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ABSTRACT

Algorithms for efficient generation of random numbers
from various probability distributions are presented, in both a
flowchart form and as a sample Fortran subroutine. Twenty-
two different distributions, including all commonly encountered
discrete and continuous functions, the Weibull, Johnson, and
Pearson families of empirical distributions, and histogram dis-
tributions, are covered. The general techniques to apply in
deriving a random number selection scheme for an arbitrary
distribution are discussed. A machine-independent subroutine

for generating uniform random numbers is also described.
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EXECUTIVE SUMMARY

Monte Carlo simulation is one of the most powerful and commonly
used techniques for analyzing complex physical problems. Applications can
be found in many diverse areas from radiation transport to river basin
modeling. Important Navy applications include analysis of antisubmarine
warfare exercises and operations, prediction of aircraft or sensor perform-
ance, tactical analysis, and matrix gaine solutions where random processes
are considered to be of particular importance. The range of applications has
been broadening and the size, complexity, and computational effort required
have been increasing. However, such developments are expected and de-
sirable since increased realism is concomitant with more complex and exten-
sive problem descriptions.

In recognition of such trends, the requirements for improved simula-
tion techniques are beconing more pressing. Unfortunately, methods for
achieving greater efficiency are frequently overlooked in developing simula-
tions. This can generally be attributed to one or more of the following reasons:

e Analysts usually seek advanced computer systems to perform
more complex simulation studies by exploiting increased
speed and/or storage capabilities. This is often achieved
at a considerably increased expensc.

e Many efficient simulation methods have evolved for specialized
applications. For example, some of the most impressive
Monte Carlo techniques have been developed in radiation trans-
port, a discipline that does not overlap into areas where even
a srmall number of simulation analysts are working.

e Known techniques are not developed to the point where they can
be easily understood or applied by even a small fraction of the
analysts who are performing simulation studies or developing
simulation modele.

Preceding page blank
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1. INTRODUCTION

In developing any Monte Carlo simulation, it is n:cessary to generate
random numbers from the stochastic models used. In Volume I, the process
and techniques of selecting probability models for the simulation were pre-
sented. The objective of this volume is to provide a convenienr! source of
efficient and simple random number generators for all the probabiiity dis-
tributions considered in Volume I. To this end flow charts and FCItTRAN
listings of these random number generators are provided here as well as

descriptions of the techniques employed.

It is the purpose of this document to provide a convenient mechanism
to select and implement these random number generators without having to
resort to an understanding of the underlying concepts used in their develep-
ment. Accordingly, the remainder of this report has been organized as

follows:

e SECTION 2, "Efficiency Comparison of Random Number
Generators, ' demonstrates improvements in running times
expected from using the techniques developed here over those
commonly used. This section has been included to provide an
appreciation for the magnitude of improvements possible in
using the techniques described herein.

¢ OSECTION 3, "Generation of Random Numbers from Selected Dis-
tributions, " provides algorithms defined by flow diagrams and
standard Fortran subroutines that can be applied directlv. This
section is introduced with a convenient summary table defining
where in the section a specific algorithm can be found.

e ..ypendix A, "Fundamental Considerations for Generation of
Random Numbers, ' describes the fundamentals on which randem
number generation techniques for arbitrary distributions can be
developed.



e Appendix B, "MIRAN - A Machine Independent Package For
Generating Uniform Random Numbers, " describes a uniform
random number generator that can be used on any machine
that does not have a reliable generator or on several different
machines where identical random numbers are to be generated
for comparison and cross checking.

Before proceeding it must be recognized that a ''good" uniform ran-
dom number generator is generally assumed to be available to the user.
This is often not the case, although most computerc today have uniform
random number generators included as part of the system software. Un-
fortunately, many of the uniform random number generators in current
use do not adequately approximate randomness to be sufficient for all Monte
Carlo calculations. To alleviate this difficulty, a machine independent

package for generating uniform random numbers is provided (Appendix B).



2. COMPARISON OF RANDOM NUMBER GENERATION PROCEDURES

The improvements in calculational efficiency realized by using the
random number generation techniques provided here depend on the particular
problem. However, by utilizing these techniques, near optimum results can

be assured.

It is of interest to compare the random number generation techniques
presented here with those commonly used to generate random numbers. This
comparison was performed during the course of the study for several distri-
butions, and it was found that improvements in computer time of factors vary-
ing from 2 to 5 were possible. Results for a few of the more common distri-
butions are shown in Table 2.1 which compares the running times of the
preferred techniques with those commonly used. For example, consider the
normal (or Gaussian) distribution. The usual procedure is to generate 12
random numbers uniformly distributed over the interval [0, 1] say Rl. . .. ,R12.

and determine

12
Ry = D R
i1

(

according to the normal distribution. Assembly language time on a Univac

By virtue of the central limit theorem, &% RN is approximately distributed

1108 was 105 microseconds per calculation using this approach. Procedures
studied here were the rejection technique (see Appendix A) and a technique

(

tively 74 and 30 microseconds. Not only are the running times significantly

developed by Marsaglia. ) The corresponding running times were respec-

reduced, but also the more efficient ones presented here are exact (within
machine roundoff errors).

