
AD-762 722

TECHNIQUES FOR EFFICIENT MONTE CARLO
SIMULATION. VOLUME II. RANDOM NUMBER
GENERATION FOR SELECTED PROBABILITY
DISTRIBUTIONS.

E . J. McGrath, et al

Science Applications, Incorporated

Prepared for:

Office of Naval Research

March 1973

DISTRIBUTED BY:

um
National Technical Information Service
U. S. DEPARTMENT OF COMMERCE
5285 Port Royal Road. Springfield Va. 22151

..

,,,

THIS DOCUMENT IS BEST

QUALITY AVAILABLE. THE COPY

FURNISHED TO DTIC CONTAINED

A SIGNIFICANT NUMBER OF

PAGES _WHICH . DO NOT

REPRODUCE LEGIBLY.

tgTr-TQpfrr?

TSCnnQUKS FOR EFFICIENT
MOMTE CARLO «MüLATION

VOLUME n

RANDOM NUMBER GENERATION FOR
SELECTED PROBABILITY DISTRIBUTIONS

■

SeimMtie Ottcar, Office ot Nartl Rtmu-ch (Code 46»
J. P. Simpson

■

•

Prtnciptl Inreitigator

B. J. McGrath

Co-Antlior

D. C. Irving

1

■i

>

mi tOaiCE AmJCATlON* U JOUA. GMLPOflMA

MLO M.TO • NOOKmil • «MNWMJI • tUOICN

I

S«curityCI«i«jfic«tlon

DOCUMENT CONTROL DATA R&D
f$9tuHtf rlmMBiflcmtion of tltl*. body ol mbatrm€l mnd indixinj annotation muMt bt <nfgf rf when th« ovmrmll fport la cta»9itimd)

1 ORr GIN* TING ACTIVITY (Corpormf muthof)

Science Applications, Inc.
1250 Prospect Street
La Jolla. California 92037

2«. «EPOWT »ECUWITV CLAtflF CATIOK

Unclassified
2b GROUP

J RCPOHT TITL I

Techniques for Efficient Monte Carlo Simulation
Volume II: Random Number Generation for Selected Probability Distributions

< OEfCRIRTlvC NOTtt (T)rp» o(fpotl mnd Incluttvm d*f)

Final Report
9 ». ■ T HO Rid (Firlt nam*. middl* Inlllil, latl nam»)

Elgie J. McGrath, David C. Irving

6 REPORT D< TE

March 1973
J«. TOT»L NO OF PACES

m- /.IS)
7b, HO OFRErj

7
CONTRACT OB CRANT NO

N00014-72-C-O293
6 PROJEC T NO

9«. O^ICtNATOR'f REPORT MuMBf R(5(

SAI-72-590-U

NR364-074/1-5-72
Code 462 9b. OTHER REPORT nO{*> (Aiv olh»'nufnbtri thai may b» mulfnid

rhlt npott)

DISTRIBUTION STATEMENT

Reproduction in whole or in part is permitted for any purpose of
the U.S. Government.

it s i . f .- , - i.-. NOTE» 1? SPONSORING Ml L I T AN > ACTIVITY

Office of Naval Research (Code 462)
Department of the Navy
Arlington, Virginia 22217

19 iSi TRACT

Algorithms for efficient generation of random numbers from various
probability distributions are presented, in both a flowchart form and
as a sample Fortran subroutine. Twenty-two different distributions,
including all commonly encountered discrete and continuous functions,
the Weibull, Johnson, and Pearson families of empirical distributions,
and histogram distributions, are covered. The general techniques to
apply in deriving a random number selection scheme for an arbitrary
distribution are discussed. A machine-independent subroutine for
generating uniform random numbers is also described.

DD FORM
1 NOV 69 1473

// Scruf.tv Classification

ABSTRACT

Algorithms for efficient generation of random numbers

from various probability distributions are presented, in both a

flowchart form and as a sample Fortran subroutine. Twenty-

two different distributions, including all commonly encountered

discrete and continuous functions, the Weibull, Johnson, and

Pearson families of empirical distributions, and histogram dis-

tributions, are covered. The general techniques to apply in

deriving a random number selection scheme for an arbitrary

distribution are discussed. A machine-independent subroutine

for generating uniform random numbers is also described.

iii

CONTENTS

FOREWORD iii

1. INTRODUCTION 1

2. COMPARISON OF RANDOM NUMBER GENERATION
PROCEDURES 3

3. GENERATION Of RANDOM NUMBERS FROM
SELECTED DISTRIBUTIONS 5
3.1 Uniform Random Number Generators 10
3. 2 Exponential Distribution 12
3.3 Normal Distribution 14
3.4 The Binomial Distribution 17
3.5 The Multinomial Distribution 22
3.6 Poisson Distribution 24
3.7 Hypergeometric Distribution 26
3.8 Geometric Distribution 28
3.9 Pascal or Negative Binomial Distribution 31
3.10 Cauchy Distribution 34
3.11 Rayleigh Distribution 36
3. 12 Gamma Distribution 38
3.13 Beta Distribution . 41
3. 14 Pareto Distribution 43
3.15 Log-Normal Distribution 45
3.16 Folded-Normal Distribution 47
3. 17 Kodlin's Distribution 49
3. 18 Extreme Value Distributions 51
3. 19 Weibull Distribution 53
3. 20 Johnson Distributions 55
3. 21 Pearson Distributions 61
3. 22 Histogram Distributions 86

APPENDIX A - General Techniques for Generating Random
Numbers From Desired Distributions 89

APPENDIX B - MIRAN - A Machine Independent Package for
Generating Uniform Random Numbers 97

APPENDIX C - References and Abstracted Bibliography 108

FIGURES

3-1. Random number generation algorithm for oxponsntiai
distribution 13

3-2. Normal distribution 16

3-3. Random number generation algorithm for binomial
distribution (Sheet 1 of 3) 19

3-4. Random number generation algoricnm for binomial
distribution (Sheet 2 of 3) 20

3-5. Random number generation algoritb'i» for binomial
distribution (Sheet 3 . f 3) 21

3-6. Random number generation algorithm for multinomial
distribution 23

3-7. Random number generation algorithm for Poisson
distribution 25

3-8. Random number generation algorithm for hyper-
geometric distribution 27

3-9. Random number generation algorithm for geometric
distribution (Sheet 1 of 2) 29

3-10. Random number generation algorithm for geometric
distribution (Sheet 2 of 2) 30

3-11. Random number generation algorithm for Pascal
distribution (Sheet 1 of 2) 32

3-12. Random number generation algorithm for Pascal
distribution (Sheet 2 of 2) 33

3-13. Random number generation algorithm for Cauchy
distribution 35

3-14. Random number generation algorithm for Rayleigh
distribution 37

3-15. Random number generation algorithm for gamma
distribution 40

3-16. Random number generation algorithm for beta
distribution 42

3-17. Random number generation algorithm for Pareto
distribution 44

vn

3-18. Random number generation algorithm for log-normal
distribution 46

3-19. Random number generation algorithm for folded-
normal distribution 48

3-20. Random number generation algorithm for Kodlin's
distribution 50

3-21. Random number generation algorithm for extreme
value distributions 52

3-22. Random number generation algorithm for Weibull
distribution 54

3-23. Random number generation algorithm for Johnson S,
distribution 56

3-24. Random number generation algorithm for Johnson SR

distribution 58

3-25 Random number generation algorithm for Johnson S,.
distribution 60

3-26. Random number generation algorithm for the Pearson
Type I distribution 62

3-27. Random number generation algorithm for the Pearson
Type 11 distribution 64

3-28. Random number generation algorithm for the Pearson
Type III distribution 66

3-29. Random number generation algorithm for the Pearson
Type IV distribution 68

3-30. Random number generation algorithm for the Pearson
Type V distribution 70

3-31. Random number generation algorithm for the Pearson
Type VI distribution 72

3-32. Random number generation algorithm for the Pearson
Type VII distribution 74

3-33. Random number generation algorithm for the Pearson
Type VIII distribution 76

3-34. Random number generation algorithm for the Pearson
Type IX distribution 78

viii

3-35 Random number generation algorithm for the Pearson
Type X distribution 80

3-36. Random number generation algorithm for the Pearson
Type XI distribution 82

3-3V. Random number generation algorithm for the Pearson
Type XII distribution 85

3-38. Random number generation algorithm for a histogram
distribution 88

3-39. Random number generation algorithm for an equal
probability bin histogram distribution 88

B-l. Fortran listing of URAND 105

B-2. Fortran listing of RANSET 106

B-3. Logic flow chart lor URAND 107

B-4. Logic flow chart for RANSET 108

ix

EXECUTIVE SUMMARY

Monte Carlo simulation is one of the most powerful and commonly

used techniques for analyzing complex physical problems. Applications can

be found in many diverse areas from radiation transport to river basin

modeling. Important Navy applications include analysis of antisubmarine

warfare exercises and operations, prediction of aircraft or sensor perform-

ance, tactical analysis, and matrix gaine solutions where random processes

are considered to be of particular importance. The range of applications has

been broadening and the size, complexity, and computational effort required

have been increasing. However, such developments are expected and de-

sirable since increased realism is concomitant with more complex and exten-

sive problem descriptions.

In recognition of such trends, the requirements for improved simula-

tion techniques are becoming more pressing. Unfortunately, methods for

achieving greater efficiency are frequently overlooked in developing simula-

tions. This can generally be attributed to one or more of the following reasons:

• Analysts usually seek advanced computer systems to perform
more complex simulation studies by exploiting increased
speed and/or storage capabilities. This is often achieved
at a considerably increased expense.

• Many efficient simulation methods have evolved for specialized
applic itions. For example, some of the most impressive
Monte Carlo techniques have been developed in radiation trans-
port, a discipline that does not overlap into areas where even
a small number of simulation analysts are working.

• Known techniques are not developed to the point where they can
be easily understood or applied by even a small fraction of the
analysts who are performing simulation studies or developing
simulation models.

xi

Preceding page blank

IMPjflMMIKM

««««P^ I*l»r«w»r ^«Ä

1. INTRODUCTION

In developing any Monte Carlo simulation, it is necessary to generate

random numbers from the stochastic models used. In Volume I, the process

and techniques of selecting probability models for the simulation were pre-

sented. The objective of this volume is to provide a convenient source of

efficient and simple random number generators for all the probability dis-

tributions considered in Volume I. To this end flow charts and FORTRAN

listings of these random number generators are provided here as well as

descriptions of the techniques employed.

It is the purpose of this document to provide a convenient mechanism

to select and implement these random number generators without having to

resort to an understanding of the underlying concepts used in their develop-

ment. Accordingly, the remainder of this report has been organized as

follows:

• SECTION 2, "Efficiency Comparison of Random Number
Generators." demonstrates improvements in running times
expected from using the techniques developed here over those
commonly used. This section has been included to provide an
appreciation for the magnitude of improvements possible in
using the techniques described herein.

• SECTION 3, "Generation of Random Numbers from Selected Dis-
tributions, " provides algorithms defined by flow diagrams and
standard Fortran subroutines that can be applied directiv. This
section is introduced with a convenient summary table refining
where in the section a specific algorithm can be found.

• appendix A, "Fundamental Considerations for Generation of
Random Numbers," describes the fundamentals on which random
number generation techniques for arbitrary distributions can be
developed.

• Appendix B, "MIRAN - A Machine Independent Package For
Generating Uniform Random Numbers, " describes a uniform
random number generator that can be used on any machine
that does not have a reliable generator or on several different
machines where identical random numbers are to be generated
for comparison and cross checking.

