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Abstract

The goal of intra-surgical registration is to establish a common reference frame between pre-surgical and
intra-surgical 3-D data sets that correspond to the same anatomy. This paper presents two novel tech-
niques which have application to this problem: high-speed pose tracking, and intra-surgical data selec-
tion. In the first part of this paper, we describe an approach for tracking the pose of arbitrarily-shaped
rigid objects at rates up to 10Hz. Static accuracies on the order of 1mm in translation and 1 degree in
rotation have been achieved. We have demonstrated the technique on a human face using a high-spee
VLSI range sensor; however, the technique is independent of the sensor used or the anatomy tracked. Ir
the second part of this paper, we describe a general purpose approach for selecting near-optimal, intra-
surgical registration data. Due to high costs associated with the acquisition of intra-surgical data, it is
desirable to minimize the amount of data acquired, while ensuring that registration accuracy require-
ments are met. We synthesize near-optimal intra-surgical data sets, based upon an analysis of differential
surface properties of pre-surgical data. We demonstrate, using data from a human femur, that discrete
point data sets selected using our method provide superior pose refinement accuracy to those selected by
human experts.

Keywords: 3-D Registration, Pose Estimation, High-Speed Pose Tracking, Geometric Constraint-Based
Data Selection

1 Introduction

A growing number of surgical procedures require the establishment of a common reference frame between
pre-surgical volumetric data and the corresponding patient anatomy. This requires the soluti8rDof the
registration problem. Once a common reference frame is determined, pre-surgical data can be used in
tasks such as: guiding robotic tool movements [15][30], guiding or constraining a surgeon’s tool move-
ments[5][16][22][24], superimposing graphical overlays of internal anatomy upon a surgeon’s view of the
patient [6], or guiding the position of radiosurgical equipment [27].

Current approaches to 3-D registration in medicine require manual specification of corresponding points
in pre- and intra-surgical data sets [5]. Establishing correspondence is simplified by patient-attached fidu-
cial markers, the locations of which can be extracted from both data sets. Recent approaches to 3-D reg
istration attempt to eliminate the need for fiducials and manual specification of correspondences by using
features which are intrinsic to the data. For example, researchers have attempted to match intrinsic feature:
such as: bounding contours to surfaces [17], ridge lines to ridge lines [8], surfaces to surfaces [12], and
discrete points to surfaces [6][16][22][28].

When the patient anatomy being registered is fixed in space, 3-D registration need be performed only once
to establish a common reference frame. However, a recent trend in medical technology has been to reduct
the need for invasive and uncomfortable fixturing devices (e.g. stereotactic neurosurgical frames). Without
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the use of rigid fixation, the relevant anatomy is free to move. Thus, it becomes necessary to periodically
register the relevant anatomy. The first part of this paper describes a technique capable of 3—-D registration
at rates of 5 to 10 iterations per second. While other researchers have addressed this problem [6][31], tc
our knowledge none have demonstrated sub-second performance without the use of fiducial markers.

We have demonstrated the high—speed registration capability by tracking the pose (position and orienta-
tion) of human faces. While we have not yet applied the technique to a clinical problem, we feel that there
is great potential for this method to be used in medical applications. Three requirements for the use of this
method are: 1) the ability to construct a polygonal mesh representation of the bounding surface of the rel-
evant anatomy from pre-surgical data, 2) the ability to acquire, at high speed, 3-D data of the bounding
surface of the anatomy during surgery, and 3) the ability to determine an approximate pose estimate for
initialization. We have demonstrated the technique with a prototype high-speed VLSI range sensor devel-
oped at CMU [7]. As other high-speed 3-D sensors capable of intra-surgical use become available (e.g.
GE’s interventional MRI, high-speed X-ray imagers, real-time range from focus sensors [21]) it should be
possible to adapt our technique to such sensors.

The second topic addressed in this paper is the selection and acquisition of intra-surgical data used in 3-C
registration. Sensors which have been used for intra-surgical data acquisition include coordinate measur-
ing devices [16][22][25], and X-ray imagers [17]. With these sensors, there are variable costs associated
with the acquisition of new data. Each additional unit of data acquired (i.e. 3-D data point, X-ray view)
expends time, and in the case of X-rays, increases the radiation to which the patient is exposed. Therefore
it is desirable to minimize the amount of intra-surgical data required to perform 3-D registration, without
sacrificing accuracy of the resulting pose estimate.

Towards this goal, we have developed a technique for analyzirggetmeetric constrainbetween two

data sets. We have demonstrated that there is a strong correlation between this geometric constraint, an
the accuracy which results from registering the data sets. To automatically generate data sets which resul
in good registration accuracy, we have developed a synthesis technique which maximizes a measure of
geometric constraint. We have empirically shown that the registration accuracy which results from syn-
thesized data sets is comparable to that resulting from the best manually selected data.