Similar results were obtained with the exponential distribution where
the Marsaglia technique gave a reduction in running times of a factor greater

3



than three (Table 2.1). The standard method used is the inverse (see

Appendix A). The rejection method is discussed in Appendix A and the
Marsaglia method is reported in Ref. 3.

As implied above, there are several methods that may be used to
generate random numbers for a given distribution. However, where 2lternate
approaches could be identified or developed, comparisons were made and the

most efficient procedure selected. These generators are presented in the
next section.

It should be noted that the more efficient techniques are slightly more

complex to program; however, the slight additional effort involved gener-
ally pays off substantially in computer time.

TABLE 2.1

Running Time Comparisons Random Number Generators For
The Normal and Exponential Distributions®

Commonly a a
Used Rejection Marsaglia
Distribution Technique Technique Technique
Exponential 64 29 19
Normal
(Gaussian) 105 74 30

3See Appendix A for a brief description of tliese techniques.
bAll times ‘n microseconds of UNIV..C 1108 Assembly Language time.



3. GENERATION OF RANDOM NUMBERS FROM SELECTED
DISTRIBUTIONS

In this section, efficient algorithms are presented for a large number
of probability distributions. These are summarized in Table 3-1 which
gives the name of the distribution, the theoretical form, parameters in the
distribution to be specified by the user, other random number generators
used, and where the particular routines or algorithms can be found in this
section of the report. Also shown under the name of the distribution is the
FORTRAN subroutine name assigned to the random variable.

Once a distribution of interest has been identified, it is only necessary

to define the values of the parameters indicated and to implement the
algorithm from the specified pages of this section. In the subroutines,

the parameters are represented by mnemonics which should be recog-
nizable. For example, SIG is used to represent ¢ and SIGSQ to repre-
sent o 2, In some places the mnemonic starts with an A to provide a float-
ing point value such as ALAM for A .

It will be noted that certain distributions rely on other distributions
to generate random numbers. For example, generation of random numbers
for the Rayleigh distribution requires random numbers from an exponential
distribution. The exponential distribution in turn depends on a uniform
random number generator. Based on the frequent requirement for the uni-
form, exponential and normal distribution, it is usually convenient to pro-
vide a basic random number generation package consisting of subroutines
to generate uniform, exponential, and normal random variables as an inte-
gral part of any complex simulation program. Throughout this section these
three random number generation subroutines will appear as UNFRN(R),
EXPRN(R), and ANRMRN(R), respectively. where R is a dummy function

QWS 5



TABLE 3.1

Efficient Algorithms for a Large Number of Probability Distributions

Location ol
Algorithm to Generate

Name of Other
Distritution Parameters Random Number Random Numbers
(Function Title) Functional Form To Be Specified Generators Used Subsection Page
Undorm % ; a8xshb a, b None 31 10
(UNFRN)
Exponential 1Ae” ((x-A) ;x>0 Ae Uniform
(EXPRN) A>0 3.2 12
PR PP |
Normal 1 e (x -u)"/20 W, 0 Uniform,
(ANMRN) oV2e Exponential 3.3 14
Binomial (:) pk(l 3 p)"-k g n, p Uniform,
(KBINOM) Exponential 3.4 17
k=01,...,n
Multinomial (k " )p“xp“zp“s m, , PpoeeesPy Unlform 3.5 22
(MULNOM) 1%2- Ky /P Py Py -
Pyt...+P
kl 054...¢kmin
-\ Ak
Poisson T A>0 A Uniform 3.6 24
(KPOIS)
k=01,...
(e) (3d)
Hyper-geometric —H s N>M M,N,n Uniform 3.7 2
(KHYPRG; (3)
k=01...,M
Geometric pl1- p)k'l P Unlform, 3.8 28
(KGEOM) Exponential
k =1,2,3,...
Pascal (also ‘" 3 : i l) (1- |:;)"pk np Uniform, 3.9 )
called negative Frpanential
binomial} kK =01 -
(KPASCL) L




TABLE 3.1 (Continued)

Location of
Algorithm o Generate

Other
Name of Paramcicrs Random Num'icr fandomlNomliars
Distribution Punclional ¥orm To Be Specilied Generators Used Subsection Page
Cauchy 1 HEN TS XX 1 n Uniform .10 M
(cocHm ofree- o
. H
Rayleigh -32- [} "/" x20 . Exponcatial .1 3¢
(RAYLRN) .
n o
Gamma ﬁa LA A,n Uniform, 312 3
{GAMRN) Exponential
nA2>0
Peta AL lren) ‘-'"-)'.l y-xa]™! ”nb Gamma 313 a
(BETARN) b-a )i lu-a boa o o L )
asx<h
n,y>0
LINRY
Parelo Ae x HE R L Uniforin .14 9
(I'tTORN)
Log-normal 1 -~ o op |- - Li (l-n(l't)‘l‘)’ “p, e Normal 3.15 45
(ALNMIIN) elr - ¢) V25 20
X2
IS - 2, 2
Folded Normal ! . [e (=012 oo (xen)' /20 ] ¥, 0 Normal 3.16 4
(FERMItN) o2,
x>0;
“(ex 4 1/2 1aD) ]
Kodlin‘u (nerxle " yon Exponential 3. 17 49
Distritution x>0,
{AKODIN) »wno 0
Exticme Maxtmuse values "o Fxponential 318 51
Valoe 1
Dislnibutions ] i s (x7#)
(AMAXIN) P Fox-p)-c ; >0
Minim:m value: 3.16 51
y [ Lo
(AMININ) o erlglxop)-c ia>0
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TABLE 3.1 (Continued)