Before proceeding it must be recognized that a "good" uniform ran-

dom number generator is generally assumed to be available to the user.

This is often not the case, although most computerc today have uniform

random number generators included as part of the system software. Un-

fortunately, many of the uniform random number generators in current

use do not adequately approximate randomness to be sufficient for all Monte

Carlo calculations. To alleviate this difficulty, a machine independent

package for generating uniform random numbers is provided (Appendix B).

2. COMPARISON OF RANDOM NUMBER GENERATION PROCEDURES

The improvements in calculational efficiency realized by using the

random number generation techniques provided here depend on the particular

problem. However, by utilizing these techniques, near optimum results can

be assured.

It is of interest to compare the random number generation techniques

presented here with those commonly used to generate random numbers. This

comparison was performed during the course of the study for several distri-

butions, and it was found that improvements in computer time of factors vary-

ing from 2 to 5 were possible. Results for a few of the more common distri-

butions are shown in Table 2.1 which compares the running times of the

preferred techniques with those commonly used. For example, consider the

normal (or Gaussian) distribution. The usual procedure is to generate 12

random numbers uniformly distributed over the interval [0,1] say R. R.«-

and determine

12

«N = Z Ri-6 •
i-1

By virtue of the central limit theorem, 1^ is approximately distributed

according to the normal distribution. Assembly language time on a Univac

1108 was 105 microseconds per calculation using this approach. Procedures

studied here were the rejection technique (see Appendix A) and a technique
(5) developed by Marsaglia.v The corresponding running times were respec-

tively 74 and 30 microseconds. Not only are the running times significantly

reduced, but also the more efficient ones presented here are exact (within

machine roundoff errors).

Similar results were obtained with the exponential distribution where

the Marsaglia technique gave a reduction in running times of a factor greater

3

than three (Table 2.1). The standard method used is the inverse (see

Appendix A). The rejection method is discussed in Appendix A and the
Marsaglia method is reported in Ref. 3.

As implied above, there are several methods that may be used to
generate random numbers for a given distribution. However, where alternate
approaches could be identified or developed, comparisons were made and the

most efficient procedure selected. These generators are presented in the
next section.

It should be noted that the more efficient techniques are slightly more
complex to program; however, the slight additional effort involved gener-
ally pays off substantially in computer time.

TABLE 2 .1

Running Time Comparisons Random Number Generators For
The Normal and Exponential Distributionsb

Distribution

Commonly
Used

Technique
Rejectiona

Technique
Marsagliaa

Technique

Exponential

Normal
(Gaussian)

64

105

29

74

19

30

See Appendix A for a brief description of these techniques.
All times \n microseconds of UNIWiC 1108 Assembly Language time.

3. GENERATION OF RANDOM NUMBERS FROM SELECTED
DISTRIBUTIONS

In this section, efficient algorithms are presented for a large number

of probability distributions. These are summarized in Table 3-1 which

gives the name of the distribution, the theoretical form, parameters in the

distribution to be specified by the user, other random number generators

used, and where the particular routines or algorithms can be found in this

section of the report. Also shown under the name of the distribution is the

FORTRAN subroutine name assigned to the random variable.

Once a distribution of interest has been identified, it is only necessary

to define the values of the parameters indicated and to implement the
algorithm from the specified pages of this section. In the subroutines,

the parameters are represented by mnemonics which should be recog-

nizable. For example, SIG is used to represent a and SIGSQ to repre-
2

sent cr , in some places the mnemonic starts with an A to provide a float-

ing point value such as ALAM for A .

It will be noted that certain distributions rely on other distributions

to generate random numbers. For example, generation of random numbers

for the Rayleigh distribution requires random numbers from an exponential

distribution. The exponential distribution in turn depends on a uniform

random number generator. Based on the frequent requirement for the uni-

form, exponential and normal distribution, it is usually convenient to pro-

vide a basic random number generation package consisting of subroutines

to generate uniform, exponential, and normal random variables as an inte-

gral part of any complex simulation program. Throughout this section these

three random number generation subroutines will appear as UNFRN(R),

EXPRN(R), and ANRMRN(R), respectively, where R is a dummy function

TABLE 3.1

Efficient Algorithms for a Large Number of Probability Distributions

Naiii<> ij

Oistrihution
(Function Title) Functional Form

Parameter»
To Be Speeded

«her
Rancom Number
Genenton Used

Lorjtlun u(
Algorithm to Generate

Random Number*

Subsection Page

Lniform
(UNFRN)

b!,; «S^Sb ». b None 3.1 10

Exponential
(EXPRN)

j4e-((«-')A] ;x^«

A>0
A,, Uniform

3.2 12

Normal
(ANMRN)

1 e-(x-M)2/2»a

*". • Uniform,
Exponential 3.3 14 oyJTi,

Bmomlal
(KHINOM)

k • 0,1 n

". P Uniform,
Exponential 3.4 17

Multinomial
(MULNOM)

/ n \ k. k- k, k

Pr...*Pm- I

W--+k.n-"

m, n, Pj Pn Uniform 3.5 22

Poisson
(KPOIS)

k = 0.1,...

A Uniform 3.6 24

Hyper-geometrlc
fKHYPRO)

'"Ira».«
si ■

k -0.1 M

M, N, n Uniform 3.7 M

Geometric
(KCEOM1

Pd-P)"'1

k . 1.2,3,. . .

P Uniform,
Exponential

S.S 28

Pascal (also
called nc^Titlve
binomial)
(KPASCL)

(^J-1)a-rtV
k ' 0.1 n

n.P Uniform,
■«■-panentlal

3.« 31

TABLE 3.1 (Continued)

NatMof
Dl.lrlbultou

Parameter»
To Dt Sperilicil

»Mr
ICindom Ntini'irr
CcMralors IMil

Loral inn if
Aiicorllhm In (irnrrilc

Kandoni Nuiiilirrii

| rmirliuiul lorm Subucrlion Pafc

C»ucliy
(COCHKN)

1 I < • ß VaUorm 9.10 34

'
Haylrlek
(KAVLKN)

0 Eaponriili.il S.ll M

Gamma
(CAMRN)

»., Uniform.
Exixinrnli.-il

3.11 38

Mi
(HKTAI(N)

j- ritt?.» («\r■, f,. rjr"1

ba r(r)r(i) (b-J [" b-»J
• s a < b

n.r >o

y. I< »> b Gamma S.ll 41

ParHo
O'KrORN)

A.» a»-';,,, *i' Unilonn 1.14 43

(ALKWIIN)

1 ,tn ' -2 (tola-.)-*)* • . is • Normal 3. IS (1 ,— ■ cxp
• (»-.) V2. 1 ?

if >

Kuldcd Normal
(KI.'KMKN)

i re-(x-^w4e-(«.(.),/s<.2]

a >0;

K. • Normal 3.16 47

Kodlin'u
UiMril'ullU'
(AKOimNl

x>0.
ri" EaponpiiUil 3. IT 4»

Kxli en«
Vihf
Ui'iln'mlim*
(AMAX/IN)

(AMINitN')

? <XP

Mlnlnr-'

i(a-,)-«" . 0

: > >o

> 0

(i.* Fj(|i«ncnli.il 1.11

3.16

51

SI

TABLE 3.1 (Continued)

Nan-.c of

(Ftn-ticri Ti:le)
Paramrteri

To B« Specified

Ohcr
Random Number
Ctncri'.ort t«cd

Local lor of
Alfnrrhm to CiT-vnt»

Rardum Nu.-i.L-cri
Functional Form S-bscc! on ' Pjpe

i

(V.TBLP.V)
A(X

■
,',

<....'
',<!.* Expo: rful 3. IS 53 •». *

xi •
■I,* > 0

Jo!..-jon
Syttea

s "
'. t.y Normal J.:C.I 55

"L' %2Mx-.)

(SLRN) »x? j--2-[7»!nx-') i
x>0
x ;. !.: t X

1, v, *.' Normal 3. 20. 2 57
(x -<).*-) •<)

'S3R.V) F 1 2 r ^ I \-x«< /J |

1, v.*.' Normal 3. 20.3 59

3U1«0 exp -H^'-W«

[^•■ri)]
n.x >o

System
Trp«i a, a2, mv ra2 Ctnma 3.21.1 6:

(TVPIRX) c^^) i1^)?^
Typen: a, m Gamma 3.21.2 63

fTYTJRN-l cA.sif m>-,
\ a' / -a < x < a

Type ni: 3.21.S es

(ri'PJRN)
/ .\ ya ->x -» < x< a

Fi * Carama

8

TABLE 3.1 (Continued)

Uuttr.liMmn FiinrlloMi For»
PiramMtra

T»B*«pwtfM

(Mra
Random Number
Caatnlor« U»«d

LocilM.n uf
Al, r.lhia In General»

lt.. durn NjmMr«

Subtrrllor to»

(TW4IW)

(1INMI

(TYPTRH)

(TYMIUO

(TTMRM)

(TPIOTK)

(TPIIH«

(TPia«)

Tmiv *t y. • UMform,
»poMMtol

3.21.4 n

TJrptV: p. y Otmm t.ll.l H

Typ« VI.
• - » > 0 •• '!• «I Oäuwm l.ll.t Tl

Typ.«: *. ■ Normil.
Cammi

I.tl.T n

. .\-m ; o s • s i
CM«*) l.«/i>0

•. ■ VtUorm 1.11.1 n

Typ««:

c(l.j) I.x/»>0

•. ■ VmUorm 1.11.« r

Typ.X:

>>0

• ttHmuttol *.II.10 N

Typ» XI:

s>b
C(b/,)B- .>,

m.k Datform 1.11.11 •1

1VP.XII: ^„^

(.(Jj.fl. * JUT ♦./ ' _

HS/«-I«I - if? 1

Mi 1.11.11 a

Hiflagrsa
(AKtTIUQ

NotipplkOI* Upper and lowtr
Uatt* »nd inltrowd-
UU br«Ii polau la
dMrUMtb«

Oatfor« 1.11 M

argument. In the flow diagrams, these are indicated as 11(0,1). E(0.1)

and N(0,1), respectively.

3.1 UNIFORM RANDOM NUMBER GENERATORS

The uniform random number generator is, of course, fundamental

to all random number generation. For the purposes here, it is assumed

that the computer system available will have such a generator as part of

the basic software package. If one is not available or the generator is

expected to be faulty, the machine independent package presented in Ap-

pendix B (MIRAN) can be used. The following paragraphs describe the

technique used in most computers for generating random numbers and pro-

vide insight into the assessment of such generators.

The method used for almost all uniform generators is the multiplica

ngruential i

by the congruence

tive congruential method.v ' A sequence of integers, z ,x.t..., is generated

Xn+1 = xn.X(mod2P) .

Here P is the number of bits (excluding sign) in a word on the particular

computer employed and X is called the generator which is a carefully selected

integer as described below. From this sequence random fractions are pro-
duced using

R = x .2'P . n n

The sequence of random fractions, R^Rg,..., is output by the subroutine in
floating point form.

On most computers the multiplicative congruential method is accom-

plished by an integer multiplication of x and X. Only the low-order half
n

(P bits) of the product is retained as xn+1. This is then treated as a binary

fraction, converted to floating point, and normalized.

10

This method is fast and will produce numbers whose properties ap-

proximate randomness sufficiently close for valid use in Monte Carlo
simulations provided the following caveats are observed.

