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ABSTRACT 

Algorithms for efficient generation of random numbers 

from various probability distributions are presented, in both a 

flowchart form and as a sample Fortran subroutine.   Twenty- 

two different distributions, including all commonly encountered 

discrete and continuous functions, the Weibull, Johnson, and 

Pearson families of empirical distributions, and histogram dis- 

tributions, are covered.   The general techniques to apply in 

deriving a random number selection scheme for an arbitrary 

distribution are discussed.   A machine-independent subroutine 

for generating uniform random numbers is also described. 
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EXECUTIVE SUMMARY 

Monte Carlo simulation is one of the most powerful and commonly 

used techniques for analyzing complex physical problems.   Applications can 

be found in many diverse areas from radiation transport to river basin 

modeling.   Important Navy applications include analysis of antisubmarine 

warfare exercises and operations, prediction of aircraft or sensor perform- 

ance, tactical analysis, and matrix gaine solutions where random processes 

are considered to be of particular importance.   The range of applications has 

been broadening and the size, complexity, and computational effort required 

have been increasing.   However, such developments are expected and de- 

sirable since increased realism is concomitant with more complex and exten- 

sive problem descriptions. 

In recognition of such trends, the requirements for improved simula- 

tion techniques are becoming more pressing.   Unfortunately, methods for 

achieving greater efficiency are frequently overlooked in developing simula- 

tions.   This can generally be attributed to one or more of the following reasons: 

• Analysts usually seek advanced computer systems to perform 
more complex simulation studies by exploiting increased 
speed and/or storage capabilities.   This is often achieved 
at a considerably increased expense. 

• Many efficient simulation methods have evolved for specialized 
applic itions.   For example, some of the most impressive 
Monte Carlo techniques have been developed in radiation trans- 
port, a discipline that does not overlap into areas where even 
a small number of simulation analysts are working. 

• Known techniques are not developed to the point where they can 
be easily understood or applied   by even a small fraction of the 
analysts who are performing simulation studies or developing 
simulation models. 

xi 
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1.   INTRODUCTION 

In developing any Monte Carlo simulation, it is necessary to generate 

random numbers from the stochastic models used.   In Volume I, the process 

and techniques of selecting probability models for the simulation were pre- 

sented.   The objective of this volume is to provide a convenient source of 

efficient and simple random number generators for all the probability dis- 

tributions considered in Volume I.   To this end flow charts and FORTRAN 

listings of these random number generators are provided here as well as 

descriptions of the techniques employed. 

It is the purpose of this document to provide a convenient mechanism 

to select and implement these random number generators without having to 

resort to an understanding of the underlying concepts used in their develop- 

ment.   Accordingly, the remainder of this report has been organized as 

follows: 

• SECTION 2, "Efficiency Comparison of Random Number 
Generators." demonstrates improvements in running times 
expected from using the techniques developed here over those 
commonly used.   This section has been included to provide an 
appreciation for the magnitude of improvements possible in 
using the techniques described herein. 

• SECTION 3, "Generation of Random Numbers from Selected Dis- 
tributions, " provides algorithms defined by flow diagrams and 
standard Fortran subroutines that can be applied directiv.   This 
section is introduced with a convenient summary table refining 
where in the section a specific algorithm can be found. 

• appendix A, "Fundamental Considerations for Generation of 
Random Numbers," describes the fundamentals on which random 
number generation techniques for arbitrary distributions can be 
developed. 



•     Appendix B, "MIRAN - A Machine Independent Package For 
Generating Uniform Random Numbers, " describes a uniform 
random number generator that can be used on any machine 
that does not have a reliable generator or on several different 
machines where identical random numbers are to be generated 
for comparison and cross checking. 

Before proceeding it must be recognized that a "good" uniform ran- 

dom number generator is generally assumed to be available to the user. 

This is often not the case, although most computerc today have uniform 

random number generators included as part of the system software.   Un- 

fortunately, many of the uniform random number generators in current 

use do not adequately approximate randomness to be sufficient for all Monte 

Carlo calculations.   To alleviate this difficulty, a machine independent 

package for generating uniform random numbers is provided (Appendix B). 



2.   COMPARISON OF RANDOM NUMBER GENERATION PROCEDURES 

The improvements in calculational efficiency realized by using the 

random number generation techniques provided here depend on the particular 

problem.   However, by utilizing these techniques, near optimum results can 

be assured. 

It is of interest to compare the random number generation techniques 

presented here with those commonly used to generate random numbers.   This 

comparison was performed during the course of the study for several distri- 

butions, and it was found that improvements in computer time of factors vary- 

ing from 2 to 5 were possible.   Results for a few of the more common distri- 

butions are shown in Table 2.1 which compares the running times of the 

preferred techniques with those commonly used.   For example, consider the 

normal (or Gaussian) distribution.   The usual procedure is to generate 12 

random numbers uniformly distributed over the interval [0,1] say R. R.«- 

and determine 

12 

«N  = Z Ri-6    • 
i-1 

By virtue of the central limit theorem,       1^  is approximately distributed 

according to the normal distribution.   Assembly language time on a Univac 

1108 was 105 microseconds per calculation using this approach.   Procedures 

studied here were the rejection technique (see Appendix A) and a technique 
(5) developed by Marsaglia.v     The corresponding running times were respec- 

tively 74 and 30 microseconds.   Not only are the running times significantly 

reduced, but also the more efficient ones presented here are exact (within 

machine roundoff errors). 

Similar results were obtained with the exponential distribution where 

the Marsaglia technique gave a reduction in running times of a factor greater 

3 



than three (Table 2.1).   The standard method used is the inverse (see 

Appendix A).   The rejection method is discussed in Appendix A and the 
Marsaglia method is reported in Ref. 3. 

As implied above, there are several methods that may be used to 
generate random numbers for a given distribution.   However, where alternate 
approaches could be identified or developed, comparisons were made and the 

most efficient procedure selected.   These generators are presented in the 
next section. 

It should be noted that the more efficient techniques are slightly more 
complex to program; however, the slight additional effort involved gener- 
ally pays off substantially in computer time. 

TABLE 2 .1 

Running Time Comparisons Random Number Generators For 
The Normal and Exponential Distributionsb 

Distribution 

Commonly 
Used 

Technique 
Rejectiona 

Technique 
Marsagliaa 

Technique 

Exponential 

Normal 
(Gaussian) 

64 

105 

29 

74 

19 

30 

See Appendix A for a brief description of these techniques. 
All times \n microseconds of UNIWiC 1108 Assembly Language time. 



3.   GENERATION OF RANDOM NUMBERS FROM SELECTED 
DISTRIBUTIONS 

In this section, efficient algorithms are presented for a large number 

of probability distributions.   These are summarized in Table 3-1 which 

gives the name of the distribution, the theoretical form, parameters in the 

distribution to be specified by the user, other random number generators 

used, and where the particular routines or algorithms can be found in this 

section of the report.   Also shown under the name of the distribution is the 

FORTRAN subroutine name assigned to the random variable. 

Once a distribution of interest has been identified, it is only necessary 

to define the values of the parameters indicated and to implement the 
algorithm from the specified pages of this section.   In the subroutines, 

the parameters are represented by mnemonics which should be recog- 

nizable.   For example, SIG is used to represent a and SIGSQ to repre- 
2 

sent cr   ,   in some places the mnemonic starts with an A to provide a float- 

ing point value such as ALAM for A . 

It will be noted that certain distributions rely on other distributions 

to generate random numbers. For example, generation of random numbers 

for the Rayleigh distribution requires random numbers from an exponential 

distribution.   The exponential distribution in turn depends on a uniform 

random number generator.   Based on the frequent requirement for the uni- 

form, exponential and normal distribution, it is usually convenient to pro- 

vide a basic random number generation package consisting of subroutines 

to generate uniform, exponential, and normal random variables as an inte- 

gral part of any complex simulation program.   Throughout this section these 

three random number generation subroutines will appear as UNFRN(R), 

EXPRN(R), and ANRMRN(R), respectively, where R  is a dummy function 



TABLE 3.1 

Efficient Algorithms for a Large Number of Probability Distributions 

Naiii<> ij 

Oistrihution 
(Function Title) Functional Form 

Parameter» 
To Be Speeded 

«her 
Rancom Number 
Genenton Used 

Lorjtlun u( 
Algorithm to Generate 

Random Number* 

Subsection Page 

Lniform 
(UNFRN) 

b!,; «S^Sb ». b None 3.1 10 

Exponential 
(EXPRN) 

j4e-((«-')A] ;x^« 

A>0 
A,, Uniform 

3.2 12 

Normal 
(ANMRN) 

1       e-(x-M)2/2»a 

*". • Uniform, 
Exponential 3.3 14 oyJTi, 

Bmomlal 
(KHINOM) 

k  • 0,1 n 

". P Uniform, 
Exponential 3.4 17 

Multinomial 
(MULNOM) 

/         n         \  k. k- k,          k 

Pr...*Pm-  I 

W--+k.n-" 

m, n, Pj Pn Uniform 3.5 22 

Poisson 
(KPOIS) 

k = 0.1,... 

A Uniform 3.6 24 

Hyper-geometrlc 
fKHYPRO) 

'"Ira».« 
si ■ 

k  -0.1 M 

M, N, n Uniform 3.7 M 

Geometric 
(KCEOM1 

Pd-P)"'1 

k  .  1.2,3,. . . 