Nante of
Distr:butom
(Fuactica Ti:le)

Functional Form

Parameters
To Be Specified

Otlier
Random Numbcer
Generators Uscd

Locatior of
Algorithm to G¢~urate
Rardon: Nuaters

Subscct oa ' Dage

. (x-:!"
wetll Lx-a?le A 0 Gl O Expo:« atul 3.19 53
(WIBLRN)
x2¢
n,A>0
Jetnson 5 e “om,y Normal 3.2¢.1 55
Systom V2r(x-¢)
H
2
{SLRN) exp { -"2— [;7’- o qu.-.)] ’(
x>0
X
Sg = o) 1y, A Normal 1.20.2 57
B’ \,'2_: (x =« ‘A').on R Al * ““hil
2
1SRN i1 LTI
'SBR\} exp l 3 [yo qln( A_,‘”)] }
n,A>0 !
1SXS e
Sy \% —r_?-_!'z*;—_z- . LR 2% W Normal 3.20.3 59
»
Yixse) o n
rar - 1 hd
'SUPY exp [- 3 (y‘ 7 ln :(S-A—') .
. 12,2
[l:;:l . l] } )
7nA>0
Pearsen Tvpe | 3y a2, m, m, Camma 2211 6
System m, m, ’
(TYPIRN) c( .‘L) (1-"—)m My >1
2 3 <xca,
Type Ii: a, m Gamma 3.21.2 63
m
(TYPZRN) c( -’-‘;) m> -
2 ca<x<a
Type II: 3.21,3 €5
x\ 72 "X -acx<a
{TYP2RN) C(lo-‘-) Y, a Camma
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TABLE 3.1 (Continued)

Location of
Algcr.thm to Generate

Other
Nawe of Parameters Random Number JLuidom Nonibers
Distraiastion Punctiona) Form To Be Speclfied Generators Used Subsectior Page '
Type IV: m, Y0 Uniform, 3.21.4 [}
q -m " xponential
(T"‘m c(l N ‘i) ~ytas ('/‘)
a2
Type V: ' Camma 3.21.8 (1]
a . y, >0
a st a®ei. wr<o
Type V1: 8 4 4 Camma 3.21.8 n
4 z-a>0 1
(TYPORN) Cxa) 32 1 q‘>q’0l>°
Type VII: P Normal, 3.21.7 n
- Camma
2 =
(TYPTRI) c(: o ) m>3.$
2
Type VIL: [V Uniform 3.11.8 ™
‘m; O<sms1]
(TYPSR) c( .}) 1e2/a>0
Type IX: [ P Usiform 3.21.9 7%
m
(TYPORN) c (1 .f) lex/a>0
Type X: o Expomential 3.21.10 ”
(TP10RN) 1 ke 050
¢ 2> 0
Type XI: r,» Uniform I TR L
(TPLIRY) R x>»b
Ch/x) »1
Type XII: ‘{—,‘ 73k L Beta 3.31.12 ]
(y3+8; + 4B >0
(TPIZRN) o A\ s B q(d_‘ )
o(y3e8, - al)-x <x
Histog Not applicable “vA Upper and | Uatt
i1stogram app pper and lower orm K ™)
(AHSTRR) limits and Intermed~ L.
fate break points ia
distributioa
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argument. In the flow diagrams, these are indicated as U(0, 1), E(0, 1)
and N(0,1), respectively.

3.1 UNIFORM RANDOM NUMBER GENERATORS

The uniform random number generator is, of course, fundamental
to all random number generation. For the purposes here, it is assumed
that the computer system available will have such a generator as part of
the basic software package. If one is not available or the generator is
expected to be faulty, the machine independent package presented in Ap-
pendix B (MIRAN) can be used. The following paragraphs describe the
technique used in most computers for generating random numbers and pro-

vide insight into the assessment of such generators.

The method used for almost all uniform generators is the multiplica-
tive congruential method. (M A sequence of integers, Xy Xyseeos is generated
by the congruence

_ P
Xl = xn-x(modz )

Here P is the number of bits (excluding sign) in a word on the particular
computer employed and X is called the generator which is a carefully séelected
integer as described below. From this sequence random fractions are pro-
duced using

R =x.2F .
n n

The sequence of random fractions, RI’RZ’ ..., is output by the subroutine in
floating point form.

On most computers the multiplicative congruential method is accom-
plished by an integer multiplication of X and A. Only the low-order half
(P bits) of the product is retained as Xl This is then treated as a binary

fraction, converted to floating point, and normalized.

10



This method is fast and will produce nuinbers whose properties ap-
proximate randomness sufficiently close for valid use in Monte Carlo
simulations provided the following caveats are observed.