Choose a generator, X , with particular care. In particular,
generators with a small number of T bits in their binary repre-
sentation should be avoided. A number of generators of the form
21Ö ± 3, 22* ± 3, 2i* ± 3, etc., are particularly abundant. At
one time, they were used because they were thought to be good
and especially fast. However, further research has shown them
to be faulty and a number of simulations have produced erroneous
results as a consequence. Small generators such as A = 101 .„
are also faulty and must be avoided. The generators X«6l*orA«5'
have been well tested and are quite safe to use."'

2. Check the computer word length. It is best for P to be at
least 35 in the congruence. For machines with P < 32 a multi-
ple precision multiplication should be used to generate an ade-
quate congruence.

3. Do not trust, on blind faith, random number routines distributed
by the computer manufacturers with standard subroutine libraries.
These have been found to contain, with high probability, the faulty
generator values.

The uniform random number generator will be referred to as UNFRN(R)
in subsequent routines and ü(0,1) in the flow diagrams.

11

3.2 EXPONENTIAL DISTRIBUTION

The simplest method to generate random numbers from the exponential

distribution, f(x) = e , is to use the inverse solution,

x = -injy ,

where R,, is a uniform random number. This is not, however, the fastest
(3) method. An extremely rapid technique has been dei Moped by G. Marsaglia

which, although it is several times faster than the logarithm, requires a

sizable block of computer storage (—600 words). When computer storage

is critical or when the exponential distrib ion is not of crucial importance,

the Von Neumann rejection technique is a good general method. This method,

usually faster than the logarithm, is shown in Fig. 3-1.

To select from a generalized exponential, (l/X)e ^ ', it is

merely necessary to select from e then multiply by X and add e. For

best efficiency in general, the basic exponential subroutine should select from

a , and it should be left up to the calling program to supply the multiplication

and addition where needed.

The exponential distribution is referred to as EXPRN(R) in subsequent

routines and as E(0,1) in the flow diagrams.

Sample Routines

Simplest method (use inline in calling program):

R = -ALOG (UNFRN(R))

Von Neumann rejection technique:

FUNCTION EXPRN(DUMMy)
I = 0

100 X = UNFRN(X)
105 Y = UNFRN(X)

IF (X. LT. Y) GO TO 120
110 X = UNFRN(X)

IF (X. LT. Y) GO TO 105
115 I = 1+1

GOTO 100
120 EXPRN = X+I

RETURN
END

12

-x f(x) = e ; x 0

(START J

i = 0

Generate z<-U(0,1)

Generate y *-U(0,1)

Yes

x = z + i

(END J

i = i + 1

Yes

iNo

Generate z «-U(0,1)

Figure 3-1. Random number generation algorithm
for exponential distribution

13

3.3 NORMAL DISTRIBUTION

The normal distribution, f(x) = Xliajti^e "** , has received

considerable attention by the designers of random number generators. One

of the earliest methods, which is still found frequently in simulations today,

uses the central limit theorem to approximate the normal by summing up

several uniform random variables. This approach has two serious defects.

First, it is only an approximation. Second, it is much slower than other
(5) methods. The fastest method by far is a technique designed by G. Marsaglia.

However, considerable storage is needed for this technique. Another
(4) technique by Marsaglia/ ' illustrated in Fig. 3-2, is fairly fast without

requiring much computer storage. Thia is the best technique known for

general usage.

As with the exponential routine, the basic normal random number

generator should be written to select from the normal distribution with unit

mean and zero standard deviation (referred to as ANRMRN in the routines

and as N(0,1) in the flow diagrams). It is then left up to the calling program

to multiply by the standard deviation and add the mean if a generalized normal
2

deviate is required. That is, for a distribution with mean \i and vpfiance a ,

the correct random number would be aN(0,1) + ^, where N(0,1) is a ran-
2

dorn number from a distribution with /i = 0 and a =1.

Sample Routine

FUNCTION ANRMRN (DUMMY)
R = UNFRN(R)
IF (R. GT. 0. 8638) GO TO 10
ANRMRN = 2. ♦(UNFRN(X) + UNFRN(Y) + UNFRN(Z) -1.5)
RETURN

10 IF (R. GT. 0.9745) GO TO 20
ANRMRN = 1. 5*(UNFRN(X) + UNFRN(Y) - 1.0)
RETURN

14

20 IF (R. GT. 0. 997302039) GO TO 100
25 X= 6. ♦UNFRN(X) - 3.0

Y = 0. 358*ÜNFRN(X)
XSQ = X*X
GX = 17. 49731196*EXP(-XSQ*. 5)
AX ■ ABS(X)
IF (AX. GT. 1.0) GO TO 30
IF (Y. GT. (GX-17. 44392294 + 4. 73570326*XSQ - 2.15787544*AX))

GO TO 25
ANRMRN = X
RETURN

30 AX3 = 2. 36785163*(3-AX)**2
IF (AX. GT. 1. 5) GO TO 40
IF (Y. GT. (GX-AX3-2.15787544*(1. 5-AX))) GO TO 25
ANRMRN = X
RETURN

40 IF (Y. GT. (GX-AX3)) GO TO 25
ANRMRN = X
RETURN

100 X = SQRT (9+2*EXPRN(X))
IF (UNFRN(X). GT. 3/X) GO TO 100
IF (UNFRN(X). GT. 0. ^ X = -X
ANRMRN = X
RETURN
END

15

©i_

8

V

V

1

■*■ *

S S

8
■a
OS

»> _

i :

if
s 5

ü-<5)

I
«

(M

I

CM -
X

^0

eg

ii

K

c
s
i

o

1

o
D
t

-^
o
H

1 1*
o

 _, •4
5 5
C M e • «

J 111

3.4 THE BINOMUL DISTRIBUTION

The binomial distribution, pk = (g)pk (l-p)n"k, is a discrete distri-
bution describing the number of successes encountered in a series of Bernoulli
trials. It has two parameters, p, the probability of success in a single trial,

and n, the number of trials in the series.

The algorithm for selection from the binomial distribution is divided

into three subranges for the parameter p. For moderate values of p, the ran-
dom number generation is based on a straightforward simulation of the under-
lying basis for the distribution; n Bernoulli trials are generated and the num-
ber of successes are counted. For small values of p, it becomes more efficient
to use a technique based on the geometric distribution. Convei tely, tor large
values of p it is efficient to reverse the geometric technique and perform the
counting on the number of failures rather than successes.

For large values of n, all three algorithms become inefficient;
the computing time involved is directly proportional to n . The binomial
distribution approximates a normal distribution with mean np and
standard deviation y/np^-p) for large n. One should consider replacing

the binomial with the approximate normal for large values of n (n > 10 p/(l-p)
or n>10 (l-p)/p).

Sample Subroutines

For p < .25

FUNCTION KBINOM (N, ALNQ)
C ALNQIS -ALOG(l. -P)

KBINOM = 0
M=0

5 R = EXPRN(R)
J = 1 + R/ALNQ
M -=M + J
IF (M - N) 10, 15, 20

10 KBINOM = KBINOM + 1
GO TO 5

15 KBINOM = KBINOM + 1
20 RETURN

17

For .25$ p« .75

FUNCTION KBINOM (N, P)
KBINOM = 0
DO 15 M - 1, N
R = UNFRN (R)
IF (R. LT. P) KBINOM = KBINOM + 1

15 CONTINUE
RETURN
END

For p > . 75

FUNCTION KBINOM (N, ALNP)
C ALNP IS -ALOG (P)

KBINOM = N
M = 0

5 R = EXPRN (R)
J = 1 + R/ALNP

M =M + J
IF (M-N)IO, 15, 20

10 KBINOM = KBINOM - 1
GOT05

15 KBINOM = KBINOM -1
20 RETURN

END

18

»

\-(k) ^ » - ^
n-k •

»
Vor p<0.2!-

L STAUT)

k«0

1 I

Generdc
R«-E(0,1)

■

i»i
1

1
+ R/l- III () - p)J

k - 1: + 1
m - m + j

.

Yo- 1 l m < n)

Figure 3-3. Random number generation algorithm
for binomial distribution

19

Pk • (k) pk (l " p,n'k : For 0.25 ^p^O.75

m = m + 1

m = 1

k«0

;-

R«-U(0,1)

Yes

k=k+ 1

Yes -f m<n)

No

(END J

Figure 3-4. Random number generation algorithm
for binomial distribution (continued)

20

PK = (k)p (i-P) For p >0.75

k-K- 1

' ►

Generale
R*-E(0,1)

a

J « 1 + R/[- In p] |

m = m +] i

_y«s i

Figure 3-5. Random number generation algorithm
for binomial distribution (continued)

21

3.5 TOE MULTINOMIAL OfSTOIBUTlON

The multtncmial dlstributioo,

pOcj, kj,...,^) »(^^...kjpj

k m
P2 pm

is a generalization of the binomial distribution to trials having m different
outcomes with discrete probabilities. Random number generation is accom-
plished by a straightforward simulation of the underlying process of identical
trials. Note that a 'random number* for this aistribution is an array con-

taining the number of realizations of each possible outcome.

Sample Routine

SUBROUTINE MUUTOM (N, M, K, P)
DIMENSION K(M), P(M)

C P IS INPUT ARRAY OF PROBABIIiTIES
C K IS OUTPUT ARRAY OP OUTCOMES

DO10J = 1, M
10 K(J) = 0

DO 30 I = 1, N
R = UNFRN (R)
DO 20 J = 1, M
R-I-PO)
IF (R. LT. 0) GO TO30

20 CONTINUE
SO K(J) = K(J) + 1

RETURN
END

22

/Irlr \r) I ^ 1« ^ ^
(Kv Kg,..., Kln; « 1^ i^ , # g km/PJ P2 '" rJra

Figure 3-6. Random number generation algorithm for multinomial
diBtribution

23

3.6 POISSON DISTRIBUTION
A k

The Poisson distribution, p^ = e -^j- , is a discrete distribution

describing the number of occurrences in an interval when (he rate of occur-

rence is a constant. The technique for selecting from the Poisson distribu-

tion is a combination-transformation method described in Ref. 2.

The computer time spent in this selection is directly proportional to

A, the mean value of the Poisson variable. For large A, this selection

can be very time consuming. It is possible to approximate the Poisson dis-

tribution by % normal distribution with a mean of A and a standard deviation

of /A for A sufficiently large (A>10).

Sample Routine

FUNCTION KPOIS (EXPLAM)
C EXPLAM IS EXP (-LAMBDA)

Y * 1.0
KPOIS =0

5 Y = Y * UNFRN (Y)
IF (Y. GT. EXPLAM) GO TO 10
KPOIS ■ KPOIS + 1
GO TO 5

10 RETURN
END

24

k-c kf

©
y = i
k = 0

i f

Generate R«-u(0,1)

i
'

k = k+l y = yR

i i

No /
y< .>

Yes

Figure 3-7. Random number generation algorithm for
Poisson distribution

25

3.7 HYPERGEOMETRIC DISTRIBUTION

Hie hyper geometric distribution,

B (rife:?)

describes sampling without replacement. It has the parameters N , the

size of the total population, n, the size of the population sampled, and M,

the number of events in the total population. The random variable k is

the number of events occurring in the sample. The hyper geometric dis-

tribution is generated by simulating sampling without replacement.

Sample Routine
FUNCTION KHYPRG (NTOT, MTOT, N)

C NTOT IS TOTAL POPULATION SIZE, MTOT IS TOTAL
C EVENTS IN POPULATION, N IS SAMPLE SIZE

KHYPRG = 0
EM =MTOT
EN = NTOT
DO 10 I = 1, N
P = EM/teN
R = UNFRN (R)
IF (R. GT. P) GO TO 10
KHYPRG = KHYPRG + 1
£M — CiM — 1.

