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Techniques for Fast Simulation of Models of Highly
Dependable Systems

Victor F. Nicola, Perwez Shahabuddin, and Marvin K. Nakayama

Abstract—With the ever-increasing complexity and require-
ments of highly dependable systems, their evaluation during
design and operation is becoming more crucial. Realistic models of
such systems are often not amenable to analysis using conventional
analytic or numerical methods. Therefore, analysts and designers
turn to simulation to evaluate these models. However, accurate
estimation of dependability measures of these models requires that
the simulation frequently observes system failures, which are rare
events in highly dependable systems. This renders ordinary sim-
ulation impractical for evaluating such systems. To overcome this
problem, simulation techniques based on importance sampling
have been developed, and are very effective in certain settings.
When importance sampling works well, simulation run lengths
can be reduced by several orders of magnitude when estimating
transient as well as steady-state dependability measures. This
paper reviews some of the importance-sampling techniques that
have been developed in recent years to estimate dependability
measures efficiently in Markov and non-Markov models of highly
dependable systems.

Index Terms—Highly dependable system, importance sampling,
Markov chain, simulation, steady-state dependability measure,
transient dependability measure.

ACRONYMS1

BFB balanced failure biasing
BLBLR balance over links BLR
BLBLRC BLBLR with cuts
BLR balanced likelihood ratio
BRE bounded RE
CLT central limit theorem
CTMC continuous-time MC
DTMC discrete-time MC
GSMP generalized semi-Markov process
i.i.d. -independent and identically distributed
IS importance sampling
MC Markov chain
MSDIS measure-specific dynamic IS
MTBF mean time between failures
MTTF mean time to failure
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NHPP nonhomogeneous Poisson process
pdf probability density function
r.v. random variable
RE relative error
RP repair person
SAVE system availability estimator
TH time horizon
TRR total effort reduction ratio
VRR variance reduction ratio.

I. INTRODUCTION

H IGH dependability requirements of today’s critical and/or
commercial systems often lead to complicated and costly

designs. The ability to predict relevant dependability measures
for such complex systems is essential, not only to guarantee high
levels of dependability during system operation but also to im-
prove the cost-effectiveness during system design and develop-
ment.

Several measures are commonly used for assessing the de-
pendability of a system, and the choice of the particular de-
pendability measures used to evaluate a particular system de-
pends on the intended operation and the environment of such a
system. For example, mission-oriented systems are often evalu-
ated using transient measures, such as system reliability (prob-
ability that the system is operational during the entire mission
time). Given that the system is initially in an operational state,
MTTF is the mean time to the first system failure; this is an-
other measure of interest for mission-oriented systems. On the
other hand, MTBF is the mean time between subsequent system
failures in steady-state. MTBF and the steady-state availability
(fraction of time the system is operational in the long run) are
often used for evaluating continuously operating systems.

Fault-tolerance and recovery techniques are frequently used
in the design of complex systems to enhance their depend-
ability. As a consequence, very high reliability/availability
requirements of systems can now be sustained. However,
the performance of continuously operating systems can be
degraded/upgraded due to load surges or reconfigurations
after failures/repairs. In other words, the performance level
of degradable/repairable systems is changing with time in
response to internal or external events. To evaluate these
systems properly, there is a need for measures that combine
performance and reliability/availability aspects. Such measures
were first introduced in [74], and were termed “performability”
measures. An example of such a measure is the distribution (or
-expectation) of cumulative performance in a given interval

of time. A special case of this measure is the distribution (or

0018–9529/01$10.00 © 2001 IEEE



NICOLA et al.: TECHNIQUES FOR FAST SIMULATION OF MODELS 247

-expectation) of interval availability, which is the fraction
of time the system is operational (regardless of performance)
during a given interval of time. The distribution of interval
availability (or guaranteed availability [48]) is a relevant
attribute of continuously operating systems, because it gives
the probability that the system is operational for more than
a specified fraction of a given interval of time. For example,
one might be interested in computing the probability that the
system is unavailable for more than 0.1% of the time in 1 year
of system-operation.