P Uniform, 
Exponential 

S.S 28 

Pascal (also 
called nc^Titlve 
binomial) 
(KPASCL) 

(^J-1)a-rtV 
k  ' 0.1 n 

n.P Uniform, 
■«■-panentlal 

3.« 31 



TABLE 3.1 (Continued) 

NatMof 
Dl.lrlbultou 

Parameter» 
To Dt Sperilicil 

»Mr 
ICindom Ntini'irr 
CcMralors IMil 

Loral inn if 
Aiicorllhm In (irnrrilc 

Kandoni Nuiiilirrii 

|                          rmirliuiul lorm Subucrlion Pafc 

C»ucliy 
(COCHKN) 

1                   I < • ß VaUorm 9.10 34 

' 
Haylrlek 
(KAVLKN) 

0 Eaponriili.il S.ll M 

Gamma 
(CAMRN) 

»., Uniform. 
Exixinrnli.-il 

3.11 38 

Mi 
(HKTAI(N) 

j- ritt?.» («\r■, f,. rjr"1 

ba r(r)r(i) (b-J     ["   b-»J 
• s a < b 

n.r >o 

y. I< »> b Gamma S.ll 41 

ParHo 
O'KrORN) 

A.» a»-';,,, *i' Unilonn 1.14 43 

(ALKWIIN) 

1                 ,tn           ' -2 (tola-.)-*)* • . is • Normal 3. IS (1 ,—   ■ cxp 
• (»-.) V2.            1  ? 

if > 

Kuldcd Normal 
(KI.'KMKN) 

i re-(x-^w4e-(«.(.),/s<.2] 

a >0; 

K.  • Normal 3.16 47 

Kodlin'u 
UiMril'ullU' 
(AKOimNl 

x>0. 
ri" EaponpiiUil 3. IT 4» 

Kxli en« 
Vihf 
Ui'iln'mlim* 
(AMAX/IN) 

(AMINitN') 

?  <XP 

Mlnlnr-' 

i(a-,)-«" .   0 

: > >o 

> 0 

(i.* Fj(|i«ncnli.il 1.11 

3.16 

51 

SI 



TABLE 3.1 (Continued) 

Nan-.c of 

(Ftn-ticri Ti:le) 
Paramrteri 

To B« Specified 

Ohcr 
Random Number 
Ctncri'.ort t«cd 

Local lor of 
Alfnrrhm to CiT-vnt» 

Rardum Nu.-i.L-cri 
Functional Form S-bscc! on    '       Pjpe 

i 

(V.TBLP.V) 
A(X

■
,', 

<....' 
',<!.* Expo:   rful 3. IS 53 •».      * 

xi • 
■I,* > 0 

Jo!..-jon 
Syttea 

s               " 
'. t.y Normal J.:C.I 55 

"L'    %2Mx-.) 

(SLRN) »x? j--2-[7»!nx-')     i 
x>0 
x ;. !.: t X 

1, v, *.' Normal 3. 20. 2 57 
(x -<).*-) •<) 

'S3R.V) F 1   2    r    ^     I \-x«< /J    | 

1, v.*.' Normal 3. 20.3 59 

3U1«0 exp -H^'-W« 

[^•■ri)] 
n.x >o 

System 
Trp«i a,   a2, mv ra2 Ctnma 3.21.1 6: 

(TVPIRX) c^^) i1^)?^ 
Typen: a, m Gamma 3.21.2 63 

fTYTJRN-l cA.sif    m>-, 
\    a' /           -a < x < a 

Type ni: 3.21.S es 

(ri'PJRN) 
/     .\ ya    ->x     -» < x< a 

Fi * Carama 

8 



TABLE 3.1 (Continued) 

Uuttr.liMmn FiinrlloMi For» 
PiramMtra 

T»B*«pwtfM 

(Mra 
Random Number 
Caatnlor« U»«d 

LocilM.n uf 
Al,   r.lhia In General» 

lt.. durn NjmMr« 

Subtrrllor to» 

(TW4IW) 

(1INMI 

(TYPTRH) 

(TYMIUO 

(TTMRM) 

(TPIOTK) 

(TPIIH« 

(TPia«) 

Tmiv *t y. • UMform, 
»poMMtol 

3.21.4 n 

TJrptV: p. y Otmm t.ll.l H 

Typ« VI. 
• - » > 0 •• '!• «I Oäuwm l.ll.t Tl 

Typ.«: *. ■ Normil. 
Cammi 

I.tl.T n 

.    .\-m ;     o s • s i 
CM«*)            l.«/i>0 

•. ■ VtUorm 1.11.1 n 

Typ««: 

c(l.j)                I.x/»>0 

•. ■ VmUorm 1.11.« r 

Typ.X: 

>>0 

• ttHmuttol *.II.10 N 

Typ» XI: 

s>b 
C(b/,)B-          .>, 

m.k Datform 1.11.11 •1 

1VP.XII:                         ^„^ 

(.(Jj.fl. * JUT ♦./    '       _ 

HS/«-I«I - if? 1 

Mi 1.11.11 a 

Hiflagrsa 
(AKtTIUQ 

NotipplkOI* Upper and lowtr 
Uatt* »nd inltrowd- 
UU br«Ii polau la 
dMrUMtb« 

Oatfor« 1.11 M 



argument.   In the flow diagrams, these are indicated as 11(0,1). E(0.1) 

and N(0,1),   respectively. 

3.1       UNIFORM RANDOM NUMBER GENERATORS 

The uniform random number generator is, of course, fundamental 

to all random number generation.   For the purposes here, it is assumed 

that the computer system available will have such a generator as part of 

the basic software package.   If one is not available or the generator is 

expected to be faulty, the machine independent package presented in Ap- 

pendix B (MIRAN) can be used.   The following paragraphs describe the 

technique used in most computers for generating random numbers and pro- 

vide insight into the assessment of such generators. 

The method used for almost all uniform generators is the multiplica 

ngruential i 

by the congruence 

tive congruential method.v ' A sequence of integers, z ,x.t..., is generated 

Xn+1   = xn.X(mod2P)    . 

Here P  is the number of bits (excluding sign) in a word on the particular 

computer employed and X  is called the generator which is a carefully selected 

integer as described below.   From this sequence random fractions are pro- 
duced using 

R    = x .2'P    . n        n 

The sequence of random fractions,   R^Rg,..., is output by the subroutine in 
floating point form. 

On most computers the multiplicative congruential method is accom- 

plished by an integer multiplication of x    and X.   Only the low-order half 
n 

(P bits) of the product is retained as xn+1.   This is then treated as a binary 

fraction, converted to floating point, and normalized. 

10 



This method is fast and will produce numbers whose properties ap- 

proximate randomness sufficiently close for valid use in Monte Carlo 
simulations provided the following caveats are observed. 

Choose a generator,   X ,   with particular care.   In particular, 
generators with a small number of T bits in their binary repre- 
sentation should be avoided.   A number of generators of the form 
21Ö ± 3, 22* ± 3, 2i* ± 3, etc., are particularly abundant.   At 
one time, they were used because they were thought to be good 
and especially fast.   However, further research has shown them 
to be faulty and a number of simulations have produced erroneous 
results as a consequence.   Small generators such as A = 101 .„ 
are also faulty and must be avoided.   The generators X«6l*orA«5' 
have been well tested and are quite safe to use."' 

2. Check the computer word length.   It is best for P to be at 
least 35 in the congruence.   For machines with P < 32 a multi- 
ple precision multiplication should be used to generate an ade- 
quate congruence. 

3. Do not trust, on blind faith, random number routines distributed 
by the computer manufacturers with standard subroutine libraries. 
These have been found to contain, with high probability, the faulty 
generator values. 

The uniform random number generator will be referred to as UNFRN(R) 
in subsequent routines and ü(0,1) in the flow diagrams. 

11 



3.2       EXPONENTIAL DISTRIBUTION 

The simplest method to generate random numbers from the exponential 

distribution,   f(x) = e    ,   is to use the inverse solution, 

x = -injy   , 

where  R,, is a uniform random number.   This is not, however, the fastest 
(3) method.   An extremely rapid technique has been dei Moped by G. Marsaglia 

which, although it is several times faster than the logarithm, requires a 

sizable block of computer storage (—600 words).   When computer storage 

is critical or when the exponential distrib   ion is not of crucial importance, 

the Von Neumann rejection technique is a good general method.   This method, 

usually faster than the logarithm, is shown in Fig. 3-1. 

To select from a generalized exponential, (l/X)e ^ ', it is 

merely necessary to select from  e      then multiply by X and add  e.   For 

best efficiency in general, the basic exponential subroutine should select from 

a  , and it should be left up to the calling program to supply the multiplication 

and addition where needed. 

The exponential distribution is referred to as EXPRN(R) in subsequent 

routines and as E(0,1) in the flow diagrams. 

Sample Routines 

Simplest method (use inline in calling program): 

R   =   -ALOG (UNFRN(R)) 

Von Neumann rejection technique: 

FUNCTION EXPRN(DUMMy) 
I   =  0 

100       X  =  UNFRN(X) 
105       Y  =  UNFRN(X) 

IF (X. LT. Y) GO TO 120 
110       X  = UNFRN(X) 

IF (X. LT. Y) GO TO 105 
115       I  = 1+1 

GOTO 100 
120       EXPRN  = X+I 

RETURN 
END 

12 



-x f(x) = e      ;   x     0 

( START J 

i = 0 

Generate  z<-U(0,1) 

Generate y *-U(0,1) 

Yes 

x = z + i 

(    END   J 

i = i + 1 

Yes 

iNo 

Generate  z «-U(0,1) 

Figure 3-1.   Random number generation algorithm 
for exponential distribution 
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3.3       NORMAL DISTRIBUTION 

The normal distribution,   f(x) = Xliajti^e     "** , has received 

considerable attention by the designers of random number generators.   One 

of the earliest methods, which is still found frequently in simulations today, 

uses the central limit theorem to approximate the normal by summing up 

several uniform random variables.       This approach has two serious defects. 

First, it is only an approximation.   Second, it is much slower than other 
(5) methods.   The fastest method by far is a technique designed by G. Marsaglia. 

However, considerable storage is needed for this technique.   Another 
(4) technique by Marsaglia/ ' illustrated in Fig. 3-2, is fairly fast without 

requiring much computer storage.   Thia is the best technique known for 

general usage. 

As with the exponential routine, the basic normal random number 

generator should be written to select from the normal distribution with unit 

mean and zero standard deviation (referred to as ANRMRN in the routines 

and as N(0,1) in the flow diagrams).    It is then left up to the calling program 

to multiply by the standard deviation and add the mean if a generalized normal 
2 

deviate is required.   That is, for a distribution with mean \i and vpfiance a , 

the correct random number would be aN(0,1) + ^, where N(0,1) is a ran- 
2 

dorn number from a distribution with /i = 0 and  a   =1. 

Sample Routine 

FUNCTION ANRMRN (DUMMY) 
R   =  UNFRN(R) 
IF (R. GT. 0. 8638) GO TO 10 
ANRMRN = 2. ♦(UNFRN(X) + UNFRN(Y) + UNFRN(Z) -1.5) 
RETURN 

10 IF (R. GT. 0.9745) GO TO 20 
ANRMRN = 1. 5*(UNFRN(X) + UNFRN(Y) - 1.0) 
RETURN 
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20 IF (R. GT. 0. 997302039) GO TO 100 
25 X= 6. ♦UNFRN(X) - 3.0 

Y = 0. 358*ÜNFRN(X) 
XSQ = X*X 
GX = 17. 49731196*EXP(-XSQ*. 5) 
AX ■ ABS(X) 
IF (AX. GT. 1.0) GO TO 30 
IF (Y. GT. (GX-17. 44392294 + 4. 73570326*XSQ - 2.15787544*AX)) 

GO TO 25 
ANRMRN = X 
RETURN 

30 AX3 = 2. 36785163*(3-AX)**2 
IF (AX. GT. 1. 5) GO TO 40 
IF (Y. GT. (GX-AX3-2.15787544*(1. 5-AX))) GO TO 25 
ANRMRN = X 
RETURN 

40 IF (Y. GT. (GX-AX3)) GO TO 25 
ANRMRN = X 
RETURN 

100 X = SQRT (9+2*EXPRN(X)) 
IF (UNFRN(X). GT. 3/X) GO TO 100 
IF (UNFRN(X). GT. 0. ^ X = -X 
ANRMRN = X 
RETURN 
END 
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3.4       THE BINOMUL DISTRIBUTION 

The binomial distribution,   pk = (g)pk (l-p)n"k,   is a discrete distri- 
bution describing the number of successes encountered in a series of Bernoulli 
trials.   It has two parameters, p, the probability of success in a single trial, 

and n, the number of trials in the series. 