10 EN = EN - 1.
RETURN
END

26

l-l + l

(T

k'O

EM ^ \i

EN = -\T

p «= EW/EN

Generate R«-U(0,1)

^J -,

No
;p i—

Yes

k = k+ 1

EM -• EM-1

EN «= EN - 1

Yes i <»

Wv'o

END

Figure 3-8. Random munber generation algorithm for hypergeometric
diatiibntion

n

3.8 GEOMETRIC DISTRIBUTION

k-1
The geometric distribution, p^ = p(l-p) , describes tie

number of trials to the first success in a series of Bernoulli trials. For

p ^. 25 , the geometric distribution is most efficiently sampled by a

direct solution of the discrete inverse equation. When p < . 25, it becomes

more efficient to generate a geometric variate by truncating an exponential

random number.

Sample Poutines

For p < . 25:

FUNCTION KGEOM (ALNQ)
C ALNQIS-ALOG(l-P)

R = EXPKN (R)
KGEOM = 1 + R/ALNQ
RETURN
END

For p^ .25:

FUNCTION KGEOM (P)
A=P
Q = l - P
KGEOM = 1
R = UNFRN (R)

10 R = R - A
IF (R. LT. 0) RETURN
KGEOM - KGEOM + 1
A =A* Q
GOTO 10
END

28

pd-p)11"1 : p<0.25

Generate R <- E(0,1)

k = l + R/[-ln(l-p)]

f END)

Figure 3-9. Random number generation algorithm
for geometric distribution

29

vk-1
Pk = P(l-p) : p 2 0.25

(START J

k = 1

A = p

Generate R<-U(0,1)

R = R- A

k = k+ 1

A = A-(l -p)

ZHJ—

Figure 3-10. Random number generation algorithm
for geometric distribution (continued)

3.9 PASCAL GR NEGATIVE BINOMIAL DISTRIBUTION

The Pascal distribution,

P^C^a-pfp".

describes the number of successes occurring before the nth failure in a
series of Bernoulli trials. For low or moderate values of p , the Pascal
distribution is efficiently generated by a direct simulation of a sequence
of Bernoulli trials. As p becomes large (p>.75), it becomes more
efficient to sample by generating a geometric variate for the number
of trials to each of the n failures.

Sample Routines

For p < . 75:
FUNCTION KPASCL (P, N)
KPASCL = 0
DO 20 J = 1, N

10 R = UNFRN (R)
IF (R. GT. P) GO TO 20
KPASCL ■ KPASCL + 1
GO TO 10

20 CONTINUE
RETURN
END

For p>.75:

FUNCTION KPASCL (ALNP, N)
C ALNP IS -ALOG(P)

KPASCL =0
DO 10 J = 1, N
I = EXPRN(R)/ALNP

10 KPASCL = KPASCL + I
RETURN
END

31

P^ft^d-rtV^o. 75

k = k+ 1 Generate R*-U(0,1)

Yes

No

Figure 3-11. Random number generation algorithm
for Pascal distribution

32

^.(-»-»IMS iP>«.n

fSTART J

j = l

k = 0

Generate R*-E(0,1)

i = R/[-lnp]

k = k + i

No

Figure 3-12. Random number generation algorithm
for Piiscal distribution (continued)

33

3.10 CAUCHY DISTRIBUTION

The Caurhy distribution,

fix) = n- , - - < X <«

represents the distribution of the ratio of two normally distributed numbers.

It also represents the tangent of a random angle. It is easily generated by a

rejection technique which selects x and y uniformly in a unit circle, then cal-

culates the tangent x/y.

Caution: The moments of the Cauchy distribution are infinite; the behavior

of Cauchy variates in a simulation will be erratic.
i

Sample program:

FUNCTION COCHRN (AMU)
10 X = UNFRN(Y)

Y = 2. *UNFRN (X) - 1.
IF (X ♦ X + Y * Y. GT. 1) GO TO 10
COCHRN = AMU + Y/X
RETURN
END

34

f(x) =
ir[l + (x-M)Z)

START

I
Generate

R^R^U«),!)

Figure 8-18. Random number generation algorithm
for Cauchy distribution

85

3.11 RAYLEIGH DISTRIBUTION

The Rayleigh distribution,

a

is derived as the radial error when the x and y errors are independent normal

variates. It has a simple inverse which provides the most efficient method for

generating Rayleigh variates.

Sample routine:

FUNCTION RAYLRN (SIGMA)
RAYLRN = SIGMA ♦ SQRT (2. *EXPRN(R))
RETURN
END

36

tm = 4 .■
x2/,''2

a

START

Generate
R *- E(0,1)

i i

x • (r-\/2'R

END

Figure 3-14. Random number generation algorithm
for Rayleigh distribution

37

3.12 GAMMA DISTRIBUTION

The gamma distribution

n~t -xx f(x) = ^x e

describes the time for exactly TJ events to occur when events occur at a

constant rate A . When i? is an integer, there is a simple combination tech-

nique for generating gamma variates. However, as the gamma distribution

is one of the Pearson family of distributions, there is a need for selecting

gamma variates when 17 is non-integral even though there is no physical

model for this. This is a much harder task but can be accomplished by a

combination of the usual technique for the integral part of TJ with a composite

rejection technique designed to select from x e~x where f is the fractional

part of TJ.

Sample routines:

For T? integer:

10

FUNCTION GAMRN (ALAM, NETA)
Y = l
DO 10 I = 1, NETA
Y = Y * UNFRN (Y)
GAMRN = - ALOG(Y)/ALAM
RETURN
END

For ri general:

10

FUNCTION GAMRN(ALAM, ETA)
N = ETA
F = ETA - N
IF(F.EQ.0)GOTO 100
R = UNFRN(R)
IF (R.LT. F/(F + 2.71828)) GO TO 20
Y = UNFRN(Y) *♦ (1/F)
IF (UNFRN(R). GT. EXP(-Y)) GO TO 10
GO TO 50

38

100 T«0
GOTO 70

90 T « 1. + EZPRNfY)
IF(ÜNFRN(R).GT. Y**(F-1.)) TO TO 10

50 ir(N.EQ. 0) GO TO 150
70 Z-1.0

DO 801 « lf N
80 Z = Z* UNFRN(Z)

Y = Y-ALOG(Z)
150 GAMRN ■ Y/ALAM

RETURN
END

39

•«•A.'"'.-»" im

•TAUT

Omnto

«»WO.«
«.«-o»).i)

»•»•• »•• in

Onmt» t^tf y,»»(e, I) j

'"'"Hl •■)
31

« ■ »A

EMD

»••

IM« ttat W « U IlMtM« to taUpal nkiM. »l* niMUin lo

«TAKT

OMnl* iyrt ^»m.!)

-i-ffl')

Figure 8-15. Random number generation algorithm
for gamma distribution

40

3. IS BETA DISTRIBUTION

The beta distribution,

with x limited to the interval (a,b), is a basic statistical distribution fre-
quently encountered for bounded variables. The parameters, y and TJ ,
are limited to positive values. Beta variates for most values of the parame-

ters are best obtained as a ratio of two gamma varü tes. If y and i\ are
both small integers, a beta variate may also be generated by choosing
y + TJ - 1 uniform random numbers, arranging them in order of increasing
magnitude, and selecting the y random number as the beta variate.

Sample routine

FUNCTION BETARN (GAM, ETA, A, B)
Y - GAMRN (1., GAM)
Z = GAMRN (1., ETA)
BETARN * (Y/(Y + Z)) ♦ (B - A) + A
RETURN
END

41

'«-m^cVN''1: —b

Generate y from gamma distribution
with parameter y

I
Generate z from gamma distribution

with parameter n

■W*- a) + a

Figure 3-16. Random number generation algorithm
for beta distribution

42

3.14 PARETO DISTRIBUTION

The Pareto distribution, f(x) » Xc x~ ~ , has a simple inverse
which provides the quickest procedure for random number selection.

Sample routine
FUNCTION PRTORN (EPS, ALAM)
PRTORN = EPS ♦ UNFRN(R)**(-1./ALAM)

RETURN
END

43

f(x) = X c^ x"^1

START

Generate
R«-U(0,1)

1

x • , (R)-1A

END

Figure 3-17. Random number generation algorithm
for Pareto distribution

44

3.15 LOG-NORMAL DISTRIBUTION

The log-normal distribution

f(x) = -7= • exp {- -^[In (x - c) - n]2\ ,

describes a random variable whose logarithm is normal. It is a simple

matter then to invert this transformation to generate log-normal variates.

Sample routine:

FUNCTION ALNMRN (EPS, AMU, SIGMA)
R^ANRMRNCR)
ALNMRN ■ EPS + EXP (SIGMA*R + AMU)
RETURN
END

45

f(x) =
a(x-c)y5w

exp --^|ln(x-c)-Mr
2a '

START

f

Generate R*-N(0,1)

[

« = c + e'**»

| f

END

Figure 3-18. Random number generation algorithm
for log-normal distribution

46

3.16 FOLDED-NORMAL DISTRIBUTION

The folded-normal distribution,

s^[eW/a^cW/2cr2] t f(x) r-

describes the distribution of (he absolute value of a normal variate, which

provides the simplest procedure for generating from the distribution.

Sample routine

FUNCTION FNRMRN (AMU, SIGMA)
FNRMRN - ABS (AMU + SIGMA * ANRMRN(R))
RETURN
END

I

fW . ^ ,e-v.-.)2/2a2 + e-(x+

9v2v
M)2/2a2|

START

I
Generate R • N(0,1)

x ■ ABS 0* + 9 • R)

i 1

END

Figure 3-19. Random number generation algorithm
for folded-nor mal distribution

■ ■^ — I

3.17 KODLDTS DISTRIBUTION

Kodlin suggested aa a distribution for survival Urne data, the functional

form,

fw.(i»+»x>«-(l,x + ,/2yx2) •

Ulis Kodlin form has a moderately simple inverse, and thus it is not difficult

to generate random varities.

Sample routine

FUNCTION AKODRN (ETA, GAM)
R ■ EXPRN (R) * 2. * GAM/(ETA ♦*2)
AKODRN ■ ETA/GAM * (SQRT(1. + R) - 1.)
RETURN
END

49

f(x) = (f? + yx) e
-(ix^yx2)

START

Figure 3-20. Random number generation algorithm
for KodUn's distribution

50

—

3.18 EXTREME VALUE DISTRIBUTIONS

There are two extreme value distributions. The first is for the maxi-

mum value,

and the second is for the minimum valne,

The inverse function for both is straightforward and provides an efficient

selection procedure.

Sample routines

For the maximum value:

FUNCTION AMAXRN(AMU,SIG)
R ■ EXPRN (R)
AMAXRN - AMU - SIG * ALOG (R)
RETURN
END

For the minimum value:

FUNCTION AMINRN (AMU, SIG)
R ■ EXPRN (R)
AMINRN »AMU 4 SIG * ALOG<R)
RETURN
END

51

Maximum value: f(x) = ~ expL | (x- M) - e" (x' *'*

1 START

1

Generate R«- E(0,1)

f

x = -9lnR + M

i

END

Minimum value: f (x) ■ - exp
ü

i(x-M)-e(,t-^

START

Generate R «-2(0,1)

f

x = a In R + M

Figure 3-21. Random number generation algorithm
for extreme value distributions

52

3.19 WEIBULL DISTRIBUTION

The Weiball distribution, f(jt) « nA(x-€),?"1exp[-(x-^t,/X], ^ a three"
parameter (c, X, t?) family of empirical distributions having; wide usefulness.
Hie random variable x is bounded below by i . The inverse cumulative
function is straightforward and provides the best general method for

generating Weibull random numbers.