A. Numerical Evaluation of Dependability Measures

Researchers have long been aware of the importance and
necessity of developing techniques and tools to evaluate
highly dependable systems effectively. Most of the efforts are
limited to analytic or numerical solutions, usually restricted to
Markov (less often, semi-Markov) models. For a more detailed
discussion on performability measures and state-of-the-art
techniques for their evaluation, see [23]. The applicability of
these techniques, however, is quickly hindered by practical
problems, such as state-space explosion and/or the inadequacy
of Markov or semi-Markov representations of real systems.
Because the number of states in Markov models usually
grows exponentially with the number of system-components,
and because of storage and computational limitations, only
relatively small systems can be analyzed using numerical
solution techniques. Several techniques have been proposed
and, if applicable, can help to reduce the state-space of large
Markov models. For example, exact lumping [45], [84], or
approximations obtained by truncation and bounding [76],
are used. However, even for a moderately-sized system, the
corresponding Markov model can be “stiff”2 (usually when
transition rates are of different orders of magnitude), leading
to difficulties when using numerical solvers [92]. Behavioral
decomposition [9] and iterative decomposition/aggregation
techniques [19] are among several techniques that can help
overcome “stiffness” of Markov models.

B. Effective Simulation

When conventional analytic/numerical methods are no
longer feasible, analysts often turn to computer simulation,
with the obvious advantages of flexible representation of
complex systems at the desired level of abstraction and low
storage requirements. However, the accurate estimation of
dependability measures using simulation requires frequent
observations of the system-failure event, which by definition
are rare events in highly dependable systems. This renders
conventional (ordinary) simulation impractical for evaluating
such systems [30]. To attack this problem, in recent years, there
have been considerable and successful efforts to develop fast
simulation techniques based on IS [41], [51]. The basic idea
is quite simple: simulate the system using new probability-dy-

2A stochastic process is “stiff” when it contains 2 essentially different types of
transitions, slow and rapid [66, ch. 8]. Highly dependable systems consisting of
highly dependable components fit this description because, typically, the com-
ponent lifetimes are very long, whereas repairs take only a short time to com-
plete.

namics (different from the original probability-dynamics of the
system), so as to increase the probability of typical sequences
of events leading to system failure. For example, in a redundant
system with 2 components, accelerating the component#2
failure while component#1 is being repaired, typically in-
creases the probability of another component failure, which
would lead to system failure. The obtained measure in a
given observation (a sample path of a simulation trial) is then
multiplied by a correction factor called the “likelihood ratio”
to yield a -unbiased estimate of the measure. This factor
is the ratio of the probabilities (likelihoods) of the sample
path in the original and modified systems, respectively; its
computation is straightforward and can be done recursively
at simulation event times. Appropriate and careful choice of
the new underlying probability dynamics of the simulated
system can yield an appreciable reduction in the variance of the
resulting estimate, which implies appreciable reduction in the
simulation time needed to achieve a specified precision. Also,
the new probability dynamics should be easy to implement.

For a fixed run-length, ordinary simulation produces esti-
mates with RE (a constanttimesthe coefficient of variation of
the estimate) that tends to infinity as the probability of the rare
event tends to zero. An “effective” heuristic for IS is one that,
for a fixed run-length, produces estimates with a RE that re-
mains bounded as the probability of the rare event tends to zero.
However, BRE is an asymptotic property, and in practice, even
if an IS heuristic possesses this property, the amount of simu-
lation effort required to achieve a given precision can still be
large. Also, the BRE property might not ensure a variance re-
duction relative to ordinary simulation for many types of highly
dependable systems (e.g., systems with an appreciable level of
redundancies) whose parameters fall in the practical range; it
only guarantees that as the event of interest becomes rarer, the
-expected amount of simulation effort remains bounded by a

constant (in contrast to ordinary simulation where this effort
tends to infinity), but the bound can be large.