Recently, two research groups have described systems which employ surface-based registration tech
niques for an orthopaedic application. Lavallee et al. [16] and Nolte et al. [22] both describe systems for
planning and executing the insertion of screws into the pedicle component of human vertebrae. Both em-
ploy registration techniques similar to that described in this paper. In particular, they register 3-D surfaces
that were derived from pre-surgical CT images, to discrete point data from a coordinate measuring device.
In addition, Nolte et al. perform an excellent validation of the errors resulting from registration by com-
paring their surface-based results to a high accuracy approximation of ground truth. It is our hope that the
data selection technique presented in this paper will ultimately be useful for improving the registration ac-
curacies in applications such as these.

2 Discussion

2.1 Surface-Based Registration

A framework for surface-based, intra-surgical registration is outlined in Figure 1. The goal is to determine
the best possible alignment between a surface extracted from pre-surgical volumetric data, and a set of dat:
collected during surgery. The intra-surgical data considered in the following discussion are discrete 3-D
points, such as those collected by a coordinate measuring device or range sensor. The registration tech
nique, however, can easily be generalized to other types of intra-surgical data.



Pre-surgical Surface

from CT or MRI Approximate
(Model) Pose Ttlmate
\ Pose Refined
Intra-Surgical Data Refinement|—> Pose

(Data) / Estimate

Patient

Figure 1: Surface-Based Registration

In Figure 1, we assume that an approximate pose estimate is available during surgery via coarse anatomi
cal landmark correspondence. This estimate will be used as a starting point in the registration process.
Thus, we will refer to the mechanism for performing registratiqmoas refinement

Most approaches to geometric pose refinement attempt to minimize a least square error metric such as:
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whereD; represent points in tHeata set,M; represent points in tHdodelset, andR andT are a rotation
and translation respectively which minimize the expression. In this papBx,abeespond to the discrete
3-D points collected during surgery, while tdecorrespond to 3-D points on the pre-surgical surface.

In fiducial-based approaches to registration, the correspondences betwBeardé/; are assumed to
be known; eackD;, M;) pair corresponds to the same fiducial. Given this correspondence, there are several
techniques for findingR andT which minimize the least square error in (1) [3][9][11].

In fiducial-less approaches to registration,(fbg M;) correspondences are unknown a priori. An approach
for estimating pose despite these unknown correspondences was introduced in a paper by Besl and McKay
[2]. Below is an overview of the iterative closest point (ICP) algorithm presented in that paper:

1. For each poir); in the Data set, compute tblesespoint (Euclidean distanc®); which
lies on the surface of the Model set.

2. Using the correspondences from step 1,RraehdT which minimize the equation (1) via
the method described in [3].

3. Apply the incremental transformation from step 2 to all points in the Data.
4. If the relative changes R andT are less than a threshotd terminate, else goto 1.

The ICP algorithm works quite well, especially when an approximate pose estimate is available for initial-
ization. In general there is no guarantee that ICP will converge to the global minimum, however we have
found convergence to be very good in practice. Techniques exist for finding the global minimum when
non-global convergence is a problem [2]. When outliers are present in the data (i.e. points in the Data set



for which there is no correspondence in the Model), additional processing may be necessary [18][32]. We
have employed outlier detection similar to that described in [32] for our high-speed registration work.

The ICP algorithm has provided us with a basic pose refinement capability which we have used in our
work on high-speed registration, as well as in the validation of our intra-surgical data selection techniques.
One benefit of the ICP algorithm is that the approach is independent of data representation. The only data
representation requirement is that it be possible to calculate closest points between the two data sets. Thus
it should be straight-forward to modify our implementation of ICP to handle other data types (e.g. regis-
tering bounding contours to surfaces).

2.2 Speed Enhancements to Surface-Based Registration

Due to the simplicity of the ICP algorithm, it is well suited to high-speed implementation. In particular,
unlike some other pose refinement methods [10], time consuming gradient calculations are not required.
For this reason, we have been able to use ICP as the core component of a system for pose tracking of at
bitrarily-shaped 3-D surfaces at rates up to 10 Hz. To perform pose tracking at high speeds, it was neces:
sary to add several speed enhancements to the basic ICP algorithm. Each of these enhancements: kd—tree
closest point caching, fast surface point computation, and acceleration are described in the following sec-
tions.

2.2.1 Kd-trees

The most computationally expensive step in the ICP algorithm is finding the closest point sets. In general
if there areNp points in the Data set awgl geometric entities (i.e.: points, lines, triangles) in the Model
set, then the complexity of a single closest point querg (s, Ny) . However, as suggested in [2] and
demonstrated in [32], this complexity can be reduced ¢85 logNy,) by the use of a k-dimensional binary
tree, or simply kd-tree [1]. The use of kd-trees for closest point computation allows us to decide at each
node of a binary tree on which side of a hyperplane the closest point will lie. Thus, large regions of the
search space can be pruned at each level in the search. We have implemented a closest point algorithr
based on the kd-tree [4]. As demonstrated below, the use of kd-trees was the most significant factor in im-
proving the speed of ICP execution.

