

[212] L. P. Rubinfield, “A proof of the modified Booth’s algorithm for multiplication,”
IEEE Trans. Comput., vol. 24, no. 10, pp. 1014–1015, 1975.

[213] R. Mahesh and A. P. Vinod, “A new common subexpression elimination al-
gorithm for realizing low-complexity higher order digital filters,” IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 27, no. 2, pp. 217–229, 2008.

[214] A. R. Cooper, “Parallel architecture modified Booth multiplier,” IEE Proceed-
ings G Electronic Circuits and Systems, vol. 135, no. 3, pp. 125–128, 1988.

[215] Z.-J. Mou and F. Jutand, “‘overturned-stairs’ adder trees and multiplier design,”
IEEE Trans. Comput., vol. 41, no. 8, pp. 940–948, 1992.

[216] H. Eriksson, P. Larsson-Edefors, M. Sheeran, M. Själander, D. Johansson, and
M. Scholin, “Multiplier reduction tree with logarithmic logic depth and regular
connectivity,” in Proc. IEEE Int. Symp. Circuits Syst. IEEE, 2006, pp. 4–pp.

[217] P. F. Stelling and V. G. Oklobdzija, “Design strategies for optimal hybrid final
adders in a parallel multiplier,” J. VLSI Signal Process. Syst., vol. 14, no. 3, pp.
321–331, 1996.

[218] M. Macleod and A. Dempster, “Multiplierless FIR filter design algorithms,”
IEEE Signal Process. Lett., vol. 12, no. 3, pp. 186–189, 2005.

[219] I.-C. Park and H.-J. Kang, “Digital filter synthesis based on an algorithm to
generate all minimal signed digit representations,” IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. 21, no. 12, pp. 1525–1529, 2002.

[220] Y. Voronenko and M. Püschel, “Multiplierless multiple constant multiplication,”
ACM Trans. Algorithms, vol. 3, no. 2, May 2007.

[221] A. G. Dempster and M. D. Macleod, “Constant integer multiplication using
minimum adders,” IEE Proc. Circuits Devices Syst., vol. 141, no. 5, pp. 407–
413, 1994.

[222] M. J. Wirthlin, “Constant coefficient multiplication using look-up tables,” J.
VLSI Signal Process. Syst. Signal Image Video Techn., vol. 36, no. 1, pp. 7–15,
2004.

References 103

[223] U. Meyer-Baese, J. Chen, C. H. Chang, and A. Dempster, “A comparison of
pipelined RAG-n and DA FPGA-based multiplierless filters,” in Proc. IEEE
Asia-Pacific Conf. Circuits Syst., 2006, pp. 1555–1558.

[224] M. Faust and C.-H. Chang, “Bit-parallel multiple constant multiplication using
look-up tables on FPGA,” in Proc. IEEE Int. Symp. Circuits Syst., 2011, pp.
657–660.

[225] M. Kumm and P. Zipf, “Hybrid multiple constant multiplication for FPGAs,”
in Proc. IEEE Int. Conf. Electron. Circuits Syst., 2012, pp. 556–559.

[226] S. Mirzaei, R. Kastner, and A. Hosangadi, “Layout aware optimization of high
speed fixed coefficient fir filters for fpgas,” Int. J. Reconfigurable Comp., vol.
2010, p. 1, 2010.

[227] K. N. Macpherson and R. W. Stewart, “Rapid prototyping - area efficient FIR
filters for high speed FPGA implementation,” IEE Proc. Vision Image Signal
Process., vol. 153, no. 6, pp. 711–720, 2006.

[228] L. Aksoy, E. Costa, P. Flores, and J. Monteiro, “Optimization of gate-level area
in high throughput multiple constant multiplications,” in Proc. Europ. Conf.
Circuit Theory Design, Aug. 2011, pp. 588–591.

[229] P. E. Landman and J. M. Rabaey, “Architectural power analysis: The dual bit
type method,” IEEE Trans. VLSI Syst., vol. 3, no. 2, pp. 173–187, Jun. 1995.