The algorithm for selection from the binomial distribution is divided 

into three subranges for the parameter p.   For moderate values of p, the ran- 
dom number generation is based on a straightforward simulation of the under- 
lying basis for the distribution; n Bernoulli trials are generated and the num- 
ber of successes are counted.   For small values of p, it becomes more efficient 
to use a technique based on the geometric distribution. Convei tely, tor large 
values of p it is efficient to reverse the geometric technique and perform the 
counting on the number of failures rather than successes. 

For large values of n,  all three algorithms become inefficient; 
the computing time involved is directly proportional to n .   The binomial 
distribution approximates a normal distribution with mean np and 
standard deviation y/np^-p) for large n.   One should consider replacing 

the binomial with the approximate normal for large values of n (n > 10 p/(l-p) 
or n>10 (l-p)/p). 

Sample Subroutines 

For p < .25 

FUNCTION KBINOM (N, ALNQ) 
C ALNQIS -ALOG(l. -P) 

KBINOM = 0 
M=0 

5 R = EXPRN(R) 
J = 1 + R/ALNQ 
M -=M + J 
IF (M - N) 10, 15, 20 

10 KBINOM = KBINOM + 1 
GO TO 5 

15 KBINOM = KBINOM + 1 
20 RETURN 
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For .25$ p« .75 

FUNCTION KBINOM (N, P) 
KBINOM = 0 
DO 15 M - 1, N 
R = UNFRN (R) 
IF (R. LT. P) KBINOM = KBINOM + 1 

15        CONTINUE 
RETURN 
END 

For p > . 75 

FUNCTION KBINOM (N, ALNP) 
C       ALNP IS -ALOG (P) 

KBINOM = N 
M = 0 

5        R = EXPRN (R) 
J = 1 + R/ALNP 

M =M + J 
IF (M-N)IO, 15, 20 

10        KBINOM = KBINOM - 1 
GOT05 

15        KBINOM = KBINOM -1 
20        RETURN 

END 
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\-( k) ^ » - ^ 
n-k • 

» 
Vor p<0.2!- 

L STAUT ) 

k«0 

1 I 

Generdc 
R«-E(0,1) 

■ 

i»i 
1 

1 
+ R/l- III () - p)J 

k - 1: + 1 
m - m + j 

. 

Yo-     1 l    m < n    ) 

Figure 3-3.   Random number generation algorithm 
for binomial distribution 
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Pk • (k) pk (l " p,n'k    : For 0.25 ^p^O.75 

m = m + 1 

m = 1 

k«0 

;- 

R«-U(0,1) 

Yes 

k=k+ 1 

Yes -f  m<n   ) 

No 

(   END   J 

Figure 3-4.   Random number generation algorithm 
for binomial distribution (continued) 
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PK = (k)p  (i-P) For p >0.75 

k-K- 1 

' ► 

Generale 
R*-E(0,1) 

a 

J « 1 + R/[- In p]                 | 

m = m + ]                      i 

_y«s i 

Figure 3-5.   Random number generation algorithm 
for binomial distribution (continued) 
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3.5  TOE MULTINOMIAL OfSTOIBUTlON 

The multtncmial dlstributioo, 

pOcj, kj,...,^) »(^^...kjpj 

k m 
P2 pm 

is a generalization of the binomial distribution to trials having m different 
outcomes with discrete probabilities.  Random number generation is accom- 
plished by a straightforward simulation of the underlying process of identical 
trials.   Note that a 'random number* for this aistribution is an array con- 

taining the number of realizations of each possible outcome. 

Sample Routine 

SUBROUTINE MUUTOM (N, M, K, P) 
DIMENSION K(M), P(M) 

C P IS INPUT ARRAY OF PROBABIIiTIES 
C K IS OUTPUT ARRAY OP OUTCOMES 

DO10J = 1, M 
10 K(J) = 0 

DO 30 I = 1, N 
R = UNFRN (R) 
DO 20 J = 1, M 
R-I-PO) 
IF (R. LT. 0) GO TO30 

20 CONTINUE 
SO K(J) = K(J) + 1 

RETURN 
END 
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/Irlr \r      ) I ^ 1«   ^ ^ 
(Kv Kg,..., Kln; « 1^ i^ , # g km/PJ   P2    '" rJra 

Figure 3-6.   Random number generation algorithm for multinomial 
diBtribution 
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3.6  POISSON DISTRIBUTION 
A k 

The Poisson distribution,   p^ = e   -^j- , is a discrete distribution 

describing the number of occurrences in an interval when (he rate of occur- 

rence is a constant.   The technique for selecting from the Poisson distribu- 

tion is a combination-transformation method described in Ref. 2. 

The computer time spent in this selection is directly proportional to 

A,  the mean value of the Poisson variable.  For large A, this selection 

can be very time consuming.  It is possible to approximate the Poisson dis- 

tribution by % normal distribution with a mean of A and a standard deviation 

of /A   for A sufficiently large (A>10). 

Sample Routine 

FUNCTION KPOIS (EXPLAM) 
C EXPLAM IS EXP (-LAMBDA) 

Y * 1.0 
KPOIS =0 

5 Y = Y * UNFRN (Y) 
IF (Y. GT. EXPLAM) GO TO 10 
KPOIS ■ KPOIS + 1 
GO TO 5 

10        RETURN 
END 
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k = 0 

i f 

Generate R«-u(0,1) 

i 
' 

k = k+l y = yR 

i i 

No   / 
y< .> 

Yes 

Figure 3-7.   Random number generation algorithm for 
Poisson distribution 
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3.7 HYPERGEOMETRIC DISTRIBUTION 

Hie hyper geometric distribution, 

B  (rife:?) 

describes sampling without replacement.  It has the parameters N , the 

size of the total population, n, the size of the population sampled, and M, 

the number of events in the total population.   The random variable k is 

the number of events occurring in the sample.   The hyper geometric dis- 

tribution is generated by simulating sampling without replacement. 

Sample Routine 
FUNCTION KHYPRG (NTOT, MTOT, N) 

C     NTOT IS TOTAL POPULATION SIZE, MTOT IS TOTAL 
C     EVENTS IN POPULATION, N IS SAMPLE SIZE 

KHYPRG = 0 
EM =MTOT 
EN = NTOT 
DO 10 I = 1, N 
P = EM/teN 
R = UNFRN (R) 
IF (R. GT. P) GO TO 10 
KHYPRG = KHYPRG + 1 
£M — CiM — 1. 

10      EN = EN - 1. 
RETURN 
END 
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l-l + l 

(T 

k'O 

EM ^ \i 

EN = -\T 

p «= EW/EN 

Generate R«-U(0,1) 

^J -, 

No 
;p     i— 

Yes 

k = k+ 1 

EM -• EM-1 

EN «= EN - 1 

Yes i <» 

Wv'o 

END 

Figure 3-8.   Random munber generation algorithm for hypergeometric 
diatiibntion 

n 



3.8  GEOMETRIC DISTRIBUTION 

k-1 
The geometric distribution,  p^ = p(l-p)       , describes tie 

number of trials to the first success in a series of Bernoulli trials. For 

p ^. 25 , the geometric distribution is most efficiently sampled by a 

direct solution of the discrete inverse equation.  When p < . 25,   it becomes 

more efficient to generate a geometric variate by truncating an exponential 

random number. 

Sample Poutines 

For p < . 25: 

FUNCTION KGEOM (ALNQ) 
C     ALNQIS-ALOG(l-P) 

R = EXPKN (R) 
KGEOM = 1 + R/ALNQ 
RETURN 
END 

For p^ .25: 

FUNCTION KGEOM (P) 
A=P 
Q = l - P 
KGEOM = 1 
R = UNFRN (R) 

10     R = R - A 
IF (R.  LT. 0) RETURN 
KGEOM - KGEOM + 1 
A =A* Q 
GOTO 10 
END 
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pd-p)11"1    :     p<0.25 

Generate R <- E(0,1) 

k = l + R/[-ln(l-p)] 

f     END    ) 

Figure 3-9.   Random number generation algorithm 
for geometric distribution 
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vk-1 
Pk = P(l-p) :    p 2 0.25 

(START J 

k = 1 

A = p 

Generate R<-U(0,1) 

R = R- A 

k = k+ 1 

A = A-(l -p) 

ZHJ— 

Figure 3-10.   Random number generation algorithm 
for geometric distribution (continued) 



3.9 PASCAL GR NEGATIVE BINOMIAL DISTRIBUTION 

The Pascal distribution, 

P^C^a-pfp". 

describes the number of successes occurring before the nth failure in a 
series of Bernoulli trials.   For low or moderate values of p , the Pascal 
distribution is efficiently generated by a direct simulation of a sequence 
of Bernoulli trials.  As p becomes large  (p>.75), it becomes more 
efficient to sample by generating a geometric variate for the number 
of trials to each of the n failures. 

Sample Routines 

For p < . 75: 
FUNCTION   KPASCL (P, N) 
KPASCL = 0 
DO 20 J = 1, N 

10     R = UNFRN (R) 
IF (R. GT. P) GO TO 20 
KPASCL ■ KPASCL + 1 
GO TO 10 

20     CONTINUE 
RETURN 
END 

For p>.75: 

FUNCTION KPASCL (ALNP, N) 
C       ALNP IS -ALOG(P) 

KPASCL =0 
DO 10 J = 1, N 
I = EXPRN(R)/ALNP 

10      KPASCL = KPASCL + I 
RETURN 
END 
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P^ft^d-rtV^o. 75 

k = k+ 1 Generate  R*-U(0,1) 

Yes 

No 

Figure 3-11.   Random number generation algorithm 
for Pascal distribution 
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^.(-»-»IMS iP>«.n 

fSTART J 

j = l 

k = 0 

Generate R*-E(0,1) 

i = R/[-lnp] 

k = k + i 

No 

Figure 3-12.   Random number generation algorithm 
for Piiscal distribution (continued) 
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3.10     CAUCHY DISTRIBUTION 

The Caurhy distribution, 

fix)   = n- ,    - - < X <« 

represents the distribution of the ratio of two normally distributed numbers. 