1. Choose a generator, A , with particular care. In particular,
generators with a small number of '1' bits in their binagﬁg;ge_—
sentation should be avoided. A number of generators of the form
218+ 3, 228 ¢ 3, 316 ¢ 3, etc., are particularly abundant. At
one time, they were used because they were thought to be good
and especially fast. However, further research has shown them
to be faulty and a number of simulations have produced erroneous
results as a consequence. Small generators such as A = 101 13
are also faulty anc must be avoided. The generators A =515 or A =5

have been well tested and are quite safe to use. {

2. Check the computer word length. It is best for P to be at
least 35 in the congruence. For machines with P < 32 a multi-
ple precision multiplication should be used to generate an ade-
quate congruence.

3. Do not trust, on blind faith, random number routines distributed ,
by the computer manufacturers with standard subroutine libraries.
These have been found to contain, with high probability, the faulty
generator values. |

The uniform random number generator will be referred to as UNFRN(R)
in subsequent routines and U(0, 1) in the flow diagrams.

11



3.2 EXPONENTIAL DISTRIBUTION

The simplest method to generate random numbers from the exponential

distribution, £(x) = e'x, is to use the inverse solution,
X = -lnﬁu) ’

where R, isa uniform random number. This is not, however, the fastest
method. An extremely rapid technique has been det ~loped by G. Marsaglia(s)
which, although it is several times faster than the logarithm, requires a
sizable block of computer storage (~600 words). When computer storage
is critical or when the exponential distrib' .ion is not of crucial importance,
the Von Neumann rejection technique is a good general method. This method,

usually faster than the logarithm, is shown in Fig. 3 -1,

-[(x-€)/x]

merely necessary to select from e then multiply by A and add ¢. For

To select from a generalized exponential, (1/)\)e , it is

best efficiency in general, the basic exponential subroutine should select from
e-’f and it should be left up to the calling program to supply the multiplication

and addition where needed.

The exponential distribution is referred to as EXPRN(R) in subsequent

routines and as E(0, 1) in the flow diagrams.

Sample Routines

Simplest method (use inline in calling program):
R = -ALOG (UNFRN(R))
Von Neumann rejection technique:

FUNCTION EXPRN(DUMMY)

1 =20
100 X = UNFRN(X)
105 Y = UNFRN(X)
IF (X. LT.Y) GO TO 120
110 X = UNFRN(X)
IF X.LT.Y) GO TO 105
115 I = I+1
GO TO 100
120 EXPRN = X+l
RETURN
END

12
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fix) =eX . x-

0

i=i+1

Generate z «U(0,1)

No

Yes

F

Generate y «U(0,1)

Generate z <U(0.1)

Figure 3-1. Random number generation algorithm
for exponential distribution




3.3 NORMAL DISTRIBUTION

2,, 2
The normal distribution, f(x) = 1/(0./2n)e"(x"’ /2 , has received
considerable attention by the designers of random mumber generators. One
of the earliest methods, which is still found frequently in simulations today,
uses the central limit theorem to approximate the normal by summing up
several uniform random variables. (6) This approach has two serious defects.
First, it is only an approximation. Second, it is much slower than other
methods. The fastest method by far is a technique designed by G. Marsaglia.
However, considerable storage is needed for this techniyue. Another
technique by Marsaglia, 4) illustrated in Fig. 3-2, is fairly fast without

requiring much computer storage. This is the best technique known for

(5)

general usage.

As with the exponential routine, the basic normal random number
generator should be written to select from the normal distribution with unit
mean and zero standard deviation (referred to as ANRMRN in the routines
and as N(0, 1) in the flow diagrams). It is then left up to the calling program
to multinly by the standard deviation and add the mean if a generalized normal
deviate is required. That is,for a distribution with mean p and veiiance 02,
the correct random number would be oN(0,1) + u, where N(0, ) is a ran-
dom number from a distribution with g4 =0 and 02 =1,

Sample Routine

FUNCTION ANRMRN (DUMMY)
R = UNFRN(R)
IF (R. GT. 0. 8638) GO TO 10
ANRMRN = 2, *(UNFRN(X) + UNFRN(Y) + UNFRN(Z) - 1.5)
RETURN
10 IF (R. GT. 0.9745) GO TO 20
ANRMRN = 1, 5*(UNFRN(X) + UNFRN(Y) - 1.0)
RETURN

14



20
25

30

100

IF (R. GT.0.997302039) GO TO 100
X = 6. *UNFRN(X) - 3.0

Y = 0. 358*UNFRN(X)

XSQ = X*X

GX = 17. 49731196*EXP(- XSQ*. 5)
AX = ABY(X)

IF (AX. GT. 1.0) GO TO 30

IF (Y. GT. (GX-17. 44392294 + 4.73570326*XSQ + 2.15787544*AX))

GO TO 25
ANRMRN = X
RETURN
AX3 = 2. 36785163%(3-AX)**2
IF (AX. GT. 1. 5) GO TO 40
IF (Y.GT. (GX-AX3-2.15787544%(1. 5-AX))) GO TO 25
ANRMRN = X
RETURN
IF (Y.GT. (GX-AX3)) GO TO 25
ANRMRN = X
RETURN
X = SQRT (9+2*EXPRN(X))
IF (UNFRN(X). GT. 3/X) GO TO 100
IF (UNFRN(X). GT.0. 5 X = -X
ANRMRN = X
RETURN
END

15
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3.4 THE BINOMIAL DISTRIBUTION

The binomial distribution, p, = ({})pk (l-p)n'k, is a discrete distri-
bution describing the number of successes encountered in a series of Bernoulli
trials. It has two parameters, p, the probability of success in a single trial,
and n, the number of trials in the series.