[230] T. Stouraitis and V. Paliouras, “Considering the alternatives in low-power de-
sign,” IEEE Circuits Syst. Mag., vol. 17, no. 4, pp. 22–29, Aug. 2002.

[231] K.-H. Chen and C. T.-D., “A low-power digit-based reconfigurable FIR filter,”
IEEE Trans. Circuits Syst. II, vol. 53, no. 8, pp. 617–621, Aug. 2006.

[232] V. Paliouras, J. Karagiannis, C. Aggouras, and T. Stouraitis, “A very-long in-
struction word digital signal processor based on the logarithmic number system,”
in Proc. IEEE Int. Conf. Electron. Circuits Syst., vol. 3, 1998, pp. 59–62.

[233] C. Litchfield, R. J. Langley, P. Lee, and J. Batchelor, “The use of hybrid loga-
rithmic arithmetic for root raised cosine matched filters in WCDMA downlink
receivers,” in Proc. IEEE Wireless Comm. Networking Conf., vol. 1, 2005, pp.
596–600.

[234] I. Kouretas, C. Basetas, and V. Paliouras, “Low-power logarithmic number sys-
tem addition/subtraction and their impact on digital filters,” in Proc. IEEE Int.
Symp. Circuits Syst., Washington, USA, Jun. 2008, pp. 692–695.

[235] M. Azarmehr, M. Ahmadi, and G. A. Jullien, “A two-dimensional logarithmic
number system (2DLNS)-based finite impulse response (FIR) filter design,” in
Proc. IEEE Northeast Workshop Circuits Syst., 2011, pp. 37–40.

[236] G. Cardarilli, A. Nannarelli, and M. Re, “Residue number system for low-power
DSP applications,” in Proc. Asilomar Conf. Signals Syst. Comput., 2007, pp.
1412–1416.

[237] N. S. Szabo and R. I. Tanaka, Residue arithmetic and its applications to com-
puter technology. McGraw-Hill, 1967.

[238] A. Omondi and B. Premkumar, Residue number systems: theory and implemen-
tation. Imperial College Press, 2007.

104 References

[239] G. Cardarilli, M. Re, and R. Lojacono, “A residue to binary conversion algorithm
for signed numbers,” in Proc. Europ. Conf. Circuit Theory Design, vol. 3, 1997,
pp. 1456–1459.

[240] G. Cardarilli, M. Re, R. Lojacono, and G. Ferri, “A new efficient architecture
for binary to RNS conversion,” in Proc. Europ. Conf. Circuit Theory Design,
vol. 2, 1999, pp. 1151–1154.

[241] A. Preethy and D. Radhakrishnan, “A VLSI architecture for analog-to-residue
conversion,” in Proc. Int. Conf. on Advanced A/D and D/A Conversion Tech-
niques and Their Applications, 1999, pp. 83–85.

[242] K. Kaluri, W. F. Leong, K.-H. Tan, L. Johnson, and M. Soderstrand, “FPGA
hardware implementation of an RNS FIR digital filter,” in Proc. Asilomar Conf.
Signals Syst. Comput., vol. 2, 2001, pp. 1340–1344.

[243] Y. Kong, A. Safari, and C. V. Niras, “A low-cost architecture for DWT filter
banks in RNS applications,” in Proc. Int. Symp. Integrated Circuits., 2014, pp.
448–451.

[244] R. K. Cavin, C. H. Ray, and V. T. Rhyne, “The design of optimal convolutional
filters via linear programming,” IEEE Trans. Geosci. Electron., vol. 7, no. 3, pp.
142–145, 1969.

[245] O. Herrmann, “Design of nonrecursive digital filters with linear phase,” Electron.
Lett., vol. 6, no. 11, pp. 328–329, 1970.