2.2.2 Closest Point Caching

A second small speed improvement was realized by caching closest points. Referring to the Model set as
M and the Data set & points inM andD which are proximal at iteratidq are highly likely to be prox-

imal at iteratiork+1. Thus, rather than finding the single closest poiM fior a given poinD;[k], we can

find n closest points iM and cache these points together with the @@iid. Note that there is little over-

head involved in finding closest points whemis a small number like 5. On the next iteration, since the
point Dj[k+1] is likely to be close to the poib[K], it is also likely that the closest pointito D;[k+1]

will be one of the points cached on the previous iteration. It is possible to determine conclusively whether
the closest point is contained in the cached set by performing a simple test. This test compares the magni
tude of the previous incremental transformation to the distance between the closest cached point and the
nth closest cached point (wherés the number of cached points). A variation on this test can also deter-
mine whether the closest point at iteratieri is thesameas the closest point at iteratiknThe overall

result of caching is that closest points can often be found without requiring a full search of the kd-tree.
Rather, only the points in the cached set must be tested.

A similar caching technique can be appliedpatially (rather thatemporally adjacent points. If two data
points D;[K] and D, 1[K] are spatially proximal, then it is likely that their corresponding closest points
M;[k] andM;, 1[K] will also be spatially proximal. An analogous caching technique can be applied to this
situation, however we have not yet implemented caching for spatially adjacent points.



2.2.3 FastSurfacePoint Computation

Since the Model set is a triangular mesh surface, computation of the closest point requires an additional
step. The output of the kd-tree based closest point algorithm will retuverties, Y, which is closest to

the Data poinD;, as shown in Figure 2. Givey), the closest Model poid; will lie within, or on the

border of, one of the triangles to which the vertex beljorigsorder to findM;, it is necessary to project

D, into the planes defined by each of these triangles. The resulting projected points will either lie inside or
outside of a given triangle. For each triangle, if the projected point lies inside the triangle, call this point
Ci, wherek is the triangle index. For projected points which lie outside of the triaDgie defined as the
closest point between the border of the triangle and the projected point. Fhaiyfound as the point

Ck* which is closest t®; among allC,. In order to perform these computations quickly, ddgce pro-

jected into each of the planes, all computations are performed in 2-D rather than 3-D. Thus, during initial-
ization each triangle must be stored in both its 2-D and 3-D representations.

Vi @ D

Figure 2: Closest Surface Point Computation

2.2.4 Acceleration

A final speed improvement was realized using a modified version afcttederatedCP algorithm de-
scribed in [2]. The accelerated ICP algorithm adds the following step to the basic algorithm (after step 2):

2b.If the incremental transformatior®, (T) at iterationk-1, k-2, andk-3 arewell aligned
extrapolate the current incremental transformation.

The well aligned condition above tests that the solution has been moving in an approximately constant di-
rection. Extrapolation is performed by scaling the current incremental transformation. The scale factor is

a function of the least square error and the magnitude of the incremental transformations at the previous
three iterations.

Besl and McKay calculate a single acceleration scale factor for both translation and rotation. We achieved
better results by decoupling the acceleration of translation and rotation. There are two reasons for doing
this. First, in Besl's approach, the well aligned condition above is tested once for both rotation and trans-
lation. Thus, for example, if rotation was well aligned but translation was not, no acceleration would be
performed. However, an acceleration on rotation alone seems desirable in this situation. A second reasor
for decoupling is related to the scale factor used in extrapolation. Besl and McKay used the same scale
factor to extrapolate both rotation and translation components. This scale factor is designed to extrapolate
the solution as much as possible in a single step without overshoot. In the coupled version, the size of the
scale factor is governed by the component (translation or rotation) which would cause the solution to over-

1. This is not strictly true, as there are pathological cases for Whiefill lie in a totally different triangle.
In our experience, we found that we can ignore such cases.



shoot first. The other component could usually be accelerated further. By decoupling, translation and ro-
tation are independently accelerated as much as possible without overshoot.