It also represents the tangent of a random angle.   It is easily generated by a 

rejection technique which selects x and y uniformly in a unit circle, then cal- 

culates the tangent x/y. 

Caution:  The moments of the Cauchy distribution are infinite; the behavior 

of Cauchy variates in a simulation will be erratic. 
i 

Sample program: 

FUNCTION COCHRN (AMU) 
10     X = UNFRN(Y) 

Y = 2. *UNFRN (X) - 1. 
IF (X ♦ X + Y * Y. GT. 1) GO TO 10 
COCHRN = AMU + Y/X 
RETURN 
END 

34 



f(x) = 
ir[l + (x-M)Z) 

START 

I 
Generate 

R^R^U«),!) 

Figure 8-18.   Random number generation algorithm 
for Cauchy distribution 
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3.11     RAYLEIGH DISTRIBUTION 

The Rayleigh distribution, 

a 

is derived as the radial error when the x and y errors are independent normal 

variates.   It has a simple inverse which provides the most efficient method for 

generating Rayleigh variates. 

Sample routine: 

FUNCTION RAYLRN (SIGMA) 
RAYLRN = SIGMA ♦ SQRT (2. *EXPRN(R)) 
RETURN 
END 
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tm = 4 .■
x2/,''2 

a 

START 

Generate 
R *- E(0,1) 

i i 

x • (r-\/2'R 

END 

Figure 3-14.   Random number generation algorithm 
for Rayleigh distribution 
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3.12    GAMMA DISTRIBUTION 

The gamma distribution 

n~t -xx f(x)  = ^x       e 

describes the time for exactly TJ events to occur when events occur at a 

constant rate A .   When i? is an integer, there is a simple combination tech- 

nique for generating gamma variates.   However, as the gamma distribution 

is one of the Pearson family of distributions, there is a need for selecting 

gamma variates when 17 is non-integral even though there is no physical 

model for this.   This is a much harder task but can be accomplished by a 

combination of the usual technique for the integral part of TJ with a composite 

rejection technique designed to select from x e~x where f is the fractional 

part of TJ. 

Sample routines: 

For T? integer: 

10 

FUNCTION GAMRN (ALAM, NETA) 
Y = l 
DO 10 I = 1, NETA 
Y = Y * UNFRN (Y) 
GAMRN = - ALOG(Y)/ALAM 
RETURN 
END 

For ri general: 

10 

FUNCTION GAMRN(ALAM, ETA) 
N = ETA 
F = ETA - N 
IF(F.EQ.0)GOTO 100 
R = UNFRN(R) 
IF (R.LT. F/(F + 2.71828)) GO TO 20 
Y = UNFRN(Y) *♦ (1/F) 
IF (UNFRN(R). GT. EXP(-Y)) GO TO 10 
GO TO 50 
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100    T«0 
GOTO 70 

90    T « 1. + EZPRNfY) 
IF(ÜNFRN(R).GT. Y**(F-1.)) TO TO 10 

50    ir(N.EQ. 0) GO TO 150 
70    Z-1.0 

DO 801 « lf N 
80    Z = Z* UNFRN(Z) 

Y = Y-ALOG(Z) 
150    GAMRN ■ Y/ALAM 

RETURN 
END 
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Figure 8-15.   Random number generation algorithm 
for gamma distribution 
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3. IS    BETA DISTRIBUTION 

The beta distribution, 

with x limited to the interval (a,b), is a basic statistical distribution fre- 
quently encountered for bounded variables.   The parameters,   y and TJ , 
are limited to positive values.  Beta variates for most values of the parame- 

ters are best obtained as a ratio of two gamma varü tes.  If y and i\ are 
both small integers, a beta variate may also be generated by choosing 
y + TJ - 1 uniform random numbers, arranging them in order of increasing 
magnitude, and selecting the y    random number as the beta variate. 

Sample routine 

FUNCTION BETARN (GAM, ETA, A, B) 
Y - GAMRN (1., GAM) 
Z = GAMRN (1., ETA) 
BETARN * (Y/(Y + Z)) ♦ (B - A) + A 
RETURN 
END 
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'«-m^cVN''1: —b 

Generate y from gamma distribution 
with parameter y 

I 
Generate z from gamma distribution 

with parameter n 

■W*- a) + a 

Figure 3-16.   Random number generation algorithm 
for beta distribution 
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3.14    PARETO DISTRIBUTION 

The Pareto distribution,   f(x) » Xc x~ ~ ,   has a simple inverse 
which provides the quickest procedure for random number selection. 

Sample routine 
FUNCTION PRTORN (EPS, ALAM) 
PRTORN = EPS ♦ UNFRN(R)**(-1./ALAM) 

RETURN 
END 
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f(x) = X c^ x"^1 

START 

Generate 
R«-U(0,1) 

1 

x • , (R)-1A 

END 

Figure 3-17.   Random number generation algorithm 
for Pareto distribution 

44 



3.15    LOG-NORMAL DISTRIBUTION 

The log-normal distribution 

f(x) = -7= • exp {- -^[In (x - c) - n]2\   , 

describes a random variable whose logarithm is normal.   It is a simple 

matter then to invert this transformation to generate log-normal variates. 

Sample routine: 

FUNCTION ALNMRN (EPS, AMU, SIGMA) 
R^ANRMRNCR) 
ALNMRN ■ EPS + EXP (SIGMA*R + AMU) 
RETURN 
END 
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f(x) = 
a(x-c)y5w 

exp --^|ln(x-c)-Mr 
2a ' 

START 

f 

Generate R*-N(0,1) 

[ 

« = c + e'**» 

| f 

END 

Figure 3-18.   Random number generation algorithm 
for log-normal distribution 
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3.16     FOLDED-NORMAL DISTRIBUTION 

The folded-normal distribution, 

s^[eW/a^cW/2cr2]   t f(x) r- 

describes the distribution of (he absolute value of a normal variate, which 

provides the simplest procedure for generating from the distribution. 

Sample routine 

FUNCTION FNRMRN (AMU, SIGMA) 
FNRMRN - ABS (AMU + SIGMA * ANRMRN(R)) 
RETURN 
END 

I 



fW . ^ ,e-v.-.)2/2a2 + e-(x+ 

9v2v 
M)2/2a2| 

START 

I 
Generate R • N(0,1) 

x ■ ABS 0* + 9 • R) 

i 1 

END 

Figure 3-19.   Random number generation algorithm 
for folded-nor mal distribution 
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3.17    KODLDTS DISTRIBUTION 

Kodlin suggested aa a distribution for survival Urne data, the functional 

form, 

fw.(i»+»x>«-(l,x + ,/2yx2) • 

Ulis Kodlin form has a moderately simple inverse, and thus it is not difficult 

to generate random varities. 

Sample routine 

FUNCTION AKODRN (ETA, GAM) 
R ■ EXPRN (R) * 2. * GAM/(ETA ♦*2) 
AKODRN ■ ETA/GAM * (SQRT(1. + R) - 1.) 
RETURN 
END 
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f(x) = (f? + yx) e 
-(ix^yx2) 

START 

Figure 3-20.   Random number generation algorithm 
for KodUn's distribution 
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3.18     EXTREME VALUE DISTRIBUTIONS 

There are two extreme value distributions.   The first is for the maxi- 

mum value, 

and the second is for the minimum valne, 

The inverse function for both is straightforward and provides an efficient 

selection procedure. 

Sample routines 

For the maximum value: 

FUNCTION AMAXRN(AMU,SIG) 
R ■ EXPRN (R) 
AMAXRN - AMU - SIG * ALOG (R) 
RETURN 
END 

For the minimum value: 

FUNCTION AMINRN (AMU, SIG) 
R ■ EXPRN (R) 
AMINRN »AMU 4 SIG * ALOG<R) 
RETURN 
END 
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Maximum value:   f(x) = ~ expL | (x- M) - e" (x' *'* 

1  START 

1 

Generate R«- E(0,1) 

f 

x = -9lnR + M 

i 

END 

Minimum value:    f (x) ■ - exp 
ü 

i(x-M)-e(,t-^ 

START 

Generate R «-2(0,1) 

f 

x = a In R + M 

Figure 3-21.   Random number generation algorithm 
for extreme value distributions 
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3.19    WEIBULL DISTRIBUTION 

The Weiball distribution, f(jt) « nA(x-€),?"1exp[-(x-^t,/X ], ^ a three" 
parameter (c, X, t?) family of empirical distributions having; wide usefulness. 
Hie random variable x is bounded below by i .   The inverse cumulative 
function is straightforward and provides the best general method for 

generating Weibull random numbers. 

Sample routine: 
FUNCTION WIBLRN (EPS, ALAM, ETA) 
WIBLHN ■ EPS 4 (ALAM * EXPRN (ALAM)) ** (1. /ETA) 
RETUFN 
END 
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f(x) = 

START 

Generate  R «- E(0,1) 

x = (X-R)1/n
+f 

END 

Figure 3-22.   Random number generation algorithm 
for Weibull distribution 
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3.20    JOHNSON DISTRIBUTIONS 

3.20.1 Johnson St. Dlgtrilwtton 

is easily generated by transforming a normal variate.   (The reverse at the 
transformation used in deriving this Johnson distribution.) The S. dis- 

tribution is also known as the log-normal (Section 3.15). 

Sample routine; 

FUNCTION SLRN (EPS, GAM, ETA) 
R ■ ANRMRN (R) 
SLRN = EPS + EXP ((R-GAM)/ETA) 
RETURN 
END 



f(x) = n 
ü (x-c) 

2r iJ 

START 

Generate 
R«-N(0,1) 

i 

x = c + e    ' 

1 

END ■ 

Figure 3-23.   Random number generation algorithm 
for Johnson S.   distribution 
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3.20.2 Johnaon gp Dirtributlon 

The Johnson SB distribution, 

«« • jfe (,-.) (X-M "» {- f [^^(x^)]2 ) • 

is easily generated by ü transformation on a normal variate. 

Sample routine: 

FUNCTION SBRN (EPS, ALAM, GAM, ETA) 
R - ANRMRN (R) 
EX ■ EXP ((R-GAM)/ETA) 
SBRN = EPS + ALAM • rx/(l. + EX) 
RETURN 
END 
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f(x) = 
' TSt (x- c)(X-x+c) e 

START 

Generate 

R«-N(0,1) 

1 

(R-y) 

END 

Figure 3-24.   Random number generation algorithm 
for Johnson SB distribution 
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3.20.3 JohMon S^ Dlgtribatton 

Like the other Johnson famity distributions, the SL. distribution, 

1/2) \ 2" 
f w = 4= 

is easily selected by reversing the transform which generated the distribu- 

tion from a normal distribution. 