C. This Work

This paper reviews some of the recent IS techniques devel-
oped for the efficient estimation of transient and steady-state
dependability measures in Markov and non-Markov models of
highly dependable systems.3 Parts of [53] also review some IS
techniques for the simulation of dependability measures, with
emphasis on the underlying mathematical ideas needed to es-
tablish their theoretical properties; thus, it is more suitable for
researchers. This paper presents a comprehensive and less math-
ematical treatment of the subject; therefore, it is more suited for
reliability practitioners, and requires only a basic understanding
of probability and statistics.

There are two main ways in which a system can be made
highly dependable in a cost-effective manner.

1) Use components that are “highly reliable” and have “low”
built-in redundancies in the system. Examples of these
are computer systems where the main components (e.g.,
processors) fail rarely.

3Preliminary versions of some parts of this review have appeared in [80] and
[100].
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2) Build “significant” redundancies in the system and use
components that are just “reliable” instead of “highly re-
liable.” (The distinction is clearer when some examples
are examined later in the paper.)

There might also be a third way: Use “unreliable” components
but have “very high” built-in redundancies in the system. Exam-
ples are more difficult to find in practice.

Much of the recent research work on effective simulation of
highly dependable systems has been done for systems that fall
in categories 1 and 2, and this paper mainly covers those.

The focus in this paper is on “dynamic” systems (systems that
change over time), in contrast to “static” systems. An example
of a static system is a 2-terminal reliability network with-inde-
pendent components and no repairs (strictly speaking, there can
be repairs as long as they do not create-dependencies among
components). See, [69], [70], [95] for fast simulation methods
for such systems.

Section II formally describes the wide class of systems for
which these IS techniques are designed, and reviews the basic
idea of IS.

Section III discusses IS techniques for estimating depend-
ability measures in Markov models. “Markov” implies that all
failure, repair, and other underlying distributions in the system
are exponential, so that it can be modeled by a CTMC. Some
work is reviewed on the estimation of derivatives with respect
to model parameters (e.g., component failure rates) for various
steady-state and transient measures in these models. This work
is of much interest, because it can be used to identify system-
components that might need improvement and to optimize sys-
tems.

Section IV considers the estimation of dependability mea-
sures for models in which the failure and repair times are
not exponentially distributed. Because these types of system
can no longer be directly modeled as a MC, they are called
“non-Markov models.” A mathematical framework for studying
such systems is the GSMP; see [37] for a formal development
of GSMP. The general theory of IS for discrete-event systems
(without discussing the particular changes of measures for
specific models) is in [37], [41]. For the IS heuristics discussed
in this paper, some empirical studies have been presented in the
literature, and many of these methods are provably effective.

In both Markov and non-Markov models, the concern is esti-
mation of

• transient measures, such as system unreliability,-distri-
bution and -expectation of interval unavailability,

• steady-state measures, such as steady-state unavailability
and MTBF.

Although MTTF is in fact a transient measure, for regenerative
models it can be represented as a ratio of 2-expectations of
regenerative-cycle-based quantities that can be estimated using
the regenerative method of simulation. Thus MTTF is included
in discussions of steady-state measures.

Section V discusses ongoing work and directions for future
research.

D. Related Work and Software

IS can be applied, not only for estimating dependability mea-
sures of reliability systems, but for estimating buffer-overflow
probabilities in queuing systems and networks [18], [28], [91],
[96], [107]. Applications to communication systems are of par-
ticular interest [4], [15], [113], [67]. The IS techniques used in
this setting are often based on the theory of large deviations. A
survey on existing techniques is in [53].