Sample routine:
FUNCTION WIBLRN (EPS, ALAM, ETA)
WIBLHN ■ EPS 4 (ALAM * EXPRN (ALAM)) ** (1. /ETA)
RETUFN
END

53

f(x) =

START

Generate R «- E(0,1)

x = (X-R)1/n
+f

END

Figure 3-22. Random number generation algorithm
for Weibull distribution

54

3.20 JOHNSON DISTRIBUTIONS

3.20.1 Johnson St. Dlgtrilwtton

is easily generated by transforming a normal variate. (The reverse at the
transformation used in deriving this Johnson distribution.) The S. dis-

tribution is also known as the log-normal (Section 3.15).

Sample routine;

FUNCTION SLRN (EPS, GAM, ETA)
R ■ ANRMRN (R)
SLRN = EPS + EXP ((R-GAM)/ETA)
RETURN
END

f(x) = n
ü (x-c)

2r iJ

START

Generate
R«-N(0,1)

i

x = c + e '

1

END ■

Figure 3-23. Random number generation algorithm
for Johnson S. distribution

56

3.20.2 Johnaon gp Dirtributlon

The Johnson SB distribution,

«« • jfe (,-.) (X-M "» {- f [^^(x^)]2) •

is easily generated by ü transformation on a normal variate.

Sample routine:

FUNCTION SBRN (EPS, ALAM, GAM, ETA)
R - ANRMRN (R)
EX ■ EXP ((R-GAM)/ETA)
SBRN = EPS + ALAM • rx/(l. + EX)
RETURN
END

57

f(x) =
' TSt (x- c)(X-x+c) e

START

Generate

R«-N(0,1)

1

(R-y)

END

Figure 3-24. Random number generation algorithm
for Johnson SB distribution

58

3.20.3 JohMon S^ Dlgtribatton

Like the other Johnson famity distributions, the SL. distribution,

1/2) \ 2"
f w = 4=

is easily selected by reversing the transform which generated the distribu-

tion from a normal distribution.

Sample program:

FUNCTION SURN (EPS, ALAM, GAM, ETA)
R ■ ANRMRN(R)
SURN = EPS + ALAM * SINE ((R - GAM)/ETA)
RETURN
END

I

S : f(x) u x

START

Generate
R«-N(0,1)

i ■

x = € + X sinh (^~)

END

Figure 3-25. Random number generation algorithm
for Johnson S^ distribution

60

•-

3.21 PEARSON DISTRIBUTIONS

3.21.1 Pearson Type I Diatribntiop

The Type I distribution of the Pearson system of frequency functions
is given by

km« /« / on. ffc) = C(l + x/a.)"1! (1 .x/^)m2

where C is a normalization constant. The limits on the distribution are
-a- < x < a« and there are further constraints that m1 > -1 and m« > -1.

By the linear transformation Z ■ •——- . the Type I distribution can be
a2 + al

transformed into a beta distribution which may be derived from gamma vari-
ates as given in Section 3.13.

Sample routine:

FUNCTION TYP1RN(EM1, EM2, Al, A2)
U=GAMRN(l.fEMl+l.)
V=GAMRN(1.,EM2+1.)
TYP1RN = (Al + A2)*U/(U+V) - Al
RETURN
END

61

m f««ca ♦ x/aj)" i a - x/^rt

START

I
Generate U from a gamma distribution

with parameter (m. ♦ 1)

I
Generate V from a gamma distribution

with parameter (m, + 1)

i
z = u/cu ♦ v)

I
X = (aj+ag) Z -aj

I
END

Figure 3-26. Random number generation algorithm
for the Pearson Type 1 distribution

62

3.21.2 Pearson Type g Dtstrtbution

The second distribution in the Pearson family is given by

x2 m

a

where C is a normalization factor. The limits on the distribution are
-a < x < a and m > -1. This is a special case of Type I where m ■ m

and &! = a«* As such it may also be derived from gamma variates.

Sample routine:

FUNCTION TYPE2RN(EM, A)
U = GAMRN (1., EM+ 1)
V=GAMRN1(1., EM+1)
TYP2RN = A*Cü-y)/(ü+V)
RETURN
END

63

i

z vm ffrHCd-Ar)
a

START

I
Generate U and V from gamma
distributions with parameter

m-fl

I
X = a*(Ü-WOJ+V))

I
END

Figure 3-27. Random number generation algorithm
for the Pearson Type II distribution

64

3.21.3 Peargon Type B Dtotributlon

The Pearson Type in distribution is given by f(x) = C(l ♦ x/a) e"^,
where C is a normalization constant. The distribution is limited to
-a < x < a (or to a < x < -a if a is negative) and is further constrained
by ya> -1. A few simple transformations, x = a(y-l) and X=ay , will

turn this distribution into a special form of the gamma distribution
f(y)=C,yXe'Xy .

Sample routine:
FUNCTION TYP3RN (GAM, A)
P - GAM*A
Y-GAMRN(P,P+1.)
TYP3RN=A*(Y-1.)
RETURN
END

65

f«=C(l+x/a)yae"yx

START

I
A = Xa

i
Generate Y from gamma distribution

with parameters A, A + 1

I
x = a(y - 1)

i
END

Figure 3-28. Random number generation algorithm
for the Pearson Type m distribution

66

-

3.21.4 Peargon Type IV Distribation

The Type IV distribution of the Pearson system is given by

«x)=C(l + x!,/a2)-me-''tan'1(x/i,) ,

where C is a normalization constant. By a trigonometric transformation,

x = a tan' (p - ir/2), the function can be transformed into ffco) = C'(sin (o)
T

o
y<0,

where y = 2m - 2. In this form there is one limit on the parameters, namely

r > 3, while p ranges from 0 to ir . Picking from this function can be

accomplished by a selection from e'
y<0

t truncated at 0 = ir, followed by a

rejection conditioned on (sin <p) .

Sample routine:

FUNCTION TYP4RN(EM,GAMMA,A)
DATA PI/3.1415962/HAFPI/1.5707981/
R ■ 2*EM-2

10 PHI = EXPRN(R)
PHI = AM0D(PHI/GAMMA, PI)
IF (UNFRN(R). GT. (SIN(PHI)**R)) GO TO 10
TYP4RN = A*TAN(PHI-HAFPI)
RETURN
END

67

-1,
i«.c(x + x2/.V,V',ao ,x/,)

START

I
y = 2m-2

Generate R <- E(0,1)

i
(0 = R/Y {mod t)

(i. e., (p is the remainder when as many multiplies
of ir as possible are subtracted from R/y)

I
Generate y«- U(0,1)

no
I

y <(sin <p)r

I yes

x = a tan (o - IT/2)

I
END

Figure 3-29. Random number generation algorithm
for the Pearson Type IV distribution

68

3.21.5 Pearson Type V Dtatribntlcm

The fifth type of distribution in the Pearson system of frequency func-
tions is given by f(z) ■ C x'pe'r/x , where C is a normalization constant.
The range of the argument is 0 < x < «• . The parameter y must be positive
(for y <0, -•<x < 0) , and p must be greater than 1. The Type V random
variable z is the inverse of a punma variate; this provides the simplest

means of picking from the Type V distribution.

Sample routine:

FUNCTION TYP5RN (P, GAMMA)
TYP5RN = 1. /GAMRN(GAMMA, P-l.)
RETURN
END

69

£(x) = c x-p *'y/x

START

I
Generate R from the gamma distribution with parameters

>7=p-landA=y

I
X = l/fc

I
END

Figure 3-30. Random number generation algorithm
for the Pearson Type V distribution

70

3.21.6 Pearson Type VI Distribution

Type VI of the Pearson family of distributions is given by
f(x) = C(x-a) 2 x * , where C is a normalization factor and q. and q«

are parameters limited by q- > q* + 1 > 0. For a > 0 the range of the
distribution is a < x < • while for negative a it is -»< x < a. By the
simple transformation x = a/y the distribution is converted into a form of
the beta difltribntion

tau-Vs) q2 f(y) =C'y 1 z (1-y) z 0<y< 1

which can be obtained from two gamma variates as described in 3.13.

Sample routine:

FUNCTION TyP6RN(A,Ql,Q2)
U ■ GAMRN(1. ,Q1-Q2-1.)
V=GAMRN(1.,Q2+1.)
TYP6RN = A*(U+V)/ü
RETURN
END

71

"^tr^^nm i i in > .. »i-pi —
■" '■ --w-.,-- ».,„ ,„,

q2 ^1
f(x) =C(x-a) zx 1

START

I
Generate U from gamma distribution

with parameter >? = qj - q2 - 1

I
Generate V from gamma distribution

with parameter ^ = qg + 1

i
X=a(U + V)AJ

I
END

Figure 3-31. Random number generation algorithm
for the Pearson Type VI distribution

72

■-— ■ '■■ "P" ' *m
— ■ - -" ^- " »»» ' ' -" " !■■ "—

3.21.7 Pearsop Type Vn Distributiop

Type Vn of the Pearson family of distributions is given by

f W = C (1 + x2/a2rm,

where C is a normalization factor. Hie range of x is - • to • where

m must be greater than 2.5. By setting z = -* * the distribution

is transformed into a + x

g(z) = C (1 - z)-1/2 zm-3/2

which is a special case of a Beta distribution with y = m-1/2 and

V = 1/2. The beta variate z can be obtained as a ratio of two gamma
1/2 1/2 variates, z = u/(u+v) . As x = a(l/z - 1) , we have x = a fy/u)

Now v is a gamma variate with parameter n= 1/2. This special case
2

of a gamma variate can be obtained from v = y /2 , where y is a
1/2 normalized normal variate. This gives x = ay (l/2u) ' . Selection

from the Pearson Type vn is achieved by combining the above transform-

ations with the selection routines for the gamma and normal variates.

Sample Routine

FUNCTION TYP7RN(A, EM)
Y = ANRMRN(y)
U =GAMRN (.5,EM-.5)
TYP7RN = A*Y/SQRT(Ü)
RETURN
END

73

"Y— " ' 4&
— ■ i ■ -^ •—■ ■ lll»»l J -■' 'J' •■" ' ~ " — -" . , _ —^— — --^ ■

f«=ca+x2/a2)'m

START

I
Generate U from a gamma distribution

with A =.5 and »7 =m-1/2

I
Generate Y from a normal distribution

with mean ■ 0 and ^ = 1

I
x=:a*YAJ

I
END

Figure 3-32. Random number generation algorithm
for the Pearson Type Vn distribution

74

•*! 7^- , ' ~m

3.21.8 Tg* VM Pearson Dtotribntioo

The eighth distributioo in the Pearson family is given by

f w = c a + x/a)-m

where C is a normalization constant. The range of x is -a < x < 0
(or 0 < x < -a for a negative) while the range of m is 0 s m s 1.
U we set y = (1 + x/a), the distribution becomes

f (y) = C y"111 where 0< y< 1.

Ulis form of the distribution has a simple inverse.