[246] L. Rabiner, B. Gold, and C. McGonegal, “An approach to the approxima-
tion problem for nonrecursive digital filters,” IEEE Trans. Audio Electroacoust.,
vol. 18, no. 2, pp. 83–106, 1970.

[247] H. D. Helms, “Digital filters with equiripple or minimax responses,” IEEE Trans.
Audio Electroacoust., vol. 19, no. 1, pp. 87–93, 1971.

[248] L. R. Rabiner, “Linear program design of finite impulse response FIR digital
filters,” IEEE Trans. Audio Electroacoust., vol. 20, no. 4, pp. 280–288, Oct.
1972.

[249] J. Lewis, “Interactive minimax design of linear-phase nonrecursive digital filters
subject to upper and lower function constraints,” IEEE Trans. Audio Electroa-
coust., vol. 20, no. 2, pp. 171–173, 1972.

[250] T. Parks and J. McClellan, “Chebyshev approximation for nonrecursive digital
filters with linear phase,” IEEE Trans. Circuit Theory, vol. 19, no. 2, pp. 189–
194, 1972.

[251] J. McClellan and T. Parks, “A unified approach to the design of optimum FIR
linear-phase digital filters,” IEEE Trans. Circuit Theory, vol. 20, no. 6, pp. 697–
701, 1973.

[252] L. Rabiner, J. H. McClellan, and T. W. Parks, “FIR digital filter design tech-
niques using weighted Chebyshev approximation,” Proc. IEEE, vol. 63, no. 4,
pp. 595–610, 1975.

[253] D. M. Kodek, “Design of optimal finite wordlength FIR digital filters using
integer programming techniques,” IEEE Trans. Acoust., Speech, Signal Process.,
vol. 28, no. 3, pp. 304–308, Jun. 1980.

References 105

[254] D. Kodek, “An algorithm for the design of optimal finite word-length FIR digital
filters,” in Proc. IEEE Int. Conf. Acoust. Speech Signal Process., vol. 5, 1980,
pp. 73–76.

[255] D. Kodek and K. Steiglitz, “Comparison of optimal and local search methods
for designing finite wordlength FIR digital filters,” IEEE Trans. Circuits Syst.,
vol. 28, no. 1, pp. 28–32, 1981.

[256] J. H. McClellan, T. W. Parks, and L. Rabiner, “A computer program for design-
ing optimum FIR linear phase digital filters,” IEEE Trans. Audio Electroacoust.,
vol. 21, no. 6, pp. 506–526, 1973.

[257] V. B. Lawrence and A. Salazar, “Effects of finite coefficient precision on FIR
filter spectra,” in Proc. IEEE Int. Conf. Acoust. Speech Signal Process., vol. 4,
1979, pp. 378–379.

[258] D. M. Kodek, “Performance limit of finite wordlength FIR digital filters,” IEEE
Trans. Signal Process., vol. 53, no. 7, pp. 2462–2469, Jul. 2005.

[259] J. Yli-Kaakinen and T. Saramaki, “A systematic algorithm for the design of
multiplierless FIR filters,” in Proc. IEEE Int. Symp. Circuits Syst., vol. 2, 2001,
pp. 185–188.

[260] R. Yang, B. Liu, and Y. C. Lim, “A new structure of sharp transition FIR filters
using frequency-response masking,” IEEE Trans. Circuits Syst., vol. 35, no. 8,
pp. 955–966, 1988.

[261] Y. C. Lim and Y. Lian, “Frequency-response masking approach for digital fil-
ter design: complexity reduction via masking filter factorization,” IEEE Trans.
Circuits Syst. II, vol. 41, no. 8, pp. 518–525, 1994.

[262] Y. Lian and C. Z. Yang, “Complexity reduction by decoupling the masking filters
from the bandedge shaping filter in the FRM technique,” Circuits Syst. Signal
Process., vol. 22, no. 2, pp. 115–135, 2003.