An approach, other than IS, based on “fault-injection” is
used in [75] to speed up steady-state simulations involving
rare (failure) events in communication systems. The method
assumes knowledge of the frequency of the “rare failure event”
and exploits the fact that, except for relatively short periods
after failures, the system is operating normally in a failure-free
environment. Fault-injection is used to obtain an accurate
estimate of the performance measure of interest during periods
affected by the failure. This estimate is appropriately combined
with an accurate estimate under failure-free environment (with
no rare events) to yield an overall steady-state estimate of the
dependability measure.

Another method to simulate rare sample paths is to use the
technique of “splitting” sample paths. Splitting for rare-event
simulation was originally discussed in [62] in the context of es-
timating rare particle transmission probabilities in physics [51].
Since then, it continues to be an active area of research in that
field [24]. Variations of this technique for steady-state rare-event
estimation in stochastic service systems seem to have been first
done in [6], [7], and later in [57] (see [14] for a related idea);
a variation for transient rare-event estimation in stochastic ser-
vice systems is in [65]. It was revisited in [110], [111], [112]
for estimating probabilities of rare events in computer and com-
munication systems; the version of the technique used in these
papers was called “RESTART.” Some of the most recent ver-
sions/implementations of the technique are in [29], [35], [43],
[52].

The basic idea behind the splitting technique is explained
here. The goal typically is to estimate some performance mea-
sure that is “associated with” visiting some set of statesof the
state space of the stochastic process, and the setis visited only
rarely. For example, compute the probability of a buffer over-
flow, where corresponds to states in which the buffer content
has reached its capacity. In ordinary simulation, the stochastic
process being simulated spends a lot of time in regions of the
state space that are “far away” from the interesting rare set(re-
gions from where the chance of entering the rare set is extremely
low). In one version of splitting, a region of the state space that is
“closer” to the rare set is defined. Each time the process enters
this region from the “far away” region, many identical copies
of the process are generated. Each of the split copies is sim-
ulated until the process exits back into the “far away” region.
From there on, only one of the split copies is continued until
another entrance into the “closer” region. This way gives more
instances of the stochastic process spending time in the “closer”
region where the rare event is more likely to occur. The idea can
be extended to: instead of just 2 regions, use multiple regions of
slowly increasing degrees of rarity. Reference [35] describes a
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unifying class of models and implementation conditions under
which this type of multi-level splitting is provably effective for
steady-state rare-event simulation. Related work is in [33], [34].
The method of splitting has also been used and analyzed in con-
texts other than rare-event simulation, e.g., [73].

There are a few software-based modeling tools which use
rare-event simulation techniques for dependability evaluation.
SAVE [45] is a software package that consists of a high-level
modeling language that can be used to specify the model of
interest. From this specification and Markov assumptions on
the lifetime and repair-time distributions, the detailed Markov
chain is derived. It is then solved for dependability measures
using either numerical (nonsimulation) or simulation methods.
A recent version of SAVE [8] incorporates the IS technique,
BFB (as described in Section III-A) at the MC level to estimate
dependability measures efficiently. Another software package
where IS is used is ULTRASAN [20]. In ULTRASAN, the
high-level modeling construct of stochastic activity networks
is used to specify the model of interest. Again, from this
specification, the detailed stochastic process is derived and
solved forperformance/dependabilitymeasuresof interest,using
either numerical (nonsimulation) MC methods or simulation
methods. In recent versions of ULTRASAN [89], [90] an
“IS governor” has been incorporated. Here, instead of the
IS heuristic being built-in as in SAVE, one can choose and
specify the IS change of measure at the stochastic activity
network level. The RESTART version of the splitting method
has also been implemented in ASTRO [112].

II. BACKGROUND

Notation

number of types of components
number of components of type,
number of operational components of typeat
time
vector
stochastic process
state of the system at time
stochastic process
state space of
subset of failure states in
time to first system-failure
probability under measure
-expectation under measure

variance under measure
system unreliability at time
indicator function of event
convergence in distribution
-normal distribution with mean, variance

RE relative error of an estimator
a sample path

in the set of all of a stochastic process
pdf of under measure
likelihood ratio on .