Sample Routine
FUNCTION TYPSRNCA, EM)
R ■ ÜNFRNCR)
TYP8RN = A* (R** (1./(I. EM)) -1.)
RETURN
END

75

" ' '■■ ~^ ■ -TTT-

f (x) = C (1 + x/a) -m

START

I
Generate R «- U (0, 1)

,.."»

i
-m)

-a(y-l)|

1
END

Figure 3-33. Random number generation algr rithm
for the Pearson Type VTII distribution

76

PHI« 1 ■■» ■ " » '^

3.21.9 Pearson Type IX Dtstrflmtton

The Pearson Type IX distribution is given by

f W = C (1 + x/a)m,

«here C is the normalization factor. The range of x is -a to 0 while
m most be greater than aero. This function has a simple inverse.

Sample Routine

FUNCTION TYPE9RN(A, EM)
R ■ UNFRNCR)
TYPflRN = A*(R** (1. /(EM ♦ 1.))-!.)
RETURN
END

77

1..IIW, ■»' ■■ ' ■ —" ^ "—' ■ *'•• "
' ——■

f« = C (1 +x/a) m

START

I
Generate R «- U (0, 1)

~r~
y m R l/(m+l)

I
x = a(y-l)

END

Figure 3-34. Random number generation algorithm
for the Pearson Type DC distribution

78

-^1 -TTTT ^-r- -—rro.'" *,m rJ .■ "Jl ^ | JI '
w^ymw-w !..).■■»» »»■»■>■ — ^' —

3.21.10 Pearson Type X Distribution

The Pearson Type X distribution is a form of the exponential

distribution given by

f W = l/a e'*** ; x ^ 0

This is easily obtained from the standard exponential distribution

routines.

Sample Routine

FUNCTION TP10RNCSIGMA)
TP1QRN ■ SIGMA*EXPRN£IGMA)
RETURN
END

79

f« « 1/a e "x/a

START

Generate R <- E(0, 1)

HZ
Xsä^R

I
END

Figure 3-35. Random number generation algorithm
for the Pearson Type X distribution

80

t I 1P»4I«W^W,W

3.21.11 Pearaon Type XI DJetributlop

The eleventh in the series of Pearson distribution is given by

fix) * C(b/x)m

where C is a normalization factor. The range of x is limited to
b <x <». The parameter m is greater than 1 . This distribution has
a simple inverse.

Sample Routine

FUNCTION TP11RN03, EM)
R ■ UNFRN(R)
Y =R**(l./(fiM-l.))
TP11RN = B/Y
RETURN
END

81

B!w»w<yw—PMIIIIIII . »immn i ■ .^y»—w—H nmvmm^mm* HI ■■■'" " - ' 'An niRB

f(x)=C(b/x) m

START

I
Generate R •* U(0,1)

I
y=R>/(m-l)

I
x=b/y

[
i

END

Figure 3-36. Random number generation algorithm
for the Pearson Type XI distribution

nr~*m ■"■ • ' IU"J' ' ' """* "'■'

3.21.12 Pearson Type Xn Distribution

Type Xn of the Pearson system of distributions is given by

f(x) = C
{J^*S$**l<S*ffiV

where C is a normalization factor, a is the standard deviation, and
2 3 0i ■ MO/MO (skewness). The range of x is

- a (Ts+ijj + ^/Jj)< x < a (73+^ - Jfj .

By setting

a = aiJs+ti + Jß^) > and

b = a(v£^-v^),

the distribution becomes

By setting

M-C&T

the distribution transforms to f(y) = Cy (1-y) which is a special case
of the Beta distribution.

83

-——■111^. -IP«'

Stinpto Roirtiaft

84

FUNCTION TY12RN(SIGMA, BETA1)
R ■ SQRT(BETAl)
8 m SQRT(BETAl+8)
EM = R/S
A ■ 8I(aiA*(R4S)
B ■ SICa«A*(S-R)
Y ■ BETARN(EM+1.1-EM)
TP12RN « (B+A)*Y-A
RETURN
END

mmmmmmmm*

Jßi/iS+ßJ

START

I

I
Generate y from a beta distribution

with
y = m + 1 and 77 = 1-m

i
x = (b + a)y - a

1
END

Figure 3-37. Random number generation algorithm for
the Pearson Type XTI distribution

85

3.22 HISTOGRAM DISTRIBUTIONS

Frequently, empirical data regarding a probability distribution

is obtained in a histogram form. That is, intervals (x , Xj) , (x-, xj,....

(x ., x) and probabilities p,, p0, • • • •, p are given such that p. is n~in i £ * i
the probability that the variable x is found in the interval from x. . to

x.. (It is presumed that the histogram is normalized, i.e. I p. = 1.)
1 i=l 1

Within each interval it is assumed that the probability is constant.

Selecting a random number from such a histogram distribution is

simple. It is necessary first to select the interval in which the random

number falls, and then to choose where in that interval the random number

lies. This is basically an inverse distribution technique. Selection of

the interval i is accomplished by generating a uniform random number and

subtracting off successive values of p. . The value of i when this result

first goes negative is the desired interval index. Generation of a second

uniform random number and scaling it to fit in the interval from x. , to x.

complete, the task.

A more efficient (much more efficient if the size of the data table

is large) generator can be produced if it is possible to cast the histogram

^Ata in a form such that p- = p« = ... = p = 1/n by choosing values of

x. appropriately. Such a representation is known as equal probability

bins. This greatly simplifies selection of the interval i as all n intervals

have the same probability. Successive subtraction of values of p. is

no longer needed and can be replaced by a direct calculation of i from

a uniform random number.

In the sample Fortran routines below, the array X(I) is presumed

to contain: X(l) = xo , X(2) = Xj , X(K + 1) = x . In the first routine

use is made of the fact that, at the conclusion of selection of i, R will be

uniformly distributed between 0 and - p. .

86

Sample Routines

For general histogram selection

FUNCTION HBSTRN (N, X, P)
DIMENSION X(K), PflST)
R = UNFRN (R)
DO 101 = 1, N
R =R -PCD
IF (P . LT . 0) CO to 20

10 CONTINUE
20 HSTRN = Xd) - R * (X (i + 1) - X (l))/P(l)

RETURN
END

For selection with an equal probability bin histogram

FUNCTION HSTRN (K, X)
DIMENSION X(N)
R = N ♦ UNFRN (R) + 1
I =R
R = R - I
HSTRN = Xd) + R * (Xa + 1) - XÖ))
RETURN
END

87

CO

>> ^
TH

—l ^•s 1

3
D
1
K
0)

I
0)

in
te

ge
r

po
rt

io
n

of

fr
ac

ti
on

al
 p

or
ti

on

-

M
i

if
•

f

1

M
n

1-t

+

•
c
II

- - H

ii ii M
••* «M

gd||

B 3 ä€

CO

0)

^■ n
+

M
•*•*

fH

i i 1

-

s
D

K ii

r E
0)

1

J
K
li

^J J \ OB

/ 1 fc

it
•

fH
1

W
II

M

w

00

1
■

88

APPENDIX A

GENERAL TECHNIQUES FOR GENERATING RANDOM
NUMBERS FROM DESIRED DISTRIBUTIONS

When given a particular distribution, f (x), and the task of
selecting random numbers distributed according to that function, the
investigator has a large number of possible alternatives at his disposal.
The primary task is to derive a method which will accomplish the
desired selection. A secondary task is to choose the method which is
least time-consuming computationally.

Unfortunately, it is not possible to give a straightforward
methodology for deriving random number generation techniques which
can be applied in all or even in most cases. The situation closely

parallels that of finding an integral of an arbitrary function. When one
encounters the need to integrate an unfamiliar function, the first step, of

course, is to try to look it up in a table of integrals. That failing,one must
try to simplify, transform variables, integrate by parts, use trigonometric
substitutions, or employ other similar tricks to reduce the integral to a familiar

form. There is no guarantee of success, and much depends on the ingenuity
and experience of the researcher. When all else fails you can "grind out"
a numerical solution.

Faced with the task of generating random numbers from an unfamiliar
distribution, a similar procedure is needed. The first step is to try to look
it up somewhere — such as in Section 3 of this report. If not found there,
there are a number of techniques — inverse, rejection, transformations,
combinations, etc. available. These are described in this Appendix. There
is no guarantee of success in using them, and the experience and ingenuity

91

of the analyst is very important. As a final resort, there are numerical

methods which can be applied.

The following description of general techniques, while not universally

applicable should give the reader some notion of how to proceed in deriving

random number generation algorithms.

A. 1 THE INVERSE METHOD^

The first technique which one should consider is the inverse. To

apply the inverse method, the distribution function is integrated to give

the cumulative distribution, F(x) = Jx f(x')dx'. This is the probability of

selecting a number less than or equal to x. This is equated to the proba-

bility of selecting a random number, R, from the uniform distribution.

Thus, F(x) = Jx f(x') ds' = R. The question then is whether or not this

equation has a simple closed-form solution, x = F~ (R). If the inverse

function exists, then it is a solution to our task, for, if R is distributed

uniformly, then x = F~ (R) is distributed according to f(x). If F" (R)

not only exists,but is also moderately simple to compute, it is most likely

the most efficient way to generate the desired random numbers.

A. 2 REJECTION TECHNIQUE^

If the inverse function cannot be easily calculated, then the rejection

technique should be considered. Suppose that the function, f(x), has a

maximum value M where x varies over the range of interest from a to b.

Random numbers are then chosen by the following two-step procedure.

• Select x from a uniform distribution on the interval (a, b)

• Select a second uniform random number, y, and accept
the value x only if y < [f(x)]/M.

If x is rejected, then go back to the first step to select a new x and con-

tinue this procedure until some value of x is accepted. The probability of

selecting x in the first step is [l/(b-a)] dx, while the probability of

acceptance at the second step is f (x)/to. Thus the x values will be genera-

ted with the desired probability f(x) dx.

The constant term l/[M(b-a)] represents the efficiency of the rejec-
tion. Its reciprocal, M(b-a), is the average number of trials the rejection
technique will require to generate a single random number and is, therefore.
linearly proportional to the computation time required. If M(b-a) is very
large, the rejection technique is too inefficient and a better technique should
be sought.

The rejection technique need not be based on variables from a uniform
distribution but can be developed from other distributions. For example
the fact that

ii-x2/2< 1/2 -x e < e • e

can be used to develop a rejection technique for picking from a normal distribution.
First select x from the exponential distribution e'x. Then accept x if

a second (uniform) random number

y < Jill . e-C-*)2/2 .
^T. e'x

The essential ingredient of the rejection technique is to find a second dis-
tribution function, g(x)> for which a selection procedure is known and such

that f(x) < C g(x). Selection of x from g(x) is followed by acceptance if

v ^ f<x>

The average number of trials needed for an acceptance is C. Note that if

g(x) is close to f(x), then C will be close 1 and the technique will be very

efficient.

A. 3 TRANSFORMATION

To simplify the derivation of inverse or rejection methods, it is best
to transform the random variable into its simplest form. Thus, if one had

f(x) = g(Xx + c), one would first make the substitution, y = Xx + c, then

search for a technique for generating numbers from g(y). After generating
a random number y, set x ■ (y-c)/X to get the desired random variable.

In doing transformations correctly we must be careful to transform not Just
the function f(x) but the probability f(x) dx. Tims, properly, we have

f(x) dx ■ g(Xx + () dx = g(y) dx ■ g(y) dyA as the substitution y = Xx + c
implies dy = X dx. The correct normalized distribution for y is then
1/X g(y). As a second example, assume f(x) dx = 2x ^'x dx. Try

the transformation y = x . As dy - ?x dx, f(x) dx = 2x e'x dx = e y dy.
Therefore, selecting y from the exponential e"y and taking x = Jy will

give a random x from f(x).