Sample program: 

FUNCTION SURN (EPS, ALAM, GAM, ETA) 
R ■ ANRMRN(R) 
SURN = EPS + ALAM * SINE ((R - GAM)/ETA) 
RETURN 
END 
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S :   f(x) u      x 

START 

Generate 
R«-N(0,1) 

i ■ 

x = € + X sinh (^~) 

END 

Figure 3-25.   Random number generation algorithm 
for Johnson S^ distribution 
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3.21  PEARSON DISTRIBUTIONS 

3.21.1 Pearson Type I Diatribntiop 

The Type I distribution of the Pearson system of frequency functions 
is given by 

km« /«      /    on. ffc) = C(l + x/a.)"1! (1 .x/^)m2 

where C is a normalization constant.   The limits on the distribution are 
-a- < x < a« and there are further constraints that m1 > -1 and m« > -1. 

By the linear transformation Z ■ •——-  .  the Type I distribution can be 
a2 + al 

transformed into a beta distribution which may be derived from gamma vari- 
ates as given in Section 3.13. 

Sample routine: 

FUNCTION TYP1RN(EM1, EM2, Al, A2) 
U=GAMRN(l.fEMl+l.) 
V=GAMRN(1.,EM2+1.) 
TYP1RN = (Al + A2)*U/(U+V) - Al 
RETURN 
END 
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m f««ca ♦ x/aj)" i a - x/^rt 

START 

I 
Generate U from a gamma distribution 

with parameter (m. ♦ 1) 

I 
Generate V from a gamma distribution 

with parameter (m, + 1) 

i 
z = u/cu ♦ v) 

I 
X = (aj+ag) Z -aj 

I 
END 

Figure 3-26.   Random number generation algorithm 
for the Pearson Type 1 distribution 
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3.21.2 Pearson Type g Dtstrtbution 

The second distribution in the Pearson family is given by 

x2   m 

a 

where C is a normalization factor.   The limits on the distribution are 
-a < x < a and m > -1.   This is a special case of Type I where m   ■ m 

and &! = a«*  As such it may also be derived from gamma variates. 

Sample routine: 

FUNCTION TYPE2RN(EM, A) 
U = GAMRN (1., EM+ 1) 
V=GAMRN1(1., EM+1) 
TYP2RN = A*Cü-y)/(ü+V) 
RETURN 
END 
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z   vm ffrHCd-Ar) 
a 

START 

I 
Generate U and V from gamma 
distributions with parameter 

m-fl 

I 
X = a*(Ü-WOJ+V)) 

I 
END 

Figure 3-27.   Random number generation algorithm 
for the Pearson Type II distribution 
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3.21.3 Peargon Type B Dtotributlon 

The Pearson Type in distribution is given by f(x) = C(l ♦ x/a)    e"^, 
where C is a normalization constant.   The distribution is limited to 
-a < x < a (or to    a < x < -a if a is negative) and is further constrained 
by ya> -1.   A few simple transformations,   x = a(y-l)  and X=ay , will 

turn this distribution into a special form of the gamma distribution 
f(y)=C,yXe'Xy . 

Sample routine: 
FUNCTION TYP3RN (GAM, A) 
P - GAM*A 
Y-GAMRN(P,P+1.) 
TYP3RN=A*(Y-1.) 
RETURN 
END 
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f«=C(l+x/a)yae"yx 

START 

I 
A = Xa 

i 
Generate Y from gamma distribution 

with parameters A, A + 1 

I 
x = a(y - 1) 

i 
END 

Figure 3-28.   Random number generation algorithm 
for the Pearson Type m distribution 
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3.21.4 Peargon Type IV Distribation 

The Type IV distribution of the Pearson system is given by 

«x)=C(l + x!,/a2)-me-''tan'1(x/i,)   , 

where C is a normalization constant.   By a trigonometric transformation, 

x = a tan'   (p - ir/2), the function can be transformed into ffco) = C'(sin (o)
T

o
y<0, 

where y = 2m - 2.   In this form there is one limit on the parameters, namely 

r > 3,  while p ranges from 0 to ir .   Picking from this function can be 

accomplished by a selection from e'
y<0

t  truncated at 0 = ir, followed by a 

rejection conditioned on (sin <p)   . 

Sample routine: 

FUNCTION TYP4RN(EM,GAMMA,A) 
DATA PI/3.1415962/HAFPI/1.5707981/ 
R ■ 2*EM-2 

10      PHI = EXPRN(R) 
PHI = AM0D(PHI/GAMMA, PI) 
IF (UNFRN(R). GT. (SIN(PHI)**R)) GO TO 10 
TYP4RN = A*TAN(PHI-HAFPI) 
RETURN 
END 
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-1, 
i«.c(x + x2/.V,V',ao ,x/,) 

START 

I 
y = 2m-2 

Generate R <- E(0,1) 

i 
(0 = R/Y {mod t) 

(i. e., (p is the remainder when as many multiplies 
of ir as possible are subtracted from R/y) 

I 
Generate y«- U(0,1) 

no 
I 

y <(sin <p)r 

I yes 

x = a tan (o - IT/2) 

I 
END 

Figure 3-29.   Random number generation algorithm 
for the Pearson Type IV distribution 
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3.21.5 Pearson Type V Dtatribntlcm 

The fifth type of distribution in the Pearson system of frequency func- 
tions is given by f(z) ■ C x'pe'r/x , where C is a normalization constant. 
The range of the argument is 0 < x < «• .   The parameter y must be positive 
(for y <0, -•<x < 0) , and p must be greater than 1.   The Type V random 
variable z is the inverse of a punma variate; this provides the simplest 

means of picking from the Type V distribution. 

Sample routine: 

FUNCTION TYP5RN (P, GAMMA) 
TYP5RN = 1. /GAMRN(GAMMA, P-l.) 
RETURN 
END 
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£(x) = c x-p *'y/x 

START 

I 
Generate R from the gamma distribution with parameters 

>7=p-landA=y 

I 
X = l/fc 

I 
END 

Figure 3-30.   Random number generation algorithm 
for the Pearson Type V distribution 

70 



3.21.6 Pearson Type VI Distribution 

Type VI of the Pearson family of distributions is given by 
f(x) = C(x-a) 2 x    * ,   where C is a normalization factor and q.  and q« 

are parameters limited by q- > q* + 1 > 0.   For a > 0 the range of the 
distribution is a < x < • while for negative a it is  -»< x < a.   By the 
simple transformation x = a/y the distribution is converted into a form of 
the beta difltribntion 

tau-Vs)      q2 f(y) =C'y   1   z    (1-y) z      0<y< 1 

which can be obtained from two gamma variates as described in 3.13. 

Sample routine: 

FUNCTION TyP6RN(A,Ql,Q2) 
U ■ GAMRN(1. ,Q1-Q2-1.) 
V=GAMRN(1.,Q2+1.) 
TYP6RN = A*(U+V)/ü 
RETURN 
END 
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"^tr^^nm i   i in >  .. »i-pi — 
■"        '■        --w-.,--   ».,„  ,„, 

q2 ^1 
f(x) =C(x-a) zx   1 

START 

I 
Generate U from gamma distribution 

with parameter >? = qj - q2 - 1 

I 
Generate V from gamma distribution 

with parameter ^ = qg + 1 

i 
X=a(U + V)AJ 

I 
END 

Figure 3-31.   Random number generation algorithm 
for the Pearson Type VI distribution 
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3.21.7 Pearsop Type Vn Distributiop 

Type Vn of the Pearson family of distributions is given by 

f W = C (1 + x2/a2rm, 

where C is a normalization factor.   Hie range of x is - • to • where 

m must be greater than 2.5.  By setting  z = -* *   the distribution 

is transformed into a   + x 

g(z) = C (1 - z)-1/2 zm-3/2 

which is a special case of a Beta distribution with   y = m-1/2 and 

V = 1/2.   The beta variate z can be obtained as a ratio of two gamma 
1/2 1/2 variates,   z = u/(u+v) .  As x = a(l/z - 1)      , we have x = a fy/u) 

Now v is a gamma variate with parameter   n= 1/2.   This special case 
2 

of a gamma variate can be obtained from  v = y /2 ,   where y is a 
1/2 normalized normal variate.   This gives x = ay (l/2u) '    .   Selection 

from the Pearson Type vn is achieved by combining the above transform- 

ations with the selection routines for the gamma and normal variates. 

Sample Routine 

FUNCTION TYP7RN(A, EM) 
Y = ANRMRN(y) 
U =GAMRN (.5,EM-.5) 
TYP7RN = A*Y/SQRT(Ü) 
RETURN 
END 
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f«=ca+x2/a2)'m 

START 

I 
Generate U from a gamma distribution 

with A =.5 and »7 =m-1/2 

I 
Generate Y from a normal distribution 

with mean ■ 0 and ^ = 1 

I 
x=:a*YAJ 

I 
END 

Figure 3-32.   Random number generation algorithm 
for the Pearson Type Vn distribution 
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3.21.8 Tg* VM Pearson Dtotribntioo 

The eighth distributioo in the Pearson family is given by 

f w = c a + x/a)-m 

where C is a normalization constant.   The range of x is -a < x < 0 
(or 0 < x < -a for a negative) while the range of m is 0 s m s 1. 
U we set y = (1 + x/a), the distribution becomes 

f (y) = C y"111     where     0< y< 1. 

Ulis form of the distribution has a simple inverse. 

Sample Routine 
FUNCTION TYPSRNCA, EM) 
R ■ ÜNFRNCR) 
TYP8RN = A* (R** (1./(I. EM)) -1.) 
RETURN 
END 
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f (x) = C (1 + x/a) -m 

START 

I 
Generate R «- U (0, 1) 

,.."» 

i 
-m) 

-a(y-l)| 

1 
END 

Figure 3-33.   Random number generation algr rithm 
for the Pearson Type VTII distribution 
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3.21.9 Pearson Type IX Dtstrflmtton 

The Pearson Type IX distribution is given by 

f W = C (1 + x/a)m, 

«here C is the normalization factor.   The range of x is -a to 0 while 
m most be greater than aero.  This function has a simple inverse. 

Sample Routine 

FUNCTION TYPE9RN(A, EM) 
R ■ UNFRNCR) 
TYPflRN = A*(R** (1. /(EM ♦ 1.))-!.) 
RETURN 
END 
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f« = C (1 +x/a) m 

START 

I 
Generate R «- U (0, 1) 

~r~ 
y m R l/(m+l) 

I 
x = a(y-l) 

END 

Figure 3-34.   Random number generation algorithm 
for the Pearson Type DC distribution 
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3.21.10 Pearson Type X Distribution 

The Pearson Type X distribution is a form of the exponential 

distribution given by 

f W = l/a e'*** ;    x ^ 0 

This is easily obtained from the standard exponential distribution 

routines. 