[263] Y. Lian, “FPGA implementation of high speed multiplierless frequency response
masking FIR filters,” in Proc. IEEE Workshop Signal Process. Syst., Lafayette,
LA, 2000, pp. 317–325.

[264] Y. C. Lim, Y. J. Yu, H. Q. Zheng, and S. W. Foo, “FPGA implementation
of digital filters synthesized using the frequency-response masking technique,”
in Proc. IEEE Int. Symp. Circuits Syst., vol. 2, Sydney, NSW, May 2001, pp.
173–176.

[265] J.-K. Liang, R. de Figueiredo, and F. Lu, “Design of optimal Nyquist, partial
response, nth band, and nonuniform tap spacing FIR digital filters using linear
programming techniques,” IEEE Trans. Circuits Syst., vol. 32, no. 4, pp. 386–
392, 1985.

[266] J. Webb and J. Munson, D.C., “Chebyshev optimization of beamformers and
FIR filters having failed elements,” in Circuits and Systems, 1992. ISCAS ’92.
Proceedings., 1992 IEEE International Symposium on, vol. 2, 1992, pp. 557–560.

[267] ——, “Chebyshev optimization of sparse FIR filters using linear programming
with an application to beamforming,” IEEE Trans. Signal Process., vol. 44, no. 8,
pp. 1912–1922, 1996.

106 References

[268] T. Baran, D. Wei, and A. Oppenheim, “Linear programming algorithms for
sparse filter design,” IEEE Trans. Signal Process., vol. 58, no. 3, pp. 1605–1617,
2010.

[269] D. Wei and A. Oppenheim, “Sparsity maximization under a quadratic constraint
with applications in filter design,” in Proc. IEEE Int. Conf. Acoust. Speech Signal
Process., 2010, pp. 3686–3689.

[270] A. Jiang, H. K. Kwan, Y. Tang, and Y. Zhu, “Efficient design of sparse FIR
filters with optimized filter length,” in Proc. IEEE Int. Symp. Circuits Syst.,
2014, pp. 966–969.

[271] A. Jiang, H. K. Kwan, Y. Zhu, X. Liu, N. Xu, and Y. Tang, “Design of sparse
FIR filters with joint optimization of sparsity and filter order,” IEEE Trans.
Circuits Syst. I, vol. 62, no. 1, pp. 195–204, 2015.

[272] O. Gustafsson and H. Johansson, “Complexity comparison of linear-phase mth-
band and general FIR filters,” in Proc. IEEE Int. Symp. Circuits Syst., 2007,
pp. 2335–2338.

[273] M. Smith and D. Farden, “Thinning the impulse response of FIR digital filters,”
in Proc. IEEE Int. Conf. Acoust. Speech Signal Process., vol. 6, 1981, pp. 240–
242.

[274] Z.-J. Mou and P. Duhamel, “Fast fir filtering: Algorithms and implementations,”
Signal Process., vol. 13, no. 4, pp. 377–384, 1987.

[275] Z. Mou and P. Duhamel, “A unified approach to the fast FIR filtering algo-
rithms,” in Proc. IEEE Int. Conf. Acoust. Speech Signal Process., 1988, pp.
1914–1917.

[276] A. Zergaïnoh, P. Duhamel, and J. Vidal, “DSP implementation of fast FIR
filtering algorithms using short FFT’s,” in Proc. IEEE Int. Symp. Circuits Syst.,
vol. 1, 1995, pp. 219–222.

[277] A. Zergaïnoh and P. Duhamel, “Implementation and performance of composite
fast FIR filtering algorithms,” in Proc. IEEE Signal Process. Society Workshop
VLSI Signal Process., 1995, pp. 267–276.

[278] T. G. Stockham Jr, “High-speed convolution and correlation,” in Proc. Spring
joint computer conference, ser. AFIPS ’66 (Spring). ACM, 1966, pp. 229–233.