A. 4 COMBINATION OF RANDOM VARIABLES ^

As a step beyond transformations, consider various combinations

of random variables such as adding subtracting, or multiplying two
random numbers, taking the maximum or minimum of several random
numbers, etc. The results of such combinations follow no intuitive pattern

but must be worked out through the laws of probability. For example, the
sum of two uniform random numbers has a triangular distribution,

f(x) = 1 - |x- 1| while the product has the distribution, f(x) = - In x.

More complex examples seem even farther removed from simple ration-
ality. If x and y are random numbers from the gamma distributions,

l/r(n) xn" e'x and l/r(m) ym" e"x, then z = x/(x+ y) has a beta

distribution r(m + n)/r(m)r(n) z11"1 (1 - z)m'1. However, the beta
distribution may also be obtained by taking n + m - 1 uniform random

numbers, arranging them in increasing order, and selecting the nth num-
ber in the sequence. Thus, although combinations can be a very powerful

method for transforming simple random variables into selections from

other distributions, it is impossible to give guidelines or to arrive at a

methodology for determining the proper combination needed to arrive at a
desired distribution. The investigator must simply learn the frequently

used combinations and must use his inventiveness when confronted with an
unfamiliar distribution.

94

A. 5 COMPOSITION TECHNIQUE(6^

Another method of general applicability is the composition technique. If

the desired distribution can be written as a (generalized) integral over a

family of density functions, then the sampling can be accomplished in a two-

stage process. On the first step, a particular density function is selected

from the family, and on the second step, the desired random number is

drawn from the particular density function. In the usual application of

this technique, the desired distribution is broken down into discrete parts,

generally on separate intervals.

A. 6 NUMERICAL METHODS

If no exact method can be derived, there is a numerical technique

which can be used. This consists of generating the cumulative function,

solving for its inverse numerically, tabulating the inverse, and then g' ner-

ating the random numbers from the tabulated data. If equal probability intervals

are used in tabulating the inverse, then generation from the tabulated data

can be quite fast. It does, however, require a certain amount of computer

storage to hold the tabulation.

Improvements in the accuracy of numerical inverses can be made by

using Chebyshev interpolating polynomials. ' For some functions with long

tails, the tabulated inverse must be replaced with some sort of approximating

function in the tail of the distribution to achieve reasonable accuracy.

A. 7 MARSAGLIA TECHNIQUE^3-5)

If a particular distribution is very central to a frequently used simu-

lation program and the generation subroutine will be called a great many

times to produce random numbers, it may be worthwhile to design a very

fast selection procedure to reduce the computer time needed. A number of

super-efficient techniques have been developed by G. Marsaglia.^ ' These

are based on composition methods where the function is expressed as

the sum of three or more parts. The parts having highest probability are

fast to select from and the parts difficult or slow to select from have very

95

small probability. In one of Marsaglia's methods, the function is broken

into:

• A histogram

• A collection of saw-toothed functions where an efficient
rejection technique selects from the 'almost-linear* dis-
tribution of each sawtooth.

• The tail of the distribution.

This method is very fast but requires moderate amounts of computer storage.

In another method distributions are fitted to an approximation of the form

C(M + u. + u« + u«), where M is a discrete variable and the u's are uniform

variables. A small fraction of the time a more lengthy rejection procedure

is needed to correct the error in the approximation. This method is fairly

fast without great storage requirements.

These methods have been applied very successfully to the exponential

and normal distributions. They do, however, require considerable effort

in manhours to develop and thus should be applied to other distributions only

when the payoff can justify it.

96

APPENDIX B

MIRAN

A MACHINE INDEPENDENT

PACKAGE FOR GENERATING

FROM DESIRED DISTRIBUTORS

97

APPENDIX B

MIRAN - A MACHINE INDEPENDENT PACKAGE FOR GENERATING
' UNIFORM RANDOM NUMBERS

B. 1 GENERAL DISCUSSION

The standard technique for producing uniform random numbers on

modern high-speed computers is an algorithm known as the multiplicative

congruential method. This -method is expressed mathematically as

R 1 = A.R (modulo P) .

Since the R's are integers ranging from 1 to P-l, successive real random

numbers uniformly distributed from 0 to I are generated by dividing R by P.

The properties of this technique as a random number generator (RNG) are

highly dependent on the choice of the generator. A, and the modulus, P,

Unfortunately, there are many RNGs in current use which do not approximate

randomness closely enough to be sufficient for all Monte Carlo calculations

and, what is far worse, do manage to pacs some of the simple tests for

randomness. There are, however, several choices of A and P which have

been thoroughly tested, both theoretically and through many years of actual

use in Monte Carlo calculations, and which appear to be sufficiently random

for general usage.

For reasons of convenience and efficiency, P is generally taken to

be 2 where m is the number of bits, excluding the sign bit, in a single

word on the particular computer being used. The generation process starts

with a fixed generator, A, and a starting value, R . The full product

from the multiplication of A and R would usually fill two computer words;

however, the modulo P in the algorithm means that we only need the single

word, Rj, comprising the low order half of the A • R product. The random

number gen3ration is completed by converting R. to a real variable and

99
Preceding page blank

dividing by P. R. replaces R in storage in the random number subroutine

and the process is ready to begin anew.

In this sort of a process there have been two barriers to developing

a Fortran RNG subroutine which would be independent of the particular com-

puter for which it was designed. The first is the modulus P, which varies

from computer to computer as the word length varies. [Choosing a universal

value of P to fit the smallest computer is not a good solution as the proper-

ties of a RNG become less random as P is made smaller, to the extent that

Coveyou and MacPherson^ ' consider them questionable for P = 2
OK

(IBM 360 series) and borderline for P = 2 (IBM 7090, Univac 1108, etc.).]

The second problem is that the sign bit of R1 may need to be cleared follow-

ing the multiplication. Clearing the sign bit generally requires some trickery

in Fortran which varies from computer to computer as the mode of represen-

tation (one's complement, two's complement, uncomplemented, etc.) of

negative IJ imbers varies.

The way around these obstacles is to use an explicit multiple pre-

cision representation. The integers and operations involved in the RNG

algorithm are separated into component parts in such a way that all operations

are kept within ^ single computer word and no overflows into the sign bit are

made, thus avoiding the sign-clearing problem. Through multiple precision

a sufficiently large modulus for good RNG properties may be used even

though the actual computer word size is small. An initialization call must

be made to convey to the RNG the maximum integer allowed on the particular

computer being used so that it can set up an appropriate multiple precision

representation.

The rdvantage of a RNG that is machine independent is simple: it

greatly faci itates the exchange and checkout of Monte Carlo programs between

different computers. The price paid for this advantage is also simple: it

is a much slower method of producing random numbers. However, it is

100

still fast enough (several thousand random numbers generated in one second)

that the time difference will not be noticed in most Monte Carlo applications.

B. 2 CHOICE OF A SPECIFIC ALGORITHM FOR MIRAN

The wjrk of Coveyou and MacPherson has provided a thorough

theoretical analysis of many commonly used RNGs. They show that the cor-

relation properties of a RNG are strongly dependent on the modulus P.
31 35 For values of P = 2 or 2 , there must necessarily be a waviness or

grainlness to the joint distribution of two, three, and four consecutive ran-

dom numbers that could lead to incorrect results for some Monte Carlo cal-
47 dilations For P = 2 , the departures from true randomness are small

enough as to be negligible for practical calculations. Among the specific
15

generators, X , tested by Coveyou and MacPherson, there is one, X = 5 ,

which has good statistical properties and which may be easily produced by

a machine independent subroutine. (In a subroutine designed for use on com-

puters of varying word length, specifying a fixed 47-bit integer through
15 data statements would be difficult. However, 5 may easily be produced

by multiplying 5 's after the exact multiple precision representation needed
47 15 has been established.) In addition the choice of P = 2 and X = 5 has

an added advantage: this particular choice of a RNG has seen long usage

(several thousand hours on a CDC 1604 at Oak Ridge National Laboratory)

in Monte Carlo computations without any apparent problems.

B. 3 MULTIPLE PRECISION REPRESENTATION

In the basic algorithm used by MIRAN, X and the R values will n
be 47-bit integers. This may exceed machine capacity. To keep all arith-

metic operations from overflowing a single machine word, these integers

are stored in an array wherein each word of the array constitutes a 'digit'

in a representation of the integer to a particular base. This basis, called

BASE, is chosen at execution time so that (BASE)" does not exceed the maxi-

mum integer allowed on the particular computer being used. Thus, for

101

example, on a machine with 35-bit words (unsigned), BASE would be 2
and each 47-bit integer would be broken down into 3 words as follows:

17

47-bit Integer Multiple Precision Representation

blb2 b18b14----b80b8r-"b47 +0 0br--bl3 word 3

+ 0 ®bi4 b30 word 2

+ 0 0b3i b47 word !

Note that the 'digits* are stored in the array in 'reverse' order, i.e.,
word 1 is the least significant 17 bits of the number. Also, since 17 does

not go evenly into 47, the last word contains only 13 bits.

Arithmetic in a multiple precision representation is carried out in

the same manner as arithmetic is normally done by hand. The addition of
two numbers, for example, is done digit by digit. When two 'digits', or words,
are added there may be an overflow into the 18 bit of the result. This must
be detected, the overflow cleared out, and a carry of 1 added into the next
higher 'digit'. Multiplication is slightly more complex. It is again carried

out digit by digit and the resulting products are added, keeping them in appro-
priate columns, to get the final product. The multiplication of two 'digits'
produces, of course, a two-digit product which is initially contained in a
single computer word. This must be broken down into a high-order digit and
a low-order digit with the high-order digit being added into the next higher

column of the result. As each column is added, a carry over into the next
higher column may be needed. Thus, in our example where three words were
used for each integer, nine multiplies and several additions would be needed
to form the six-word full product as schematized below.

102

-3
d
2

d
l

"3
d
2

h
ll

d
i

Si
h
21 ^l

h
31 Hi

h
12 ha

h
22

l22

h
32

t
32

h
13

t
13

h
23

l23

h
33 ^33

S
6

S
5

S
4

S
3

S
2

sl

where h.. and l.. are the high and low order parts of ^he product of

d. and dj.

B. 4 USE OF MIRAN PACKAGE

Initialization:

Before generating any random numbers, it is necessary to make an

initialization call. This is done by the statement

CALL RANSET (MAXINT,NSTART)

where MAXINT is the maximum integer allowed on the computer (or compiler)

being used. NSTART is the starting value, R , to be used in the random

number sequence. If NSTART is less than or equal to 0, a default value

of 2001 is supplied for NSTART. If NSTART is even, the next higher odd

number will be used.

103

35 48
For example MAXTNT =2 -1 on a 1108, 2 -1 on a CDC-6600, etc.

Good values for NSTART are any cud integer although frequent use of

small odd integers is not recommended for calculations employing a re-

latively small number of random numbers.

The random numbers are generated in subroutine URAND which may

be used as either a function subroutine or as an ordinary subroutine return-

ing a value. Thus, either

CALL URAND(R)

or

R = URAND(X)

will store a uniform random number in R. (Note that in the second form

the same random number will also be stored in X. Thus, X must be a

Fortran variable and not a constant.)

Limitations of MIRAN:

MIRAN will work on all computers where MAXINT is greater than
94 1023 and less than 2 . (These limits are practical and not theoretical and

could be extended if it were ever necessary.)