2.2.5 Enhancement Results

Four speed enhancements have been described: closest point computation via kd-trees, closest point cacl
ing, fast surface point computation, and decoupled acceleration. The results of applying each of these en-
hancements to a single registration problem are summarized in Table 1. In this pibidasg point set
containing 2432 points ard was a triangular mesh containing 4860 facets. The initial pose error was a
rotation of roughly 10 degrees about each axis, and a translation of roughly 10% of the object size along
each axis. The ICP termination thresheldyvas smalf

Type Time %Time Iterations | Rot-Acc | Trans-Acc
none 908.8 100.0 122 0 0
a 261.2 28.7 35 11 11
kd 62.2 6.8 122 0 0
kd/a 18.0 2.0 35 11 11
kd/a/d 13.1 1.4 25 13 7
kd/a/d/c 11.9 1.3 25 13 7
kd/a/d/c/2d 8.3 0.9 25 13 7

Table 1: Enhancement Comparisons

In the tableTypeindicates the enhancements used:

* none: no speed enhancements

e a: coupled acceleration

* kd:  kd-tree based closest point computation
e d: decoupled acceleration

* C: closest point caching

e 2d fast surface point computation

Timeis the total ICP execution time in secon#slimeis the percentage of time relative to the slowest
time. Iterationsis the number of ICP iterationRot-AccandTrans-Accare the number of iterations for
which rotation and translation have been accelerated respectively.

The speed improvements shown in Table 1 give an idea of the relative utility of each of the described en-
hancements. The actual relative utility is a function of the underlying data, the initial pose, and the termi-
nation threshold. Acceleration and kd-tree search are always the two most important enhancements. The
relative utility of kd-tree search increases with the number of points in the data set. Caching is useful when
the termination threshold is small, since the number of cache hits will be large during fine-tuning.

2. The magnitude afdetermines the amount of “fine-tuning” performed by the ICP algorithm. Smaller val-
ues ofe result in pose estimates closer to the local minima.



We believe that additional speed improvements are possible via a multi-processor implementation of the
ICP algorithm. The closest point computation is easily parallelized, and doing so should result in speed
improvements roughly proportional to the number of processors. We plan to address this issue in future
work.

2.3 The Tracking Algorithm

An outline of the tracking algorithm is shown in Figure 3. Each box in the diagram represents a processing
step, and the processing sequence is indicated by the large-headed arrows. Inputs to a processing step a
indicated by the quantities to the left of each box, while outputs are indicated by the quantities to the right.

—

Load Precomputed Objeg
Model, M from disk;

Initialize Counterj = 1

'

Acquire Sensor Data—» D[0]

l

M,D[0] g Calculate Initial Pose| | My [0]
MTD lusel O Estimate via ICP D
b
Acquire Sensor Dat{a-» D[j]
M, D [j] 0 Calculate Incremental
M .
M _ — . : b—> T [j]
TD [i-1 O Pose Estimate via ICH D
j=j+1

Figure 3: Tracking Algorithm

During initialization, a precomputed triangular mesh moblelis loaded into memory, and a kd-tree is

built from M. After a range imag®)[0], is acquired from the sensor, an initial transformation between the
Model and the initial object pose can be calculated. This transformétigu] , can be found in several
seconds using the ICP algorithm with a starting transformation provided by tRdmpeactice using the

face data discussed below, we have found that initial pose errors as large as 15 degrees of rotation abot



each axis, and 50% of the surface size in translation will typically converge to the global minimum. Once
MT5[0] has been calculated, it is used to transform the Model to the initial object position. Thus, all future
pose estimates are measured with respect to this initial starting pose.

After initialization, the algorithm enters the tracking loop. Within the loop, data are acquired by the sensor,
and the object pose is estimated via the ICP algorithm in roughly 0.1 - 0.3 sec. These high speeds are pos
sible for two reasons. First, the difference in object position between iterdiods is typically small.

For example, translational velocities of 10cm per second and rotational velocities of 20 degrees per second
lead to incremental object pose discrepancies of roughly 2cm and 4 degrees. Thus, since the ICP algorithiy
usesMT,[j—1] as the starting point when findiAg, [j] , registration can be performed in a small num-
ber of iterations, typically 3-10. Second, the resolution of the range data used in our experiments was usu-
ally 16x16. Thus, the number of closest point computations required (256) was significantly less than that
required when using the full sensor resolution (32x32).

During each data acquisition cycle, two preprocessing steps are performed on the range data. First, it is
necessary to eliminate noisy data. For the CMU VLSI range sensor, noisy data is associated with poor re-
flection from the object of the projected light. Thus, noisy range data can be eliminated by thresholding
reflected intensity values. Second, it is necessary to determine which range data points lie on the surface
of the object to be tracked. Since our experiments were performed in an uncluttered environment, range
data on the object surface can be distinguished by thresholding the Z component of the range data. While
this simple operation works well for our experiments, a more sophisticated approach would be required in
a cluttered environment.

Using MT1,[j-1] as the starting point for incremental pose estimation works well when object motion is

erratic and unpredictable. In some situations, however, object motion may be smooth, continuous and thus

easier to predict. For such motions, improved results are possible using an extrapolation scheme such as
Kalman filter. While we have not implemented a Kalman filter for this purpose, we have implemented both

first and second order extrapolation. Since the extrapolated pose is often closer to the true pose thanr
MT51i—1], the cycle time reduced.