[279] W. Wang, M. N. S. Swamy, and M. O. Ahmad, “Low power FIR filter FPGA
implementation based on distributed arithmetic and residue number system,” in
Proc. IEEE Int. Midwest Symp. Circuits Syst., vol. 1, 2001, pp. 102–105.

[280] M. Arnold, T. Bailey, J. Cowles, and M. Winkel, “Applying features of the
IEEE 754 to sign/logarithm arithmetic,” IEEE Trans. Comput., vol. 41, no. 8,
pp. 1040–1050, Aug. 1992.

[281] D. V. S. Chandra, “Error analysis of FIR filters implemented using logarithmic
arithmetic,” IEEE Trans. Circuits Syst. II, vol. 45, no. 6, pp. 744–747, Jun.
1998.

[282] M. Haselman, M. Beauchamp, A. Wood, S. Hauck, K. Underwood, and K. S.
Hemmert, “A comparison of floating point and logarithmic number systems for
FPGAs,” in Proc. IEEE Symp. Field-Programmable Custom Computing Ma-
chines., Napa, California, USA, Oct. 2005.

References 107

[283] T. Kurokawa, J. Payne, and S. C. Lee, “Error analysis of recursive digital filters
implemented with logarithmic number systems,” IEEE Trans. Acoust., Speech,
Signal Process., vol. 28, no. 6, pp. 706–715, 1980.

[284] W. Freking and K. Parhi, “Low-power FIR digital filters using residue arith-
metic,” in Proc. Asilomar Conf. Signals Syst. Comput., vol. 1, 1997, pp. 739–
743.

[285] G. Cardarilli, A. Del Re, A. Nannarelli, and M. Re, “Low power and low leak-
age implementation of RNS FIR filters,” in Proc. Asilomar Conf. Signals Syst.
Comput., 2005, pp. 1620–1624.

[286] A. Doucet and A. M. Johansen, “A tutorial on particle filtering and smoothing:
Fifteen years later,” Handbook of Nonlinear Filtering, vol. 12, pp. 656–704, 2009.

[287] F. Daum, “Nonlinear filters: beyond the Kalman filter,” IEEE Aerosp. Electron.
Syst. Mag., vol. 20, no. 8, pp. 57–69, 2005.

[288] S. Hong and O. Seong-Jun, “Architectures for particle filtering,” in Handbook of
signal processing systems, S. S. Bhattacharyya, E. Deprettere, R. Leupers, and
J. Takala, Eds. Springer Science, 2013, pp. 639–670.

[289] F. Gustafsson, F. Gunnarsson, N. Bergman, U. Forssell, J. Jansson, R. Karlsson,
and P.-J. Nordlund, “Particle filters for positioning, navigation, and tracking,”
IEEE Trans. Signal Process., vol. 50, no. 2, pp. 425–437, 2002.

[290] N. J. Gordon, D. J. Salmond, and A. F. M. Smith, “Novel approach to
nonlinear/non-Gaussian Bayesian state estimation,” IEE Proc. Radar Signal
Process., vol. 140, no. 2, pp. 107–113, 1993.

[291] J. D. Hol, T. B. Schön, and F. Gustafsson, “On resampling algorithms for par-
ticle filters,” in Proc. IEEE Nonlinear Stat. Signal Process. Workshop, 2006, pp.
79–82.

[292] T. Li, M. Bolić, and P. M. Djurić, “Resampling methods for particle filter-
ing: Classification, implementation and strategies,” IEEE Signal Process. Mag.,
vol. 32, no. 3, pp. 70–86, May 2015.

[293] W. R. Gilks and C. Berzuini, “Following a moving target-monte carlo inference
for dynamic bayesian models,” Journal of the Royal Statistical Society. Soc. B,
vol. 63, pp. 127–146, 2001.

[294] C. Musso, N. Oudjane, and F. Le Gland, “Improving reguregular particle filters,”
in Sequential Monte Carlo Methods in Practice, A. Doucet, N. de Freitas, and
N. Gordon, Eds. New York: Springer, 2001, pp. 247–271.