Sample Routine 

FUNCTION TP10RNCSIGMA) 
TP1QRN ■ SIGMA*EXPRN£IGMA) 
RETURN 
END 
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f« « 1/a e "x/a 

START 

Generate R <- E(0, 1) 

HZ 
Xsä^R 

I 
END 

Figure 3-35.   Random number generation algorithm 
for the Pearson Type X distribution 
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3.21.11 Pearaon Type XI DJetributlop 

The eleventh in the series of Pearson distribution is given by 

fix) * C(b/x)m 

where C is a normalization factor.   The range of x is limited to 
b <x <».   The parameter m is greater than 1 .  This distribution has 
a simple inverse. 

Sample Routine 

FUNCTION TP11RN03, EM) 
R ■ UNFRN(R) 
Y =R**(l./(fiM-l.)) 
TP11RN = B/Y 
RETURN 
END 
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f(x)=C(b/x) m 

START 

I 
Generate R •* U(0,1) 

I 
y=R>/(m-l) 

I 
x=b/y 

[ 
i 

END 

Figure 3-36.  Random number generation algorithm 
for the Pearson Type XI distribution 
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3.21.12 Pearson Type Xn Distribution 

Type Xn of the Pearson system of distributions is given by 

f(x)  = C 
{J^*S$**l<S*ffiV 

where C is a normalization factor, a is the standard deviation, and 
2   3 0i ■ MO/MO (skewness).  The range of x is 

- a (Ts+ijj + ^/Jj)< x < a (73+^ - Jfj   . 

By setting 

a = aiJs+ti + Jß^) > and 

b = a(v£^-v^), 

the distribution becomes 

By setting 

M-C&T 

the distribution transforms to f(y) = Cy   (1-y)       which is a special case 
of the Beta distribution. 
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Stinpto Roirtiaft 
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FUNCTION TY12RN(SIGMA, BETA1) 
R ■ SQRT(BETAl) 
8 m SQRT(BETAl+8) 
EM = R/S 
A ■ 8I(aiA*(R4S) 
B ■ SICa«A*(S-R) 
Y ■ BETARN(EM+1.1-EM) 
TP12RN « (B+A)*Y-A 
RETURN 
END 



mmmmmmmm* 

Jßi/iS+ßJ 

START 

I 

I 
Generate y from a beta distribution 

with 
y = m + 1  and 77 = 1-m 

i 
x = (b + a)y - a 

1 
END 

Figure 3-37.   Random number generation algorithm for 
the Pearson Type XTI distribution 
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3.22      HISTOGRAM DISTRIBUTIONS 

Frequently, empirical data regarding a probability distribution 

is obtained in a histogram form.   That is, intervals (x , Xj) , (x-, xj,.... 

(x   ., x ) and probabilities  p,, p0, • • • •, p   are given such that p. is n~in i   £ * i 
the probability that the variable x is found in the interval from x. . to 

x..   (It is presumed that the histogram is normalized, i.e. I  p. = 1.) 
1 i=l   1 

Within each interval it is assumed that the probability is constant. 

Selecting a random number from such a histogram distribution is 

simple.  It is necessary first to select the interval in which the random 

number falls, and then to choose where in that interval the random number 

lies.   This is basically an inverse distribution technique.   Selection of 

the interval i is accomplished by generating a uniform random number and 

subtracting off successive values of p. .   The value of i when this result 

first goes negative is the desired interval index.   Generation of a second 

uniform random number and scaling it to fit in the interval from x. , to x. 

complete, the task. 

A more efficient (much more efficient if the size of the data table 

is large) generator can be produced if it is possible to cast the histogram 

^Ata in a form such that p- = p« = ... = p   = 1/n by choosing values of 

x. appropriately.   Such a representation is known as equal probability 

bins.   This greatly simplifies selection of the interval i as all n intervals 

have the same probability.   Successive subtraction of values of p.  is 

no longer needed and can be replaced by a direct calculation of i from 

a uniform random number. 

In the sample Fortran routines below, the array X(I) is presumed 

to contain: X(l) = xo , X(2) = Xj , X(K + 1) = x .   In the first routine 

use is made of the fact that, at the conclusion of selection of i, R will be 

uniformly distributed between  0 and - p. . 
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Sample Routines 

For general histogram selection 

FUNCTION HBSTRN (N, X, P) 
DIMENSION X(K), PflST) 
R = UNFRN (R) 
DO 101 = 1, N 
R =R -PCD 
IF (P . LT . 0) CO to 20 

10      CONTINUE 
20      HSTRN = Xd) - R * (X (i + 1) - X (l))/P(l) 

RETURN 
END 

For selection with an equal probability bin histogram 

FUNCTION HSTRN (K, X) 
DIMENSION X(N) 
R = N ♦ UNFRN (R) + 1 
I =R 
R = R - I 
HSTRN = Xd) + R * (Xa + 1) - XÖ)) 
RETURN 
END 
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APPENDIX A 

GENERAL TECHNIQUES FOR GENERATING RANDOM 
NUMBERS FROM DESIRED DISTRIBUTIONS 

When given a particular distribution,   f (x),   and the task of 
selecting random numbers distributed according to that function, the 
investigator has a large number of possible alternatives at his disposal. 
The primary task is to derive a method which will accomplish the 
desired selection.  A secondary task is to choose the method which is 
least time-consuming computationally. 

Unfortunately, it is not possible to give a straightforward 
methodology for deriving random number generation techniques which 
can be applied in all or even in most cases.   The situation closely 

parallels that of finding an integral of an arbitrary function.   When one 
encounters the need to integrate an unfamiliar function, the first step, of 

course, is to try to look it up in a table of integrals.   That failing,one must 
try to simplify, transform variables, integrate by parts, use trigonometric 
substitutions, or employ other similar tricks to reduce the integral to a familiar 

form.   There is no guarantee of success, and much depends on the ingenuity 
and experience of the researcher.   When all else fails you can "grind out" 
a numerical solution. 

Faced with the task of generating random numbers from an unfamiliar 
distribution, a similar procedure is needed.   The first step is to try to look 
it up somewhere — such as in Section 3 of this report.   If not found there, 
there are a number of techniques — inverse, rejection, transformations, 
combinations, etc. available.   These are described in this Appendix.  There 
is no guarantee of success in using them, and the experience and ingenuity 
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of the analyst is very important.   As a final resort, there are numerical 

methods which can be applied. 

The following description of general techniques, while not universally 

applicable should give the reader some notion of how to proceed in deriving 

random number generation algorithms. 

A. 1   THE INVERSE METHOD^ 

The first technique which one should consider is the inverse.  To 

apply the inverse method, the distribution function is integrated to give 

the cumulative distribution,   F(x) = Jx f(x')dx'.   This is the probability of 

selecting a number less than or equal to x.   This is equated to the proba- 

bility of selecting a random number,   R,   from the uniform distribution. 

Thus,   F(x) = Jx f(x') ds' = R.   The question then is whether or not this 

equation has a simple closed-form solution,   x = F~ (R).   If the inverse 

function exists, then it is a solution to our task, for, if R  is distributed 

uniformly, then x = F~ (R)  is distributed according to f(x).   If  F" (R) 

not only exists,but is also moderately simple to compute, it is most likely 

the most efficient way to generate the desired random numbers. 

A. 2  REJECTION TECHNIQUE^ 

If the inverse function cannot be easily calculated, then the rejection 

technique should be considered.   Suppose that the function,   f(x),   has a 

maximum value M where  x varies over the range of interest from a to b. 

Random numbers are then chosen by the following two-step procedure. 

• Select x  from a uniform distribution on the interval (a, b) 

• Select a second uniform random number,    y,   and accept 
the value   x  only if y < [f(x)]/M. 

If x is rejected, then go back to the first step to select a new x and con- 

tinue this procedure until some value of x is accepted. The probability of 

selecting   x in the first step is  [l/(b-a)] dx, while the probability of 



acceptance at the second step is f (x)/to.   Thus the x values will be genera- 

ted with the desired probability f(x) dx. 

The constant term l/[M(b-a)] represents the efficiency of the rejec- 
tion.   Its reciprocal,   M(b-a),   is the average number of trials the rejection 
technique will require to generate a single random number and is, therefore. 
linearly proportional to the computation time required.   If M(b-a)   is very 
large, the rejection technique is too inefficient and a better technique should 
be sought. 

The rejection technique need not be based on variables from a uniform 
distribution but can be developed from other distributions.   For example 
the fact that 

ii-x2/2<   1/2    -x e < e     • e 

can be used to develop a rejection technique for picking from a normal distribution. 
First select  x from the exponential distribution e'x.   Then accept x  if 

a second (uniform) random number 

y   < Jill . e-C-*)2/2   . 
^T. e'x 

The essential ingredient of the rejection technique is to find a second dis- 
tribution function,   g(x)>   for which a selection procedure is known and such 

that f(x) < C g(x).   Selection of x from g(x)  is followed by acceptance if 

v   ^   f<x> 

The average number of trials needed for an acceptance is C.   Note that if 

g(x) is close to f(x), then C  will be close 1 and the technique will be very 

efficient. 

A. 3  TRANSFORMATION 

To simplify the derivation of inverse or rejection methods, it is best 
to transform the random variable into its simplest form.   Thus, if one had 

f(x) = g(Xx + c),   one would first make the substitution,   y = Xx + c, then 



search for a technique for generating numbers from g(y).   After generating 
a random number y,  set x ■ (y-c)/X to get the desired random variable. 

In doing transformations correctly we must be careful to transform not Just 
the function f(x) but the probability f(x) dx.    Tims, properly, we have 

f(x) dx ■ g(Xx + () dx = g(y) dx ■ g(y) dyA as the substitution y = Xx + c 
implies dy = X dx.    The correct normalized distribution for y is then 
1/X g(y).    As a second example, assume f(x) dx = 2x ^'x  dx.     Try 

the transformation y = x .   As dy - ?x dx, f(x) dx = 2x e'x   dx = e y dy. 
Therefore, selecting y  from the exponential e"y and taking x = Jy will 

give a random x from f(x). 

A. 4      COMBINATION OF RANDOM VARIABLES ^ 

As a step beyond transformations, consider various combinations 

of random variables such as adding subtracting, or multiplying two 
random numbers, taking the maximum or minimum of several random 
numbers, etc.    The results of such combinations follow no intuitive pattern 

but must be worked out through the laws of probability.   For example, the 
sum of two uniform random numbers has a triangular distribution, 

f(x) = 1 - |x- 1| while the product has the distribution, f(x) = - In x. 