2.4 Tracking Results

The primary hardware component of the pose tracker is the CMU high-speed VLSI range sensor [7]. The
sensor consists of two main components: the sensor head and light-stripe generator as seen in Figure £
The current version of this sensor can acquire 32x32 cell range images in as little as 1 millisecond. Range
data is acquired at 10 bits of resolution and is accurate to 0.1% along the direction of range measurement
As currently configured, the sensor workspace is roughly a cube 15cm on a side.

Using a precision positioning device to provide ground truth, we characterizsttic@ccuracy of the

pose tracker. All accuracy tests were performed using the same physical object: a small bust of a human
face. In these tests, the average translation error was found to be 0.9mm (about 1% of the object size).
while the average rotation error was 1.4 degrees. Until recently, it had not been possible to measure the
system’s dynamic accuracy since our positioning device was not capable of generating accurately calibrat-
ed dynamic trajectories. The recent acquisition of a high-speed, fiducial-based pose tracker [25] will allow
us to characterize dynamic accuracy. We have, however, been able to characterize the elyeataios!-

ity of the tracker. Object trajectories with maximum velocities of 100mm/sec and 22 degrees/sec were re-
liably tracked with repeatability of roughly 1 degree in rotation, and 1mm in translation. Additional system
performance results can be found in [28].

3. A fully automated initialization which does not require user input would be possible by applying one of
the techniques for solving the global pose estimation problem discussed in [2].
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The high-speed tracking method which we have demonstrated is independent of the particular sensor usec
to acquire intra-surgical data. The sensor must be able to acquire 3—-D data on the surface of the relevan
anatomy at rates and densities sufficient for the application. The tracking method is also independent of
the particular anatomical region which is being tracked. The anatomy to be tracked must be rigid, and its

surface must be visible to the selected sensor during surgery.

This concludes the first part of the paper on high-speed pose tracking. The second part of the paper dis-
cusses the problem of the selective acquisition of intra-surgical pose refinement data.

2.5 Pose Refinement Data Selection

In general, there is a strong relation between the accuracy resulting from surface-based pose refinement
and the quantity of intra-surgical data used. Large quantities of high-quality intra-surgical data tend to re-
sult in better accuracy. Unfortunately, there are often high costs associated with the acquisition of large
guantities of intra-surgical data. Two such costs aréirtieneeded to acquire the data, and the patient’s
exposure to radiationMinimizing acquisition time is particularly important due to the high monetary
costs of operating room use, and the risk of patient infection which increases with time. The fundamental
trade-off between data quantity and pose refinement accuracy motivates our work in the selection of intra-
surgical data. The goal of this work is to generate and execute a plan for intra-surgical data acquisition
such that the amount of data acquired is minimized, while ensuring that pose refinement accuracy require-
ments are met.

Approximate
Pose Estimate

Pre-surgical Surface
from CT or MRI

(Model)

Intra-
Surgical |, /’
Data - \ .
Selection Pose Rgflned
Refinement| ——» _0S€

/V Estimate

Intra-Surgical Data
v (Data)
L »| Selective /
Data
—| Acquisition Patient

Figure 6: Data Selection and Acquisition

A method for selecting and acquiring intra-surgical data is outlined in Figure 6. The shaded portion of the
figure is identical to Figure 1. The first step in the approadhtia-Surgical Data Selectiorilhis step

uses the pre-surgical surface model as input, and outputs a set of desired intra-surgical data, specified ir
the reference frame of the pre-surgical data. The criterion for data selection is the maximizgion of
metric constrainbetween pre-surgical and intra-surgical data.

The next step iSelective Data AcquisitiofThis step requires as input the desired intra-surgical data, and

a current estimate of the object’s pose. The action performed by this step is the acquisition of the desired
data using a sensor of choice. Due to uncertainty in the pose of the patient, it is impossible to collect the
desired data precisely. (If we could collect this data precisely, then we would already know the pose which



we are seeking!) Therefore, it is necessary to have an estimate of the patient’s pose to aid the acquisitior
process. Initially, an approximate pose estimate is available to guide the acquisition process via coarse an:
atomical landmark correspondence. After some intra-surgical data have been acquired, an incremental
pose refinement can be calculated and fed back to the data acquisition module to aid in the collection of
subsequent data. The order of data acquisition can be planned such that the earliest data collected are tt
least sensitive to precise localization of the patient, while data collected during the later stages require a
fairly good estimate of patient pose.

The actual acquisition process could be performed either by a device such as a robot, or manually by a
surgeon. When a robot is used, the pose estimate can be fed back directly to the robot’s controller. When
a surgeon acquires the data manually, pose feedback can be in the form of a 3-D graphical display of the
relevant anatomy, with the desired data overlaid on upon this display. While we have not yet used this tech-
nique clinically, we plan to do so shortly in the area of orthopaedic surgery.