The algorithm for selection from the binomial distribution is divided
into three subranges for the parameter p. For moderate values of p, the ran-
dom number generation is based on a straightforward simulation of the under-
lying basis for the distribution; n Bernoulli trials are generated and the num-

ber of successes are couanted. For small values of p, it becomes more efficient

to use a technique based on the geometric distribution. Conver:ely, for large
values of p it is efficient to reverse the geometric technique and perform the
counting on the number of failures rather than successes.

For large values of n, all three algorithms become inefficient;
the computing time involved is directly proportional to n. The binomial
distribution approximates a normal distribution with mean np and
standard deviation ,/np(1-p) for large n. One should consider replacing

the binomial with the approximate normal for large values of n (n>10 p/(1-p)
or n>10 (1-p)/p).

Sample Subroutines

For p< .25

FUNCTION KBINOM (N, ALNQ)
C ALNQ IS -ALOG (1. -P)
KBINOM =0
M=0
5 R = EXPRN(R)
J=1+R/ALNQ
M=M+1J
IF M - N)10, 15, 20
10 KBINOM = KBINOM +1

GO TO 5
15 KBINOM = KBINOM + 1
20 RETURN

END

17
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For .25 < pg .75

15

FUNCTION KBINOM (N, P)

KBINOM = 0

DO15M =1, N

R = UNFRN (R)

IF (R. LT. P) KBINOM = KBINOM + 1
CONTINUE

RETURN
END
Forp > .15

FUNCTION KBINOM (N, ALNP)

C ALNP IS -ALOG (P)
KBINOM = N
M=0

5 R = EXPRN R)
J =1 +R/ALNP
M=M=+J
IF M-N)10, 15, 20

10 KBINOM = KBINOM - 1
GO TO 5

15 KBINOM = KBINOM -1

20 RETURN

END



. - > <0.2!
p" . (:x) pL 1 - ),)n k ; ¥Yor p<0

"k=k+1

Generaie
R « E(y, 1)

-— —————

j=1+R/A-n (1 - p)]

m=um+]j

e
!m__<;2;2:>

Figure 3-3. Random number generation algorithm

for binomial distribution
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[n) pk n-k
B=(f)P*a-»"* ;  Foro.25sps0.75

8TANT

e

\ o

" n
[~ I

Generate
Re«1(0, 1)

m=m+1 k=k+1

Figure 3-4. Random nuinber generation algorithm
for binomial distribution (contimued)
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| k, wmk
Py = (:) P - p) : Forp>0.75

k=k-1

Generate
R«E(,1)

1

§=1+R/[-1np]

m=m+j

Figure 3-5. Random number generation algorithm

for binomial distribution (continued)
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3.5 THE MULTINOMIAL DISTRIBUTION
The multinomial distribution,

Py, Ky o0ork ) = (kik:...km) e

pl pz ..0..pm

is a generalization of the binomial distribution to trials having m different
outcomes with discrete probabilities. Random number generation is accom-
plished by a straightforward simulation of the underlying process of identical
trials. Note that a 'random number' for this aistribution is an array con-
taining the number of realizations of each possible outcome.

Sample Routine

SUBROUTINE MULNOM (N, M, K, P)
DIMENSION K(M), P(M)

P IS INPUT ARRAY OF PROBABILITIES
K IS OUTPUT ARRAY OF OUTCOMES

10 K@) =0

an

20 CONTINUE
30 KJ) =K@) +1
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p (kl’ , [ ) ’ (kl kz . )pj- r’z LN N J

I m

i=1

kl' ll'llhm-u

Generate R+ U(0, 1)

J=j+1

)

Figure 3-6. Random nmumber generation algorithm for multinomial
distribution
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3.6 POISSON DISTRIBUTION =

The Poisson distribution, p, = e')‘-ér , is a discrete distribution
describing the number of occurrences in an interval when the rate of occur-

rence is a constant. The technique for selecting from the Poisson distribu-
tion is a combination-transformation method described in Ref. 2,

The computer time spent in this selection is directly proportional to
A, the mean value of the Poisson variable. For large A, this selection
can be very time consuming. It is possible to approximate the Poisson dis-
tribution by a normal distribution with a mean of A and a standard deviation
of YA for A sufficiently large ( A >10).

Sample Routine

FUNCTION KPOIS (EXPLAM)
C EXPLAM IS EXP (-LAMBDA)
Y=10
KPOIS =0
5 Y =Y * UNFRN (Y)
IF (Y. GT. EXPLAM) GO TO 10
KPOIS = KPOIS + 1
GO TO 5
10 RETURN
END

24



Figure 3-7. Random number generation algorithm for
Poisson distribution
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3.7 HYPERGEOMETRIC DISTRIBUTION
The hypergeometric distribution,

M|(M-N
_\k/\n-k
pk =
n

describes sampling without replacement. It has the parameters N, the
size of the total population, n, the size of the population sampled, and M,
the number of events in the total population. The random variable k is
the number of events occurring in the sample. The hypergeometric dis-

tribution is generated by simulating sampling without replacement.