More complex examples seem even farther removed from simple ration- 
ality.   If x and y are random numbers from the gamma distributions, 

l/r(n) xn"   e'x and  l/r(m) ym"   e"x,  then z = x/(x+ y) has a beta 

distribution r(m + n)/r(m)r(n) z11"1 (1 - z)m'1.    However, the beta 
distribution may also be obtained by taking n + m - 1  uniform random 

numbers, arranging them in increasing order, and selecting the nth num- 
ber in the sequence.   Thus, although combinations can be a very powerful 

method for transforming simple random variables into selections from 

other distributions, it is impossible to give guidelines or to arrive at a 

methodology for determining the proper combination needed to arrive at a 
desired distribution.   The investigator must simply learn the frequently 

used combinations and must use his inventiveness when confronted with an 
unfamiliar distribution. 
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A. 5 COMPOSITION TECHNIQUE(6^ 

Another method of general applicability is the composition technique. If 

the desired distribution can be written as a (generalized) integral over a 

family of density functions, then the sampling can be accomplished in a two- 

stage process.   On the first step, a particular density function is selected 

from the family, and on the second step, the desired random number is 

drawn from the particular density function.   In the usual application of 

this technique, the desired distribution is broken down into discrete parts, 

generally on separate intervals. 

A. 6  NUMERICAL METHODS 

If no exact method can be derived, there is a numerical technique 

which can be used.   This consists of generating the cumulative function, 

solving for its inverse numerically, tabulating the inverse, and then g' ner- 

ating the random numbers from the tabulated data.   If equal probability intervals 

are used in tabulating the inverse, then generation from the tabulated data 

can be quite fast.   It does, however, require a certain amount of computer 

storage to hold the tabulation. 

Improvements in the accuracy of numerical inverses can be made by 

using Chebyshev interpolating polynomials.   '    For some functions with long 

tails, the tabulated inverse must be replaced with some sort of approximating 

function in the tail of the distribution to achieve reasonable accuracy. 

A. 7        MARSAGLIA TECHNIQUE^3-5) 

If a particular distribution is very central to a frequently used simu- 

lation program and the generation subroutine will be called a great many 

times to produce random numbers, it may be worthwhile to design a very 

fast selection procedure to reduce the computer time needed.   A number of 

super-efficient techniques have been developed by G. Marsaglia.^ '   These 

are based on composition methods where the function is expressed as 

the sum of three or more parts.   The parts having highest probability are 

fast to select from and the parts difficult or slow to select from have very 
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small probability.   In one of Marsaglia's methods, the function is broken 

into: 

• A histogram 

• A collection of saw-toothed functions where an efficient 
rejection technique selects from the 'almost-linear* dis- 
tribution of each sawtooth. 

• The tail of the distribution. 

This method is very fast but requires moderate amounts of computer storage. 

In another method distributions are fitted to an approximation of the form 

C(M + u. + u« + u«), where M  is a discrete variable and the u's are uniform 

variables.   A small fraction of the time a more lengthy rejection procedure 

is needed to correct the error in the approximation.   This method is fairly 

fast without great storage requirements. 

These methods have been applied very successfully to the exponential 

and normal distributions.   They do, however, require considerable effort 

in manhours to develop and thus should be applied to other distributions only 

when the payoff can justify it. 
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APPENDIX B 

MIRAN - A MACHINE INDEPENDENT PACKAGE FOR GENERATING 
'   UNIFORM RANDOM NUMBERS 

B. 1      GENERAL DISCUSSION 

The standard technique for producing uniform random numbers on 

modern high-speed computers is an algorithm known as the multiplicative 

congruential method.   This -method is expressed mathematically as 

R    1   = A.R    (modulo P)   . 

Since the R's are integers ranging from 1 to P-l, successive real random 

numbers uniformly distributed from 0 to I are generated by dividing R   by P. 

The properties of this technique as a random number generator (RNG) are 

highly dependent on the choice of the generator.   A,   and the modulus,   P, 

Unfortunately, there are many RNGs in current use which do not approximate 

randomness closely enough to be sufficient for all Monte Carlo calculations 

and, what is far worse, do manage to pacs some of the simple tests for 

randomness.    There are, however, several choices of A  and  P  which have 

been thoroughly tested, both theoretically     and through many years of actual 

use in Monte Carlo calculations, and which appear to be sufficiently random 

for general usage. 

For reasons of convenience and efficiency,   P  is generally taken to 

be  2     where m  is the number of bits, excluding the sign bit, in a single 

word on the particular computer being used.   The generation process starts 

with a fixed generator,   A,   and a starting value,   R .   The full product 

from the multiplication of A and R    would usually fill two computer words; 

however, the modulo P  in the algorithm means that we only need the single 

word,   Rj,   comprising the low order half of the  A • R    product.   The random 

number gen3ration is completed by converting R.   to a real variable and 
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dividing by P.   R.   replaces R    in storage in the random number subroutine 

and the process is ready to begin anew. 

In this sort of a process there have been two barriers to developing 

a Fortran RNG subroutine which would be independent of the particular com- 

puter for which it was designed.   The first is the modulus P,   which varies 

from computer to computer as the word length varies.   [Choosing a universal 

value of P  to fit the smallest computer is not a good solution as the proper- 

ties of a RNG become less random as  P  is made smaller, to the extent that 

Coveyou and MacPherson^ ' consider them questionable for P = 2 
OK 

(IBM 360 series) and borderline for  P = 2     (IBM 7090, Univac 1108, etc.). ] 

The second problem is that the sign bit of R1   may need to be cleared follow- 

ing the multiplication.   Clearing the sign bit generally requires some trickery 

in Fortran which varies from computer to computer as the mode of represen- 

tation (one's complement, two's complement, uncomplemented, etc.) of 

negative IJ imbers varies. 

The way around these obstacles is to use an explicit multiple pre- 

cision representation.   The integers and operations involved in the RNG 

algorithm are separated into component parts in such a way that all operations 

are kept within ^ single computer word and no overflows into the sign bit are 

made, thus avoiding the sign-clearing problem.   Through multiple precision 

a sufficiently large modulus for good RNG properties may be used even 

though the actual computer word size is small.   An initialization call must 

be made to convey to the RNG the maximum integer allowed on the particular 

computer being used so that it can set up an appropriate multiple precision 

representation. 

The rdvantage of a RNG that is machine independent is simple:  it 

greatly faci itates the exchange and checkout of Monte Carlo programs between 

different computers.   The price paid for this advantage is also simple:  it 

is a much slower method of producing random numbers.   However, it is 
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still fast enough (several thousand random numbers generated in one second) 

that the time difference will not be noticed in most Monte Carlo applications. 

B. 2      CHOICE OF A SPECIFIC ALGORITHM FOR MIRAN 

The wjrk of Coveyou and MacPherson     has provided a thorough 

theoretical analysis of many commonly used RNGs.   They show that the cor- 

relation properties of a RNG are strongly dependent on the modulus  P. 
31 35 For values of P = 2      or  2    ,   there must necessarily be a waviness or 

grainlness to the joint distribution of two, three, and four consecutive ran- 

dom numbers that could lead to incorrect results for some Monte Carlo cal- 
47 dilations    For  P = 2    , the departures from true randomness are small 

enough as to be negligible for practical calculations.   Among the specific 
15 

generators,   X ,   tested by Coveyou and MacPherson, there is one,   X = 5    , 

which has good statistical properties and which may be easily produced by 

a machine independent subroutine.   (In a subroutine designed for use on com- 

puters of varying word length, specifying a fixed 47-bit integer through 
15 data statements would be difficult.   However,   5      may easily be produced 

by multiplying 5 's after the exact multiple precision representation needed 
47 15 has been established.)  In addition the choice of P = 2      and X = 5     has 

an added advantage: this particular choice of a RNG has seen long usage 

(several thousand hours on a CDC 1604 at Oak Ridge National Laboratory) 

in Monte Carlo computations without any apparent problems. 

B. 3      MULTIPLE PRECISION REPRESENTATION 

In the basic algorithm used by MIRAN,   X  and the R    values will n 
be 47-bit integers.   This may exceed machine capacity.   To keep all arith- 

metic operations from overflowing a single machine word, these integers 

are stored in an array wherein each word of the array constitutes a 'digit' 

in a representation of the integer to a particular base.   This basis, called 

BASE, is chosen at execution time so that (BASE)" does not exceed the maxi- 

mum integer allowed on the particular computer being used.   Thus, for 
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example, on a machine with 35-bit words (unsigned), BASE would be 2 
and each 47-bit integer would be broken down into 3 words as follows: 

17 

47-bit Integer Multiple Precision Representation 

blb2 b18b14----b80b8r-"b47 +0 0br--bl3    word 3 

+ 0 ®bi4 b30  word 2 

+ 0 0b3i b47   word ! 

Note that the 'digits* are stored in the array in 'reverse' order, i.e., 
word 1 is the least significant 17 bits of the number.   Also, since 17 does 

not go evenly into 47, the last word contains only 13 bits. 

Arithmetic in a multiple precision representation is carried out in 

the same manner as arithmetic is normally done by hand.   The addition of 
two numbers, for example, is done digit by digit.   When two 'digits', or words, 
are added there may be an overflow into the 18    bit of the result.   This must 
be detected, the overflow cleared out, and a carry of  1 added into the next 
higher 'digit'.   Multiplication is slightly more complex.   It is again carried 

out digit by digit and the resulting products are added, keeping them in appro- 
priate columns, to get the final product.   The multiplication of two 'digits' 
produces, of course, a two-digit product which is initially contained in a 
single computer word.   This must be broken down into a high-order digit and 
a low-order digit with the high-order digit being added into the next higher 

column of the result.   As each column is added, a carry over into the next 
higher column may be needed.   Thus, in our example where three words were 
used for each integer, nine multiplies and several additions would be needed 
to form the six-word full product as schematized below. 
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where  h..  and l.. are the high and low order parts of ^he product of 

d. and dj. 

B. 4      USE OF MIRAN PACKAGE 

Initialization: 

Before generating any random numbers, it is necessary to make an 

initialization call.   This is done by the statement 

CALL RANSET (MAXINT,NSTART) 

where MAXINT is the maximum integer allowed on the computer (or compiler) 

being used.   NSTART is the starting value,   R ,   to be used in the random 

number sequence.   If   NSTART is less than or equal to 0,   a default value 

of 2001  is supplied for  NSTART.  If NSTART  is even, the next higher odd 

number will be used. 
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35 48 
For example MAXTNT =2    -1 on a 1108, 2     -1 on a CDC-6600, etc. 

Good values for NSTART are any cud integer although frequent use of 

small odd integers is not recommended for calculations employing a re- 

latively small number of random numbers. 

The random numbers are generated in subroutine URAND which may 

be used as either a function subroutine or as an ordinary subroutine return- 

ing a value.   Thus, either 

CALL URAND(R) 

or 

R  = URAND(X) 

will store a uniform random number in R.   (Note that in the second form 

the same random number will also be stored in X.   Thus,   X must be a 

Fortran variable and not a constant.) 