3. 5 MIRAN PROGRAM DETAILS

The Fortran listings of the two MIRAN routines URAND and RANSET

are presented in Figures B-l and B-2. The accompanying logic flow is de-

tailed in Figures B-3 and B-4. Additional explanation of the last step in the

URAND logic is provided below.

The two subroutines URAND and RANSET communicate through a

labelled common, MIRNG which contains

RAN(IO) - An array containing the 'digits' of the current (or last)

multiple precision random integer

104

RtAL FÜNCIXüN UNAND(FHAN)
rfjMHON /MIffNG/ HAN(10),GFNri0)»NWH0,BA8E»M()0,FBA8fc#F*ÜD
niHENSIJN 8üM(10)
TNTfeGE» rfAM,GEM,PASC*CARRY>9UM#PI9O0*HPROr)
DO JO I8ai,N«*0

Oü 1 2R«1^2
r8«|R*IG*l
BH^J«MAN(IR)*G&N(I6)
HP9U0BRN0ü/bA5E
LPBuDsP^D-HRhOl^BASF

TF (I5.LT,«<*»U) 9üM(IS*i)»?oM(Ii*l)*HPROP
1 CUMTlNüt
Wi«NWRn-l

DU b l'«l/*2

rARfiVaSjM(J8)/9ASE
9U»'(Iä)aSjH(I8)-CARRV*BASt
SUM(I8fn«9uH(I6«l)^CARNV

5 CÜNIlNUt
SUM(Mi«H0)a8ü^(^MRD)«l|4ün*(Sim(NHK0J/MO0)
^0 iO ISaWN-RO

20 PAMCIi)«SüM(i3)
PMANStUMd)
Oo 10 »8«2»Ni«»*0

19 FWANaF-'AN/asAortSUMdS)
PRANaFPAN/aMDü
UWANDSFNAN

RfcTWRR

Figure B-l. Fortran Usting of URAND

105

WKOÜTINE fUKSET(MA)(INT,N8TRT)
CÜMNPN /MI(»NC/ H*N(lO)rUFNriO)»NWHD,§ASE,MOD,FBASt,FMüP
iNTtr.f •> «AN,6tM,IIASE»C4HBV,HEn
MAXIaMAXlNT/tt
THaO
BASt«!

V9 IF iHASfe.wT.MAXl) Cu Tf> 100

IB*IBtl
6u m 9v

100 BASt«^**lH
^lABCaPABe
Ml|BO««*//li*l
»E»««fl7»l»»*(NrthO-l)
Mü'»?**RFH
FMOüBHOü
Ob 101 N«l,lO
9AN(N}«0

101 6kMN)*0
GtNilJaS
Pu ^Oü I«l*l«
CAH^VBO
Ou 190 Nai*\MHO
SE^(W)«CFN(N)*?*eABRV
CAI»KV«0
If CJENCNJ.LT.BABE) (Jü TO 190
CA9NysßtM(N)/dASF

195 CÜ^TlNüb
?oo cü^•TIN•Jt

NUTAIITMITKT
IF tNöTA^T.LE.O) N8TART«?u0l
M8TART«2*(NSTART/2)*1
OU 300 NMrNWHO
NTEMPaNbTART/BABE
QAN(MJ«NSTIRT«NTFMP*BASt

300 USTABTaNTcMp
RETuRN
ENO

Figure B-2. Fortran listing of RANSET

106

START

Clear out SUM array

For i ■ 1, n^RD and j = 1, NWRD+1 - i:

Multiply Ith •digit' erf RAN by J01 'digit' of GEN

Separate the 'two-digit' product Into a high-order part HPROD

and low-order part, LPROD

Add LPROD Into the (1 4 j-l)th column of SUM

Add HPROD Into the (1 4 J)th column of SUM

For 1 = 1, NWRD-1
.Ik

111

Separate 1 word of SUM Into a single 'digit' phis the carry

Into the next higher column

Add the carry into the (1 4 I)01 word of SUM

Reduce the last word of SUM modulo MOD

Store SUM In RAN for next entry to URAND

Convert SUM to single precision floating point and divide it by

P. Return this as the random number
_ ._ _.

Figure B-3. Logic flowchart for URAND

107

START

Determine IB suchthat 4IB < MAXINT-c^^1

BASE = 2IB

Calculate the number of words needed to represent 47-bit

integers to the base, BASE.

Calculate REM, number of bits in the last word of the

representation. MOD=2REM

Get floating point values of BASE and MOD

Clear out random number and generator arrays

15 Calculate X = 5 by multiplying by 5 15 times

.

If user gave NSTART ■ a, set NSTART to default value of

2001

Make sure NSTART is odd.

Convert NSTART to multiple precision representation.

END

Figure B-4. Logic flow chart for RANSET

108

15 GEN(IO) - An array containing the generator x(= 5) in multiple

precision representation
NWRD - The number of words used in the multiple precision

representation of an integer
BASE - The base used in the multiple precision representation
MOD - The maximum value of the highest order 'digit' in the

multiple precision representation

FBASE - Floating point value of BASE
FMOD - Floating point value of MOD

RAN, GEN, NWRD, and NBASE are Fortran integers; FBASE and FMOD are
Fortran real quantities.

An alternative method (unfortunately, not machine independent) of giving
the routine a starting value is to save the array RAN at the end of a run and to
restore RAN at the start of the new run (just after the RANSET call).

In the last step of the URAND flow the objective is conversion

of the multiple precision integer random number R to a floating point
random number X between 0 and 1. The multiple precision integer
produced by the random number algorithm is represented by the 'digits'
rlfT2' »rn (remember that r^^ is the lowest order digit. Thus,

R = r1 +(BASE).r2 +(BASE)2.rg+....+ (BASE)N"1.rN .

Notice that we have, from the manner in which N and MOD were established,

P = (BASE)N"1. MOD .

109

The uniform random number desired is given by R/P. Thus we have,

x. R - _rl , _r2 , r3
r (BASE)"'1-MOO (BASE)w"Ä.MOD (BASE)"'0-MOD

N-l N
+ --+BASE-MOD ^SIÖC

= H5l5(rN + SSSl(rN-l + ---- gX5E(r2 + gÄ5E"ri)--"))

Starting from the right it is easy to compute this iteratively.

B. 6 FIRST 100 RANDOM NUMBERS PRODUCED BY MIRAN

For checkout purposes, Takle B-l lists the first 100 random num-

bers produced by MIRAN when the default value of NSTAPT, 2001, is used
as the starting random number.

110

Ml

o
•a

« m * m
mom

2 • •
« O Ht
« O «t

« «W IA
^ O IV
tfl •« Ht

4

fW « Ol

in

«M

IT
o
m
i^
o

a
4)
■

e * »n
O -« 4>
W • o
ru «, r-
«MM
• « O

V>

l#>
C «i r» ru r- nj -.
< a •»! o <V' «c o
o -M »• -o M « M
« r> « « •<) r^ o

m

r> m o o K •• «i

i^ * « r- « — Ki
o -v o -^ l/> •« x>
9 i^ « « K« <v m
> "M O r- "M (^ O
« 9 r^ o •• •

■c
■■t
•c

•

•

HI
Kl
»
>
CO •

•

4

•

•

■o
■o

•

•

o
o
J\
«■

<o
■.
o •

•

»
o

«

•

•

K

I»»

•

•

t>
»

•

•

eo
f.
«
o
»^
•

o •

»

•

o
o

o

•

>
o
« •

>
«
f-

»
r.
•

»
rv
■o
o
m
c

•

r
C

■■3
■»

•

ir

o

•

•V
<o
r-

C
»
•

»
o
»
•

a
a

ro
y»

-w
a •

»
o
o
IT
I/»

•

r~
-w
r«
O
0
» •

o
»
>

■Jt
• •

o
■r

»~
o •

r>

fV
i
t

»
If.

• •

IT

O
m

t
■j

ji

<»
■v
a
->
•

O

■e

•

c

■r
o

o
p
3-

«V

• «. tfl «,

^ »v »- ir
jp O M m
» • «k » IT

■
«

'V

n. rv
o «

IT c
V •«
•v «
■«» rf> a w
«- ir ir »«
- « t» «

a »
in

a

a
a
a
r.

»v

111

APPENDIX C
REFERENCES AND ABSTRACTED

BIBLIOGRAPHY

1. Coveyou, R. R., and R. D. MacPherson, "Fourier Analysis
of Uniform Random Number Generators," Journal of the ACM,
14 pp. 100-119, 1967.

A method of analysis of uniform random number generators is de-
veloped, applicable to almost all practical methods of generation.
The method is that of Fourier analysis of the output sequences of
such generators. With this tool it is possible to understand that
predict relevant statistical properties of such generators and com-
pare and evaluate such methods. The results of many such analyses
and comparisons are given. The performance of these methods
as implemented on differing computers is also studied The main
practical conclusions of the study are: (a) Such a priori analysis
and prediction of statistical behavior of uniform random number
generators is feasible, (b) The commonly used multiplicative
congruence method of generation is satisfactory with careful choice
of the multiplier for computers with an adequate (2~ 35 bit) word
length, (c) Further work may be necessary on generators to be
used on machines of shorter word length.

2. Kahn, H., Applications of Monte Carlo, Rand Corp., AEC-3259,
USAEC, April 1964.

A classic publication in thr field of Monte Carlo methods that describes
general Monte Carlo methods, random number generation schemes
and variance reduction techniques. The volume is divided in two
parts. Part I describes basic techniques with random numbers (such
as fundamental random number generation techniques) and Part n
details several variance reduction schemes. The general areas of
application addressed are problems in radiation transport.

3. MacLaren, M.D., G. Marsaglia, and T. A. Bray, "A Fast Procedure
for Generating Exponential Random Variables," Communications of
the ACM, 7. May 1964.

A very fast method for generating exponential random variables in a
digital computer is outlines. A detailed flow diagram and required
cables are provided.

115

tocedliif pifQiink

4. Marsaglia, G, and T. A. Bray, "A Convenient Method for Generating
Normal Variables^ " 3IAM Review, 6, 1964.

A ve ; fast yet small Fortran routine for generating normal random
variables in terms of a sequence of random variables uniform < /er
[0, l] is presented. A random variable X Is generated in terms
of uniform variables U-, U« in the following way: 86 percent
of the time, X=2(U1+U£+uf - 1. 5), 11 percent of the time, X = 1. 5
(Uj+U, - 1), and the remaming 3 percent uses a complicated pro-
ceaure.

5. Marsaglia, G., M. D. MacLaren, and T. A. Bray, "A Fast Procedure
For Generating Normal Random Variables," Communications of the
ACM, 7, 1964.

A technique for generating normally distributed random numbers is
described. It is faster than those currently in general use and is
readily applicable to both binary and decimal computers.

6. National Bureau of Standards Applied Mathematics Series 55, June
1964. Handbook of Mathematical Functions, Numerical Methods,
pp. 94§-953.

This section of the handbook reviews various methods of generating
random numbers including the rejection and composition methods.
Also presented are specific techniques for various discrete and con-
tinuous distributions such as the normal and exponential distributions.

7. Spanier, J., and E. M. Gelbard, Monte Carlo Principles and Neu-
tron Transport Probleme. Addision Wesley Publishers, 1969.

This is one of the more recent comprehensive referencep on Monte
Carlo methods as applied to radiation transport problems. Basic
fundamentals of Monte Carlo are first reviewed. Next the concepts
of discrete and continuous random walks are introduced followed by
a discussion of variance reduction techniques. Finally, advanced
concepts and applications to radiation transport are presented.

116