Sample Routine

FUNCTION KHYPRG (NTOT, MTOT, N)
C NTOT IS TOTAL POPULATION SIZE, MTOT IS TOTAL
C EVENTS IN POPULATION, NIS SAMPLE SIZE
KHYPRG =0
EM = MTOT
EN = NTOT
DO10I=1, N
P = EM/EN
R = UNFRN (R)
IF (R. GT. P) GO TO 10
KHYPRG = KHYPRG + 1
EM =EM - 1.
10 EN=EN-1,
RETURN
END

26
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1

Generate R «U(0,1)

N
R<p i

Yes

k=k+1
f=i+1

| EM s l;;M -1

Figure 3-8, Random number generation algorithm for hypergeometric
distribution
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3.8 GEOMETRIC DISTRIBUTION

The geometric distribution, Py - pd - p)k' 1 , describes tl.e
number of trials to the first success in a series of Bernoulli trials. For
p> .25, the geometric distribution is most efficiently sampled by a
direc! solution of the discrete inverse equation. When p< .25, it becomes
more efficient to generate a geometric variate by truncating an exponential
random number.

Sanzple Routines

For p < .25:

FUNCTION KGEOM (ALNQ)
C ALNQIS -ALOG (1-P)

R = EXPRN (R)

KGEOM =1 + R/ALNQ

RETURN

END

For p> .25:

FUNCTION KGEOM (P)
A=P
Q=1-P
KGEOM =1
R = UNFRN (R)
10 R=R-A
IF R. LT. 0) RETURN
KGEOM =KGEOM + 1
A=A*Q
GO TO 10
END

28



Py = p(l-p)k'l . p<0.25

Generate R « E(0, 1)

|

k=14+R/[-In(1 - p)]

Figure 3-9. Random mumber generation algorithm
for geometric distribution
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J

Generate R «<U(0,1)

k=k+1
A=A-(1-p)

Figure 3-10. Random mumber generation algorithm
for geometric distribution (continued)
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3.9 PASCAL OR NEGATIVE BINOMIAL DISTRIBUTION
The Pascal distribution,

n+k-1
%"( k ) (l'p)npk’

describes the number of successes occurring before the nth fatlure in a
series of Bernoulli trials. For low or moderate values of p , the Pascal
distribution is efficiently generated by a direct simulation of a sequence
of Bernoulli trials. As p becomes large (p>.75), it becomes more
efficient to sample by generating a geometric variate for the number

of trials to each of the n failures.

Sample Routines
For p <.75:
FUNCTION KPASCL (P, N)
KPASCL =0
DO20J=1, N

10 R =UNFRN R)
IF R. GT. P) GO TO 20
KPASCL = KPASCL +1
GO TO 10

20 CONTINUE
RETURN
END

Forp>.75:

FUNCTION KPASCL (ALNP, N)
C  ALNP IS -ALOG(P)

KPASCL =0

DO10J =1, N

I = EXPRN(R)/ALNP
10 KPASCL = KPASCL +1

RETURN

END

31

TR AR PR S LT SRR T I £ | 2o S 2,



P, - (“*:'1) 1-p"p*: p<0.75

=0

k=0

.l.

k+1 Generate R «<U(0, 1)

32

No

j=j+1

Figure 3-11. Random number generation algorithm
for Pascal distribution



p, - (“*“'1) (1-p)*p" ; p>0.75

k

j=§+1

Figure 3-12. Random number generation algorithm

for Pascal distribution (continued)
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3.10 CAUCHY DISTRIBUTION
The Cauchy distribution,

f(x) = 1 y, -®<X<e«

PSRRI

#[1 + (x-p)“]
represents the distribution of the ratio of two normally distributed numbers.
It also represents the tangent of 2 random angle. It is easily generated by a
rejection technique which selects x and y uniformly in a unit circle, then cal-

culates the tangent x/y.

Caution: The moments of the Cauchy distribution are infinite; the behavior
of Cauchy variates in a simulation will be erratic.

Sample program:

FUNCTION COCHRN (AMU)

10 X = UNFRN(Y)
Y = 2. *UNFRN (X) - 1.
IFX*X+Y*Y. GT. 1) GO TO 10
COCHRN = AMU + Y/X
RETURN
END

34



1
1[l+(x-#)23

f(x) =

START

;

Generate
Ry, R, «U(0, 1)

|

R’=I-Rl-1

Figure 3-13. ~andom mumber generation algorithm
for Cauchy distribution
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3.11 RAYLEIGH DISTRIBUTION
The Rayleigh distribution,

2,2
o) = Fe*/2
o

is derived as the radial error when the x and y errors are independent normal
variates. It has a simple inverse which provides the most efficient method for

generating Rayleigh variates.
Sample routine:

FUNCTION RAYLRN (SIGMA)

RAYLRN =SIGMA * SQRT (2.*EXPRN(R))
RETURN

END

36



2, 2
fx) = _x, X /20
o

START

Generate
R« E(0,1)

o-v2-R

]
"

END

Figure 3-14. Random number generation algorithm
for Rayleigh distribution
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3.12 GAMMA DISTRIBUTION
The gamma distribution

describes the time for exactly n events to occur when events occur at a
constant rate A. When 7 is an integer, there is a simple combination tech-
nique for generating gamma variates. However, as the gamma distribution
is one of the Pearson family of distributions, there is a need for selecting

gamma variates when n is non-integral even though there is no physical
model for this. This is a much harder task but can be accomplished by a

combination of the usual technique for the integral part of n with a composite

rejection technique designed to select from xfe'x where f is the fractional

part of 7.