A. Highly Dependable Systems

This section discusses the broad class of highly dependable
systems that can be described by SAVE [45] (basically, a gen-
eralized Machine Repairman Model). These models consist of
multiple types of components, where each component can be in
1 of 4 states:

• operational,
• failed,
• spare,
• dormant.

The first 3 of these states are self-explanatory. An operational
component becomes dormant if its operation depends upon the
operation of some other component and that other component
fails. For example, a processor might not be operational unless
its power supply is also operational; therefore, if the power
supply fails, then the processor is dormant. In SAVE, different
(exponential) failure rates can be specified for the operational,
spare, and dormant states. The SAVE modeling language is
also used to describe operational/repair dependencies among
components (e.g., the operation/repair of a component depends
on some other components being operational), as well as
failure propagation (e.g., the failure of a component causes
some other components to fail with given probabilities). The
system is operational if certain combinations of components are
operational. Unlike SAVE, in non-Markov models (Section IV)
general failure and repair distributions are allowed. Also, there
is a set of RP who repair failed components according to some
reasonably arbitrary service (priority or nonpriority) discipline.

To simplify the presentation, systems are considered in which
each component is either operational or failed. (Unless other-
wise specified, the results also apply to the more general models
in the SAVE modeling language.) Section II-B briefly reviews
the basic idea of IS and shows how (when applied appropri-
ately) it could appreciably speed-up simulations involving rare
events. For illustration, also consider estimating the system un-
reliability; however, the same concepts also apply to other de-
pendability measures.

B. Importance Sampling

Consider a system with component-types. Each compo-
nent is subject to failure and repair.

All components are operational at time 0: , for all
.

All components are “new” at time 0.
In general, contains the information , but other in-

formation might be needed, e.g., the queuing of failed compo-
nents waiting to be repaired and the remaining lifetimes and re-
pair times of components when using distributions other than
exponential.

There is some subset of the state space such that the
system is failed at time if .

System unreliability is

(1)

TH.
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The subscript denotes the original probability measure: the
underlying original probability distributions governing the dy-
namics of the system.

In a highly reliable system, for a sufficiently small, the
: is rare.

In ordinary (naive) simulation generatei.i.d. replications of
from time 0 to time to obtain samples of
, say, . Then

is an -unbiased estimator of . The variance of this estimator
is

From the CLT

as

of

which is the relative half width of the 99%-confidence interval
derived from the CLT approximation. For a fixed, the

as . This is the main problem when using ordinary
simulation to evaluate highly dependable systems. The goal of
IS is to overcome this inherent difficulty.

Notation

another probability measure
a sample path (of a replication) in the setof all
possible sample paths of taking the system from
time 0 to time
pdf of according to

(2)

The only condition imposed on is:

whenever

Thus the system can be simulated usingto obtain i.i.d. sam-
ples of : .

An -unbiased estimate of is

The variance of is

One measure of effectiveness of any new simulation algo-
rithm is the VRR: ratio of the variance using ordinary simulation
to that using the new simulation algorithm; in this case:

The VRR gives the ratio of the number of samples using ordi-
nary simulation to that using the new algorithm so as to achieve
the same RE. However this measure of effectiveness does not
consider the effort (e.g., CPU time) required to simulate each
sample under the two methods. Hence a more fair measure of ef-
fectiveness is the TRR: ratio of (the product of the variance and
the effort per sample using ordinary simulation) to (that using
the new simulation algorithm), [42]. The TRR gives the ratio of
the total effort using ordinary simulation to that using the new
algorithm so as to achieve the same RE.