[295] G. Kitagawa, “Monte Carlo filter and smoother for non-Gaussian nonlinear state
space models,” J. Comput. Graph. Stat., vol. 5, no. 1, pp. 1–25, Mar. 1996.

[296] J. S. Liu and R. Chen, “Sequential Monte Carlo methods for dynamic systems,”
J. Am. Stat. Assoc., vol. 93, pp. 1032–1044, 1998.

[297] D. Crisan and T. Lyons, “A particle approximation of the solution of the
kushner–stratonovitch equation,” Probability Theory and Related Fields, vol. 115,
no. 4, pp. 549–578, 1999.

[298] A. Budhiraja, L. Chen, and C. Lee, “A survey of numerical methods for nonlinear
filtering problems,” Physica D, vol. 230, no. 1, pp. 27–36, 2007.

108 References

[299] T. Li, T. Sattar, and D. Tang, “A fast resampling scheme for particle filters,” in
Proc. Constantinides Int. Workshop on Signal Process., 2013, pp. 1–4.

[300] M. Bolic, P. Djuric, and S. Hong, “Resampling algorithms and architectures
for distributed particle filters,” IEEE Trans. Signal Process., vol. 53, no. 7, pp.
2442–2450, 2005.

[301] J. Mountney, I. Obeid, and D. Silage, “Modular particle filtering FPGA hard-
ware architecture for brain machine interfaces,” in Proc. IEEE Int. Conf. Eng.
in Med. Bio. Society., 2011, pp. 4617–4620.

[302] J.-H. Lee and C.-K. Chen, “Design of sharp FIR filters with prescribed group
delay,” in Proc. IEEE Int. Symp. Circuits Syst., 1993, pp. 92–95.

[303] S. A. Alam and O. Gustafsson, “Implementation of time-multiplexed sparse
periodic FIR filters for FRM on FPGAs,” in Proc. IEEE Int. Symp. Circuits
Syst., Rio de Janeiro, Brazil, May 2011.

[304] ——, “Implementation of narrow-band frequency-response masking for efficient
narrow transition band FIR filters on FPGAs,” in Proc. Norchip., Lund, Sweden,
Nov. 2011.

[305] T. Ahmed, M. Garrido, and O. Gustafsson, “A 512-point 8-parallel pipelined
feedforward FFT for WPAN,” in Proc. Asilomar Conf. Signals Syst. Comput.,
2011, pp. 981–984.

[306] R. E. Morley Jr., G. L. Engel, T. J. Sullivan, and S. M. Natarajan, “VLSI
based design of a battery-operated digital hearing aid,” in Proc. IEEE Int. Conf.
Acoust. Speech Signal Process., 1988, pp. 2512–2515.

[307] J. R. Sacha and M. J. Irwin, “Number representation for reducing switched
capacitance in subband coding,” in Proc. IEEE Int. Conf. Acoust. Speech Signal
Process., 1998, pp. 3125–3128.

[308] M. G. Arnold, “Reduced power consumption for MPEG decoding with LNS,” in
Proc. IEEE Int. Applicat.-Specific Syst. Arch. Processors Conf., 2002, pp. 65–67.

[309] H. A. Taha, Operations Research - An Introduction, 8th ed. Pearson Prentice
Hall, 2007.

[310] K. Muhammad, “Algorithmic and architectural techniques for low-power digital
signal processing,” Ph.D. dissertation, 1999.

[311] R. Mahesh and A. Vinod, “New reconfigurable architectures for implementing
FIR filters with low complexity,” IEEE Trans. Comput.-Aided Design Integr.
Circuits Syst., vol. 29, no. 2, pp. 275–288, 2010.

[312] O. Gustafsson, “Lower bounds for constant multiplication problems,” IEEE
Trans. Circuits Syst. II, vol. 54, no. 11, pp. 974–978, Nov. 2007.