2.5.1 Geometric Constraint: Motivating Examples

To gain a better appreciation for the role of geometric constraint in pose refinement, consider the situation
in Figure 7. Assume that the goal is to estimate the pose of a slotted cylinder using a coordinate measuring
device to collect data on its surface. If data were only collected at points indicated by an “X”, it would be
impossible to determine orientation about the central axis, or translation along it. Additional data collected
in the disk-shaped end regions and within the slot would allow determination of translation and rotation
respectively. The problem with the data configuration shown in Figure 7 is that there are “freedoms” in
the geometric constraint between the surface of the cylinder, and the discrete points shown. Such freedom:
result in multiple solutions iR andT to (1).

Figure 7: Localization of a Slotted Cylinder

As a second example of the role of geometric constraint in pose refinement, imagine that we are trying to
localize a cube (disregarding the symmetries) using data sampled from each of its faces. Figure 8 shows
three sampling configurations on a cube: C1 has 25 points per face for a total of 150 points, while C2 and
C3 have 4 points per face for a total of 24 points. If we were to perform pose refinement using each of

these sampling configurations assuming noisy data, which one would we expect to result in the best accu-
racy?

ci|ssii i o, b cd et |

Figure 8: Localization of 3 Cubes

In order to answer this question, we performed a simple experiment. For each sampling configuration, we
performed pose refinement 100 times from random initial poses. Zero mean gaussian noise was added tc



each discrete point in the data set. Figure 9 shows the resulting pose refinement errors from (1), normalizec
by the number of points, and plotted relative to the error for configuration C1. As might be expected, the
configuration C1 results in the best pose refinement accuracy. This agrees with the intuition that larger
guantities of data will result in better pose refinement accuracies. The results for each of the 24 point con-
figurations is less intuitive, and an explanation will be delayed until the next section. Note that despite the
same number of data points, configuration C2 clearly provides better accuracy than configuration C3.

Normalized Pose Error

26,9 - -
T P
10 ''''' | —

c1 | C2: c3| 3

Figure 9: Cube Pose Refinement Errors

2.5.2 Geometric Constraint Analysis

We begin the description of geometric constraint analysis by posing the following question: given a dis-
crete point lying on a surface, how does the distance between the point and the surface vary as the point i
perturbed by a small amount about its resting position?

The distance between a poinand a surface is defined as the length of the shortest line between the point
and the surface. In general, there is no closed form analytical expression for this distance given an arbitrary
surface; however, the following local approximation has been proposed [29]:
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where F (x) = 0 is the implicit equation of the surfacig]F (x) || is the magnitude of the gradient to the
surfacex is a point which may or may not lie on the surfacep&xd is the approximate distance. It can

be shown thab (x) is a first order approximation to the true point-to-surface distance.

Assume that there exists a poat , which lies on the surface. This point can be perturbed with respect to
the surface by applying a differential transformaiida the pointT can be represented by a homogeneous
transformation, which is a function of 6 parametergt, t, w,, w, ) , Whesgw,, w,)) are rotations
about theX, Y,andZ axes respectively, ang,t,. t,) are translations along the newly rota¥eandz
axes. Define:
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as the 6-vector of parameters. As a first step in the analysis, consider the grddeithakspect to each

of the parameters af . It can be shown that the resulting 6-ve¢tor is defined as:
_0 _ | n
Vixg = 5D(T(x)) = LSXJ (4)
wheren is the unit normal to the surface evaluated at the QoiRt(x,). relates a small transformation

specified by a vectatt to a corresponding change in distance between the point and the surface. In othel
words:

D(T(x)) = V'(x)dt (5)
Until this point, we have considered how the distance between a single point and a surface changes as

function of an arbitrary, small rigid transformation. The goal is to analyze the constraint imposexd-by a
lection of points upon the underlying surface. Squaring (5), results in:
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whereM (x) IS a symmetric, positive semi-definite 6x6 matrix. Summing the quantity in (6) over points
within a region of the surfade, results in the sum of squared distance errors:

Eq(T(x)) = dt' M (x.) |dt
PR o
= dt' W, dt

wherew, is the sum of the (x)  matrices evaluated at each point in the Regitye matrixw, is a
scatter matrix which contains information about the distribution of the origipa) vectors over the re-
gionR. Performing principal component analysis [18], is transformed into an expression which is more
easily interpreted.

Eo(T(x)) = dt'QAQ dt
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wherek, is the least square error over the reBjon is a diagonal 6x6 matrix containing the eigenvalues

of W, , Q is a 6x6 matrix whose columns are the eigenvectors, of A, A, = A2\, = A 24 are the
eigenvalues of, ,ang are the corresponding eigenvectors. Each eigegvector can be interpreted as ¢
differential transformation represented as a 6-vector; the first three elements are the translation compo-
nents, and the last three elements are the rotation components. We should note that this result is similar t
one presented in [19].