Sample routines:

For 7 integer:

FUNCTION GAMRN (ALAM, NETA)
Y=1
DO 101 =1, NETA

10 Y =Y * UNFRN (Y)
GAMRN = - ALOG(Y)/ALAM
RETURN
END

For n general:

FUNCTION GAMRN(ALAM, ETA)
N = ETA
F=ETA -N
IF(F.EQ. 0) GO TO 100
10 R = UNFRN(R)
IF (R.LT. F/(F + 2.71828)) GO TO 20
Y = UNFRN(Y) ** (1/F)
IF (UNFRN(R). GT. EXP(-Y)) GO TO 10
GO TO 50

38



Y=0
GOTO 70
Y =1, + EXPRN(Y)

IF(UNFRN(R). GT. Y#** (F -1,)) TO TO 10

IF(N.EQ 0) GO TO
Z2=10
DO80I=1, N

Z = Z* UNFRN(Z)

Y =Y - ALOG(Z
GAHRNtY/ALAM

150
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Figure 3-15. Random number generation algorithm
for gamma distribution



3.138 BETA DISTRIBUTION l
The beta distribution,
-1

w - ols B Ry 652y

with x limited to the interval (a,b), is a basic statistical distribution fre-
quently encountered for bounded variables. The parameters, y and 7,

are limited to positive values. Beta variates for most values of the parame-
ters are best obtained as a ratio of two gamma variites. If y and n are

both small integers, a beta variate may also be generated by choosing

v+ n - 1 uniform random numbers, arranging them in order of increasing
magnitude, and selecting the -yth random number as the beta variate. . ‘

Sang)le routine

FUNCTION BETARN (GAM, ETA, A, B)
Y = GAMRN (1., GAM)

Z = GAMRN (1., ETA)

BETARN = (Y/(Y + Z)) * (B - A) + A
RETURN

END
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f(x) = (5—;) ( ‘) ( 5——_)"-1 ; asxsb
S

Generate y {rom gamma distribution
with parameter y

I

Generate z from gamma distribution
with parameter 7

:

x=(—L)(b-a)+a

y+2

Figure 3-16. Random number generation algorithm
for beta distribution




3.14 PARETO DISTRIBUTION

The Pareto distribution, f(x) =Ae*x >}, has a simple inverse

which provides the quickest procedure for random mumber selection.

Sample routine

FUNCTION PRTORN (EPS, ALAM)
PRTORN = EPS * UNFRN(R)**(-1. /ALAM)
RETURN

END
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f(x) = A AT

START

|

Generate
R«U(0,1)

Figure 3-17. Random number generation algorithm
for Pareto distribution



3.15 LOG-NORMAL DISTRIBUTION
The log-normal distribution

_ 1 .1 1
f(x) oﬁl_(x-() expl gz[ln(x €) “]‘ ’

describes a random variable whose logarithm is normal. It is a simple
matter then to invert this transformation to generate log -normal variates.

Sample routine:

FUNCTION ALNMRN (EPS, AMU, SIGMA)
R = ANRMRN(R)

ALNMRN = EPS + EXP (SIGMA*R + AMU)
RETURN

END

45
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f(x) = - exp’- 1 Iln(x-e) - “]2:
o(x-e)V2x 2—02

START

|

Generate R « N(0, 1)

|

R eO'Rﬂs

L)
n

€

END

Figure 3-18. Random number generation algorithm
for log-normal distribution
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3.16 FOLDED-NORMAL DISTRIBUTION
The folded-normal distribution,
f(x) = —— [e-(x-uiz/&rz R e-(xm)z/zoz] ,
g

describes the distribution of the absolute value of a normal variate, which
provides the simplest procedure for generating from the distribution.

Sample routine

FUNCTION FNRMRN (AMU, SIGMA)
FNRMRN = ABS (AMU + SIGMA * ANRMRN(R))
RETURN

END

47
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2/ 2 2., 2
o1 | o) 20" | -(x+p)/20
f(x) P, = [e + e ]

[
l

Generate R < N(0, 1)

1

x=ABS(u+0-R)

|

I END

Figure 3-19. Random number generation algorithm
for folded-normal distribution




3.17 KODLIN'S DISTRIBUTION
Kodlin suggested as a distribution for survival time data the functional
form,
1) = (n + yx)ye MX + 1/2 v .

This Kodlin form has a moderately simple inverse, and thus it is not difficult
to generate random varities.

Sample routine

FUNCTION AKODRN (ETA, GAM)

R = EXPRN (R) * 2. * GAM/(ETA **2)

AKODRN = ETA/GAM * (SQRT(1. +R) - 1.)