[313] G. A. Ruiz and M. Granda, “Efficient implementation of 3x for radix-8 encoding,”
Microelectron. J., vol. 39, no. 1, pp. 152–159, 2008.

[314] O. Gustafsson, “A difference based adder graph heuristic for multiple constant
multiplication problems,” in Proc. IEEE Int. Symp. Circuits Syst., May 2007,
pp. 1097–1100.

[315] M.-B. Lin, “On the design of fast large fan-in CMOS multiplexers,” IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 19, no. 8, pp. 963–967, 2000.

References 109

[316] M. Alioto, G. Di Cataldo, and G. Palumbo, “Optimized design of high fan-in
multiplexers using tri-state buffers,” IEEE Trans. Circuits Syst. I, vol. 49, no. 10,
pp. 1500–1505, 2002.

[317] G. Hendeby, R. Karlsson, and F. Gustafsson, “Particle filtering: the need for
speed,” EURASIP J. Advances Signal Process., vol. 2010, p. 22, 2010.

[318] S. A. Alam and O. Gustafsson, “Generalized resampling architecture and mem-
ory structure for particle filters,” in Proc. Europ. Conf. Circuit Theory Design,
Trondheim, Norway, Aug. 2015.

[319] Y. Joo and N. McKeown, “Doubling memory bandwidth for network buffers,” in
Proc. IEEE Joint Conf. IEEE Comput. Comm. Soc., vol. 2, 1998, pp. 808–815.

[320] D. Lee and M. Yannakakis, “Principles and methods of testing finite state
machines-a survey,” Proc. IEEE, vol. 84, no. 8, pp. 1090–1123, 1996.

Part II

Publications

Papers

The articles associated with this thesis have been removed for copyright
reasons. For more details about these see:
http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-124195

http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-124195

Linköping Studies in Science and Technology, Dissertations

Division of Electronics Systems

Department of Electrical Engineering

Linköping University

J. Carlsson, Contributions to Asynchronous Communication Ports for GALS
Systems, Linköping Studies in Science and Technology, Diss., No. 1062,
Dec. 2006.

E. Säll, Implementation of Flash Analog-to-Digital Converters in Silicon-on-
Insulator CMOS Technology, Linköping Studies in Science and Technology,
Diss., No. 1093, May 2007.

E. Backenius, Reduction of Substrate Noise in Mixed-Signal Circuits,
Linköping Studies in Science and Technology, Diss., No. 1094, May 2007.

L. Rosenbaum, On Low-Complexity Frequency Selective Digital Filters and
Filter Banks, Linköping Studies in Science and Technology, Diss., No. 1097,
June 2007.

M. Olsson, Contributions to Delay, Gain, and Offset Estimation, Linköping
Studies in Science and Technology, Diss., No. 1198, June 2008.

K. Johansson, Low Power and Low Complexity Shift-and-Add Based Com-
putations, Linköping Studies in Science and Technology, Diss., No. 1201,
Oct. 2008.

A. Eghbali, Contributions to Reconfigurable Filter Banks and Transmultiplex-
ers, Linköping Studies in Science and Technology, Diss., No. 1344, Dec. 2010.

A. Blad, Low Complexity Techniques for Low Density Parity Check Code
Decoders and Parallel Sigma-Delta ADC Structures, Linköping Studies in Sci-
ence and Technology, Diss., No. 1385, Sep. 2011.

M. Abbas, On the Implementation of Integer and Non-Integer Sampling Rate
Conversion, Linköping Studies in Science and Technology, Diss., No. 1420,
Feb. 2012.

F. Qureshi, Optimization of Rotations in FFTs, Linköping Studies in Science
and Technology, Diss., No. 1423, Mar. 2012.

Z. U. Sheikh, Efficient Realizations of Wide-Band and Reconfigurable FIR
Systems, Linköping Studies in Science and Technology, Diss., No. 1424,
Mar. 2012.