From (8) it can be seen that the eigenvegfor  corresponding to the largest eigenvalue, represents the
rection of maximum constrainPerturbing the points in the regi®in the direction ofy, will result in

the largest possible changedin ~ from among all possible directions of perturbation. Similarly, the differ-
ential transformation represented by the eigenvegtor  correspondslieti®mn of maximum freedom
Perturbing the points in this direction will result in the smallest possible chagge in ~ from among all pos-
sible directions of perturbation. In general, an eigenvalue is proportional to the rate of chagge of
induced by a differential transformation in the directipn

A special situation occurs when some of the  are close to or equal to zero. For each such eigenvalue, ¢
singularity exists such that perturbing the points in the direction of the corresponding eigenvector will re-



sultin no change ig; . Clearly, such singularities are very bad when performing pose refinement since it
becomes impossible to localize the pose in the direction(s) of the singularity. The slotted cylinder example
of Figure 7 has two zero eigenvalues, one corresponding to a rotation about the central axis and the othel
corresponding to a translation along it.

We now have a basis for understanding the pose refinement accuracy results from the cubes of Figure 9
For each of the cube sampling configurations (C1, C2 and C3), we performed the constraint analysis pre-
sented above. Figure 10 plots the magnitude of the smallest eigenvalue for each configuration versus the
pose refinement errors plotted in Figure 9. The trend from this plot is clear; large magnitudes of the min-
imum eigenvalue result in better pose refinement accuracies. This agrees with the intuition from (8); for
data configurations with small minimum eigenvalues there are perturbations about the global minimum
which result in only small changes in error. For the cubes of Figure 10, a small rotation has a much larger
effect on the error in (1) for the points in configuration C2 than for those in configuration C3. This allows
the cube to be localized more accurately using the points in configuration C2.
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Figure 10: Accuracy vs. Minimum

In Figure 10, the magnitude of the minimum eigenvalue can be thought of as a criterion measure which

evaluates the “goodness” of a particular sampling configuration. In general, there are a variety of possible

criterion measures which could be used for this purpose. We are currently investigating several such mea-
sures, including a measure of isotropy proposed in [14]:
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and the following measure suggested by Nahvi [20] discussion of the implications of criterion measure
selection for a related problem can be found in [14].

2.5.3 Geometric Constraint Synthesis Results

The constraint analysis method of the previous section provides a criterion for performing intra-surgical
data selection as outlined in Figure 6. The goal of geometric constraint synthesis is to generate data con-
figurations for a given surface which maximize the smallest eigenvalue (or other criterion) resulting from
constraint analysis. We have developed a technique for performing constraint synthesis for fixed-size, dis-
crete point data sets. While the synthesized data configurations grevetdtlyoptimal, we have verified
empirically that the resulting pose refinement accuracy is similar to the best data sets generated by local
human experts. Since this work is research in progress, the results presented in this section should be
viewed as preliminary.



To demonstrate the capabilities of constraint synthesis, we ran the algorithm on a surface model generatec
from CT images of the proximal end of a human femur. Figure 11 shows a synthesized data set containing
37 points superposed on the surface model of the femur. Generation time for this set was about 30 minutes
on a Sparc-10 workstation. In order to evaluate the synthesized data set, we compared it to 21 manually
selected data sets of the same size. These sets were selected by 7 people, including one surgeon with trai
ing as an engineer, three experts in 3-D computer vision, and three graduate students in robotics. We per
formed 1000 iterations of pose refinement using each of the synthesized data sets. Starting poses wert
determined randomly, with maximum initial pose errors of 30mm in translation, and 15 degrees in rota-
tion. On each iteration, zero-mean, gaussian noise with a standard deviation of 1.0mm was added to eacl
point in the data sets. Figure 12 shows the results of this experiment. The graph shows the magnitude of
the minimum eigenvalue from constraint analysis for each of the 22 data sets, versus the pose refinemen
error (1), averaged over 1000 iterations. Each point in the graph represents a different data set.
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Figure 11: Synthesized Data Set for Femur

Several observations should be made from Figure 12. First, the magnitude of the minimum eigenvalue is
related to the variance in pose refinement error. Data sets with small minimum eigenvalues may have large
pose refinement errors, while those with larger minimum eigenvalues all have small errors. This suggests
a relation between the magnitude of the minimum eigenvalue for a given data set, and an upper bound or
the resulting pose refinement error. Second, the data set with the largest minimum eigenvalue and smalles
pose refinement error was the one synthesized automatically by our algorithm. The average transformation
errors for the synthesized data set are 0.4mm in translation and 0.2 degrees in rotation. Third, note that
calculating the magnitude of the minimum eigenvalue is a very fast operation (roughly 1ms on a Sparc-
10), while calculating the average pose refinement error is much slower (about 5 minutes on a Sparc-10).
It is the low cost of calculating the minimum eigenvalue which allows us to synthesize near-optimal data
sets.
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Figure 12: Accuracy vs. Minimum Eigenvalue:

The results presented in Figures 11 & 12 implicitly assume that acquisition of the indicated intra-surgical
data is both clinically and technically feasible. In general, certain regions of the underlying structure (e.g.
femur) may be inaccessible to intra-surgical data acquisition. Furthermore, diseased or damaged regions
of the anatomy may result in inaccurate pre- and intra-surgical data. For example, it is very difficult to
build accurate surface models of an arthritic femoral head from pre-surgical CT data. Such model inaccu-
racies will ultimately result in registration errors. To deal with this problem, clinical application of con-
straint synthesis will require the demarcation of accessible and un-diseased anatomical regions. The
synthesis process can then be constrained to generate data which lie within these regions.

We have repeated the experiment described above on a few other surfaces with similar results. In particu-
lar, when synthesizing data points for the cube using 24 discrete points, the technique reliably finds the
provably optimal configuration: a distribution similar to configuration C2, with points located as close to
the corners as possible. We are currently in the process of a more thorough investigation of the synthesizec
data sets. In particular, we are performing a series of experiments designed to validate our results using
physical (non-simulated) registration experiments. Using fiducial-based registration to provide ground
truth, we are investigating the accuracy which results from surface-based registration with and without the
use of the synthesized “optimal” data.

The constraint synthesis algorithm finds near-optimal configuratiofigéolamounts of data; the number

of data points is an input to the algorithm. The overall goal of data selection is not only to determine good
configurations, but also to minimize the amount of data required. Towards this goal we are currently in-
vestigating methods for selecting minimally sized data sets. As input, our proposed method uses bounds
on the acceptable accuracy, and estimates of the uncertainty in: the intra-surgical sensor data, the pre-sul
gical surface model, and the initial pose. The success of this method will depend on our ability to develop
realistic noise models for the sensor and pre-surgical surface.

Accurate surface-based registration relies upon the ability to build precise surface models from pre-surgi-
cal data. While techniques for generating surface models from CT data have been available for several
years, the resulting models are typically used for visualization applications in which model accuracy is not

crucial. We are currently investigating accuracy issues in surface model generation by analytically com-

paring generated surface models to a known ground truth [23]. In addition, we are studying the sensitivity

of surface-based pose refinement to noise in the sensor and pre-surgical surface models.



We believe that the methods presented in this part of the paper will become useful tools in the area of intra-
surgical pose refinement. Geometric constraint analysis will be useful not only to provide a criterion for
data selection, but also to allow the study and evaluation of manually created data sets. Geometric con-
straint synthesis will be useful for automatically generating near-optimal data sets without input from a
human expert. In addition to applying constraint synthesis on a per-patient basis, it could also be useful to
study data generation for entire classes of objects (i.e. all femurs).

2.6 Conclusions

In this paper, we have presented two novel techniques with application to medical robotics and computer
assisted surgery. First, we have demonstrated a high-speed pose tracking capability with application to in-
tra-surgical use. The technique is independent of the particular sensor used, and of the anatomical regior
to which it is applied. While this technique has not yet been demonstrated in a clinical application, we feel
that it has significant promise for clinical use. Second, we have presented a method for selecting near-op-
timal, intra-surgical pose refinement data. The goal of the selection process is to minimize the amount of
data acquired for pose refinement, while maintaining good accuracy.

There are several directions in which the work is proceeding. With the high-speed tracker, we are currently
working on a multi-processor implementation which would parallelize the closest point computation. The
goal is to increase both the rate at which pose tracking can be performed, as well as the amount of date
which can be processed at high speeds. We are also investigating an extension to the technique whict
would allow tracking of articulated objects, such as human hands. Finally, we are planning to evaluate the
high-speed pose tracker on head-tracking for neurosurgery.

In intra-surgical data selection, there are several directions of ongoing work. First, intra-surgical data se-
lection currently requires manual specification of data size. We are extending this method to generate min-
imally-sized data sets automatically. Second, intra-surgical data selection currently generates discrete
point 3—D data sets. We are extending the method to generate bounding contours such as those that coul
be derived from radiographs or CT images. Third, in intra-surgical registration, it is not always necessary
for pose accuracy to be isotropic; accuracy in certain directions may be more critical than in others. Given
such non-isotropic accuracy requirements, we would like to generate data sets which make the best possi
ble use of limited data. Finally, we are planning to apply the data selection method to a clinical problem
in the area of orthopaedic surgery.
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