Limitations of MIRAN: 

MIRAN will work on all computers where MAXINT is greater than 
94 1023 and less than 2    .   (These limits are practical and not theoretical and 

could be extended if it were ever necessary.) 

3. 5      MIRAN PROGRAM DETAILS 

The Fortran listings of the two MIRAN routines URAND and RANSET 

are presented in Figures B-l and B-2. The accompanying logic flow is de- 

tailed in Figures B-3 and B-4. Additional explanation of the last step in the 

URAND logic is provided below. 

The two subroutines URAND and RANSET communicate through a 

labelled common, MIRNG which contains 

RAN(IO)      -  An array containing the 'digits' of the current (or last) 

multiple precision random integer 
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RtAL  FÜNCIXüN   UNAND(FHAN) 
rfjMHON  /MIffNG/   HAN(10),GFNri0)»NWH0,BA8E»M()0,FBA8fc#F*ÜD 
niHENSIJN 8üM(10) 
TNTfeGE»  rfAM,GEM,PASC*CARRY>9UM#PI9O0*HPROr) 
DO JO   I8ai,N«*0 

Oü  1   2R«1^2 
r8«|R*IG*l 
BH^J«MAN(IR)*G&N(I6) 
HP9U0BRN0ü/bA5E 
LPBuDsP^D-HRhOl^BASF 

TF (I5.LT,«<*»U) 9üM(IS*i)»?oM(Ii*l)*HPROP 
1 CUMTlNüt 
Wi«NWRn-l 

DU b l'«l/*2 

rARfiVaSjM(J8)/9ASE 
9U»'(Iä)aSjH(I8)-CARRV*BASt 
SUM(I8fn«9uH(I6«l)^CARNV 

5  CÜNIlNUt 
SUM(Mi«H0)a8ü^(^MRD)«l|4ün*(Sim(NHK0J/MO0) 
^0  iO   ISaWN-RO 

20  PAMCIi)«SüM(i3) 
PMANStUMd) 
Oo   10   »8«2»Ni«»*0 

19   FWANaF-'AN/asAortSUMdS) 
PRANaFPAN/aMDü 
UWANDSFNAN 

RfcTWRR 

Figure B-l.   Fortran Usting of URAND 
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WKOÜTINE   fUKSET(MA)(INT,N8TRT) 
CÜMNPN   /MI(»NC/   H*N(lO)rUFNriO)»NWHD,§ASE,MOD,FBASt,FMüP 
iNTtr.f •>   «AN,6tM,IIASE»C4HBV,HEn 
MAXIaMAXlNT/tt 
THaO 
BASt«! 

V9   IF   iHASfe.wT.MAXl)   Cu  Tf>   100 

IB*IBtl 
6u m 9v 

100 BASt«^**lH 
^lABCaPABe 
Ml|BO««*//li*l 
»E»««fl7»l»»*(NrthO-l) 
Mü'»?**RFH 
FMOüBHOü 
Ob   101    N«l,lO 
9AN(N}«0 

101 6kMN)*0 
GtNilJaS 
Pu ^Oü   I«l*l« 
CAH^VBO 
Ou   190   Nai*\MHO 
SE^(W)«CFN(N)*?*eABRV 
CAI»KV«0 
If   CJENCNJ.LT.BABE)   (Jü  TO   190 
CA9NysßtM(N)/dASF 

195  CÜ^TlNüb 
?oo cü^•TIN•Jt 

NUTAIITMITKT 
IF   tNöTA^T.LE.O)   N8TART«?u0l 
M8TART«2*(NSTART/2)*1 
OU 300   NMrNWHO 
NTEMPaNbTART/BABE 
QAN(MJ«NSTIRT«NTFMP*BASt 

300   USTABTaNTcMp 
RETuRN 
ENO 

Figure B-2.   Fortran listing of RANSET 
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START 

Clear out SUM array 

For i ■  1, n^RD and j = 1,   NWRD+1 - i: 

Multiply Ith  •digit' erf RAN by J01 'digit' of GEN 

Separate the 'two-digit' product Into a high-order part HPROD 

and low-order part, LPROD 

Add LPROD Into the (1 4 j-l)th column of SUM 

Add HPROD Into the (1 4 J)th column of SUM 

For 1 = 1, NWRD-1 
.Ik 

111 

Separate 1     word of SUM Into a single 'digit' phis the carry 

Into the next higher column 

Add the carry into the (1 4 I)01 word of SUM 

Reduce the last word of SUM modulo MOD 

Store SUM In RAN for next entry to URAND 

Convert SUM to single precision floating point and divide it by 

P.   Return this as the random number 
_ ._ _. 

Figure B-3.   Logic flowchart for URAND 
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START 

Determine IB suchthat 4IB < MAXINT-c^^1 

BASE = 2IB 

Calculate the number of words needed to represent 47-bit 

integers to the base, BASE. 

Calculate REM, number of bits in the last word of the 

representation.   MOD=2REM 

Get floating point values of BASE and MOD 

Clear out random number and generator arrays 

15 Calculate X = 5      by multiplying by 5  15 times 

. 

If user gave NSTART ■ a, set NSTART to default value of 

2001 

Make sure NSTART is odd. 

Convert NSTART to multiple precision representation. 

END 

Figure B-4.   Logic flow chart for RANSET 
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15 GEN(IO)      - An array containing the generator x(= 5   )  in multiple 

precision representation 
NWRD - The number of words used in the multiple precision 

representation of an integer 
BASE - The base used in the multiple precision representation 
MOD - The maximum value of the highest order 'digit' in the 

multiple precision representation 

FBASE        - Floating point value of BASE 
FMOD - Floating point value of MOD 

RAN, GEN, NWRD, and NBASE are Fortran integers; FBASE and FMOD are 
Fortran real quantities. 

An alternative method (unfortunately, not machine independent) of giving 
the routine a starting value is to save the array RAN at the end of a run and to 
restore RAN at the start of the new run (just after the RANSET call). 

In the last step of the URAND flow the objective is conversion 

of the multiple precision integer random number R to a floating point 
random number X between 0 and  1.   The multiple precision integer 
produced by the random number algorithm is represented by the 'digits' 
rlfT2' »rn (remember that r^^ is the lowest order digit.   Thus, 

R  = r1 +(BASE).r2 +(BASE)2.rg+....+ (BASE)N"1.rN  . 

Notice that we have, from the manner in which N and MOD were established, 

P   =  (BASE)N"1. MOD  . 
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The uniform random number desired is given by R/P.   Thus we have, 

x. R - _rl , _r2 , r3 
r    (BASE)"'1-MOO    (BASE)w"Ä.MOD     (BASE)"'0-MOD 

N-l N 
+ --+BASE-MOD ^SIÖC 

= H5l5(rN + SSSl(rN-l + ---- gX5E(r2 + gÄ5E"ri)--")) 

Starting from the right it is easy to compute this iteratively. 

B. 6       FIRST 100 RANDOM NUMBERS PRODUCED BY MIRAN 

For checkout purposes, Takle B-l lists the first 100 random num- 

bers produced by MIRAN when the default value of NSTAPT, 2001, is used 
as the starting random number. 
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APPENDIX C 
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1. Coveyou, R. R., and R. D. MacPherson, "Fourier Analysis 
of Uniform Random Number Generators," Journal of the ACM, 
14 pp. 100-119, 1967. 

A method of analysis of uniform random number generators is de- 
veloped, applicable to almost all practical methods of generation. 
The method is that of Fourier analysis of the output sequences of 
such generators.   With this tool it is possible to understand that 
predict relevant statistical properties of such generators and com- 
pare and evaluate such methods.   The results of many such analyses 
and comparisons are given.   The performance of these methods 
as implemented on differing computers is also studied    The main 
practical conclusions of the study are: (a) Such a priori analysis 
and prediction of statistical behavior of uniform random number 
generators is feasible,   (b) The commonly used multiplicative 
congruence method of generation is satisfactory with careful choice 
of the multiplier for computers with an adequate (2~ 35 bit) word 
length,   (c) Further work may be necessary on generators to be 
used on machines of shorter word length. 

2. Kahn, H., Applications of Monte Carlo, Rand Corp., AEC-3259, 
USAEC, April 1964. 

A classic publication in thr field of Monte Carlo methods that describes 
general Monte Carlo methods, random number generation schemes 
and variance reduction techniques.   The volume is divided in two 
parts.   Part I describes basic techniques with random numbers (such 
as fundamental random number generation techniques) and Part n 
details several variance reduction schemes.   The general areas of 
application addressed are problems in radiation transport. 

3. MacLaren, M.D., G. Marsaglia, and T. A. Bray, "A Fast Procedure 
for Generating Exponential Random Variables," Communications of 
the ACM, 7. May 1964.   

A very fast method for generating exponential random variables in a 
digital computer is outlines.   A detailed flow diagram and required 
cables are provided. 
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4. Marsaglia, G, and T. A. Bray, "A Convenient Method for Generating 
Normal Variables^ " 3IAM Review, 6, 1964. 

A ve ; fast yet small Fortran routine for generating normal random 
variables in terms of a sequence of random variables uniform < /er 
[ 0, l] is presented.   A random variable X Is generated in terms 
of uniform variables  U-, U« in the following way:  86 percent 
of the time,   X=2(U1+U£+uf - 1. 5), 11 percent of the time,   X = 1. 5 
(Uj+U, - 1), and the remaming 3 percent uses a complicated pro- 
ceaure. 

5. Marsaglia, G., M. D. MacLaren, and T. A. Bray, "A Fast Procedure 
For Generating Normal Random Variables," Communications of the 
ACM, 7, 1964. 

A technique for generating normally distributed random numbers is 
described.   It is faster than those currently in general use and is 
readily applicable to both binary and decimal computers. 

6. National Bureau of Standards Applied Mathematics Series 55, June 
1964. Handbook of Mathematical Functions, Numerical Methods, 
pp. 94§-953. 

This section of the handbook reviews various methods of generating 
random numbers including the rejection and composition methods. 
Also presented are specific techniques for various discrete and con- 
tinuous distributions such as the normal and exponential distributions. 

7. Spanier, J., and E. M. Gelbard, Monte Carlo Principles and Neu- 
tron Transport Probleme. Addision Wesley Publishers, 1969. 

This is one of the more recent comprehensive referencep on Monte 
Carlo methods as applied to radiation transport problems.   Basic 
fundamentals of Monte Carlo are first reviewed.   Next the concepts 
of discrete and continuous random walks are introduced followed by 
a discussion of variance reduction techniques.   Finally, advanced 
concepts and applications to radiation transport are presented. 
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