Linköping Studies in Science and Technology, Dissertations

Division of Computer Engineering

Department of Electrical Engineering

Linköping University

U. Nordqvist, Protocol Processing in Network Terminals, Linköping Studies
in Science and Technology, Diss., No. 865, Apr. 2004.

D. Wiklund, Development and Performance Evaluation of Networks on Chip,
Linköping Studies in Science and Technology, Diss., No. 932, Apr. 2005.

E. Tell, Design of Programmable Baseband Processors, Linköping Studies in
Science and Technology, Diss., No. 969, Oct. 2005.

A. Nilsson, Design of Programmable Multi-Standard Baseband Processors,
Linköping Studies in Science and Technology, Diss., No. 1084, May 2007.

A. Ehliar, Performance driven FPGA design with an ASIC perspective,
Linköping Studies in Science and Technology, Diss., No. 1237, Feb. 2009.

D. Wu, Scalable Multi-Standard Radio Baseband for Modern Wireless Com-
munications, Linköping Studies in Science and Technology, Diss., No. 1279,
Nov. 2009.

J. Eilert, ASIP for Wireless Communication and Media, Linköping Studies in
Science and Technology, Diss., No. 1298, Feb. 2010.

R. Asghar, Flexible Interleaving Sub-Systems for FEC in Baseband Processors,
Linköping Studies in Science and Technology, Diss., No. 1312, May 2010.

P. A. Karlström, NoGAP: Novel Generator of Accelerators and Processors,
Linköping Studies in Science and Technology, Diss., No. 1347, Nov. 2010.

J. Wang, Low Overhead Memory Subsystem Design for a Multicore Parallel
DSP Processor, Linköping Studies in Science and Technology, Diss., No. 1532,
May 2014.

J. Sohl, Efficient Compilation for Application Specific Instruction set DSP
Processors with Multi-bank Memories, Linköping Studies in Science and Tech-
nology, Diss., No. 1641, Feb. 2015.

	Abstract
	Populärvetenskaplig Sammanfattning
	Acknowledgments
	Abbreviations
	Contents
	I Background
	1 Introduction
	1.1 Motivation
	1.1.1 Reduction in Number of Multipliers
	1.1.2 Reduction in Multiplier Complexity
	1.1.3 Improved Particle Filter Resampling Architectures

	1.2 List of Publications
	1.2.1 Other Publications

	1.3 Thesis Organization

	2 Implementation Aspects of DSP Algorithms
	2.1 Introduction
	2.2 Implementation Platforms
	2.2.1 Application Specific Integrated Circuits
	2.2.2 Field Programmable Gate Arrays

	2.3 Key Arithmetic Operators in DSP Implementations
	2.3.1 Adders
	2.3.2 Multipliers
	2.3.3 Multiple Constant Multiplication

	2.4 Number Systems

	3 Finite-length Impulse Response Filters
	3.1 Introduction
	3.2 Impulse Response of FIR Filters
	3.3 Linear Phase FIR Filters
	3.4 FIR Filters: Input and Output Relationship
	3.5 FIR Filter Structures
	3.6 Design of FIR Filters
	3.6.1 Error Approximation
	3.6.2 FIR Filter Design by Optimization
	3.6.3 Remez/Park-McClellan FIR Filter Design
	3.6.4 FIR Filter Design by Linear Programming
	3.6.5 FIR Filter Design by Cascade of Sub-Filters
	3.6.6 Sparse FIR Filter Design

	3.7 Fast FIR Filters
	3.8 FIR Filter using Alternate Number Systems
	3.8.1 FIR Filter using Logarithmic Number System
	3.8.2 FIR Filter using Residue Number System

	4 Particle Filters
	4.1 Introduction
	4.2 Mathematical Formulation
	4.3 Particle Filtering Steps
	4.3.1 Time-Update
	4.3.2 Measurement-Update
	4.3.3 Resampling in Particle Filters

	5 Summary and Future Work
	5.1 Summary
	5.2 Future Work

	References
	References