RETURN

END |
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12
-I’X+ 57X
f(x)=(n+7x)e( 2 )

START

|

Generate R « E(D, 1) I

|
N‘TI |
Moo ]

Figure 3-20. Random number generation algorithm
for Kodlin's distribution




3.18 EXTREME VALUE DISTRIBUTIONS

There are two extreme vakie distributions. The first is for the maxi-
mum value, '

) - Lewp | - Lo - W |

and the second is for the minimum value,
f(x) =%°!plé (x-u) - e(x ) u/"] .

The inverse function for both is straightforward and provides an efficient
selection procedure.

Sample routines

For the maximum value:

FUNCTION AMAXRN (AMU, SIG)
R = EXPRN (R)

AMAXRN = AMU - 8IG * ALOG (R)
RETURN '
END

For the minimum vaklue:

FUNCTION AMINRN (AMU, SIG)
R = EXPRN (R)

AMINRN = AMU + SIG * ALOG(R)
RETURN

END .
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Qlre

Maximum value: f(x) = exp[- ?1' (x-p)- € (x- /o ]

START
Generate R « E(0, 1)

|

x==glnR+y

I

END
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Minimum value: f(x) = % exp[% (x-p) - e(x L “)/‘.’]

START

|

Generate R « £(0, 1)

Figure 3-21. Random number generation algorithm
for extreme value distributions




3.19 WEIBULL DISTRIBUTION

The Weibull distribution, £(x) = n/A (x-¢)" ! exp[-(x-¢"/2 |, 18 2 three-
parameter (¢,)\,n) family of empirical distributions having wide usefulness.
The random variable x is bounded below by ¢ . The inverse cumulative
function is straightforward and provides the best general method for

generating Weibull random numbers.

Sample routine:

FUNCTION WIBLRN (EPS, ALAM, ETA)
WIBLRN = EPS + (ALAM * EXPRN (ALAM)) ** (1. /ETA)
RETURN

END !
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_ gx-t)"
x) = 1x- "' e
1

START

|

Generate R « E(0, 1)

I

Figure 3-22. Randon number generation algorithm
for Weibull distribution




3.20 JOHNSON DISTRIBUTIONS
3.20.1 Johnsonm 8y, Distribution

) = —l— exp {- 9;- [2 +£n(x-e)]z} ,

is easily generated by transforming a2 normal variate. (The reverse of the

transformation used in deriving this Johnson distribution.) The sL dis-
tribution is also known as the log-normal (Section 3. 15).
Sample routine:

FUNCTION SLRN (EPS, GAM, ETA)

R = ANRMRN (R)

SLRN = EPS + EXP ((R-GAM)/ETA)

RETURN

END
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Generate
R «N(0,1)

Figure 3-23. Random number generation algorithm
for Johnson SL distribution




3.20.2 Johnson 8,, Distribution
The Johnson SB distribution,

2
_ .1 A 21 X-€
1) = L g @ {- 5[] } :
is easily generated by . transformation on a normal variate.

Sample routine:

FUNCTION SBRN (EPS, ALAM, GAM, ETA)
R = ANRMRN (R)

EX = EXP ((R-GAM)/ETA)

SBRN = EPS + ALAM * I'X/(1. + EX)
RETURN

END
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T SO p—

A '%,’*"‘“('::;_:e)l

1(x) = 2 (X-€¢)(A-x+¢) .

START

|

Generate
ReN(0,1)

Figure 3-24. Random number generation algorithm

for Johnson SB distribution
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3.20.3 Johnson 8U Distribution

Like the other Johnson family distributions, the S, distribution,

w35 Jmemy el ol 5 - )T

is easily selected by reversing the transform which generated the distribu-
tion from a normal distribution.

Sample program:

FUNCTION SURN (EPS, ALAM, GAM, ETA)
R = ANRMRN(R)

SURN = EPS + ALAM * SINH ((R - GAM)/ETA)
RETURN

END

59
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X = (+Asinh(Rn7)

Figure 3-25. Random number generation algorithm
for Johnson 8;; distribution



3.21 PEARSON DISTRIBUTIONS
3.21.1 Pearson Type I Distribution

The Type I distribution of the Pearson system of frequency functions
is given by

1&) = C(1 +x/a))™1 (1 -x/3, Y22

where C is a normalization constant. The limits on the distribution are

-al <x < a, and there are further coustraints that m, > -1 and m, > -1.
2 X+a 1 2
1

22+3y
transformed into a beta distribution which may be derived from gamma vari-
ates as given in Section 3.13.

By the linear transformation Z = , the Type I distribution can be

Sample routine:

FUNCTION TYP1RN(EM1, EM2, Al, A2)
U = GAMRN (1.,EM1+1.)

V = GAMRN (1.,EM2+1.)

TYPIRN = (A1 + A2)*U/(U+V) - Al
RETURN

END

o e

LU
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f(x) = C{1 + x/al)m 1(1- x/nz)mz

START
Generate U from a gamma distribution
with parameter (ml +1)

y

Generate V from a gamma distribution
with parameter (m2 +1)

'

Z=U/(U+V)

i

|

END

Figure 3-26. Random number generation algorithm
for the Pearson Type 1 distribution




3.21.2 Pearson Type II Distribution
The second distribution in the Pearson family is given by
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