The main challenge in IS is to find a robust new probability
measure that can be implemented in a computationally effi-
cient manner such that :

(3)
Appreciable variance reduction from (3) is obtained if

whenever (4)

Choosing such that (4) is satisfied is usually very difficult
because it involves each sample path. But the general intuition
one obtains is that should be chosen to appreciable increase
the probability of the rare event . At the same time one
has to be very careful; choosing an arbitrary (but not suitable)

that increases the probability of the rare event can lead to a
substantial increase in variance.

For highly dependable systems, try to come up with IS tech-
niques that are “effective” (see Section I-B): techniques whose
RE remains bounded (implying that ) as the prob-
ability of the rare event tends to zero. This property has been
established at least empirically (and, in many cases, also theo-
retically) for most of the IS techniques in this paper. However,
as mentioned before, this does not always guarantee efficient
simulation of systems with high redundancies.

III. FAST SIMULATION OF MARKOV MODELS

Notation

collection of all (measurable) subsets of
DTMC embedded on (when is a CTMC)

, generic states from the state space
transition probability matrix of the DTMC
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system state in which all components are operational
time to first return of to state

-cycle sample path between two successive entries to a
subset of states
system failure time in a regenerative-cycle, or

-cycle
steady-state unavailability of the system
estimator of

, original and IS probability measures ofon
IS probability measure under BFB
variance of a ratio estimator; probability measures

and are used to estimate the numerator and
denominator, respectively
failure biasing parameter
transition probability matrix of the DTMC under
BFB

, failure, repair rates of component type
parameter in the failure rate of component type
failure rarity parameter
exact asymptotic order of magnitude
“distance” of state from the failure set
“criticality” of the transition
set of component types having failure rates of the
th largest order of magnitude

stack of likelihood ratios associated with failure
events of components in
likelihood ratio on top of
2-dimensional vector, where (respectively, ) is
the number of operational (respectively, currently
under repair) components of type,
set of states in which components are failed
total system failure time in
-expected interval unavailability

total transition rate out of stateunder the original
probability measure
IS pdf used to sample a random holding time when
in state
total time in state in a regenerative cycle
total time in states other than, from the beginning
of a regenerative cycle until either the system fails
or the end of the cycle

{system fails during a regenerative cycle}
upper bound for
lower bound for
generic parameter (e.g., a component failure rate)
partial derivative operator with respect to
hitting time of state
hitting time of set
partial derivative of the likelihood ratio with respect
to .

Most of the approaches in the following sections are appro-
priate for highly dependable Markov systems consisting of
highly reliable components (i.e., component failure rates are
much smaller than the repair rates) that satisfy:

Assumption A:Each state, other than the state in which all
components are up, has at least one repair transition possible.

Assumption A is satisfied by systems of the type in [44], [45].

For systems with repair-unit sharing,4 let ; they
are defined in Section II-B. For systems with more general re-
pair disciplines, add a list of components either waiting-for or
undergoing repair at each RP. is a CTMC when
all failure and repair times are exponentially distributed, and the
methodologies in this section are independent of the definition
of the state.

Unless stated otherwise, let . One can sim-
ulate a CTMC by generating the next state visited usingand
then generating the exponentially-distributed holding-time in
that state with the appropriate rate. When estimating steady-
state measures, instead of sampling the holding times in a state,
use the -expected holding time in that state [25], [26], [56].

CTMC are regenerative processes, where entrance to any
fixed state constitutes a system regeneration. Let the regenera-
tion epochs to be the entrances to state. As in Section II-B,

time to first system-failure.

A. Steady-State Measures

For estimating steady-state measures, the regenerative
method of simulation is often used, and it is usually sufficient
to simulate the embedded process at transition times, as
described in Section II. Many steady-state measures can be
expressed by a ratio of regenerative-cycle-based quantities
[21], e.g.,

(5)

The ordinary way of estimating unavailability is to run some re-
generative cycles and collect samples ofand . Then one can
estimate and by their respective sample means.
However most samples of are zero, thus one often uses IS to
try to obtain more precise estimates of . Then (as in Sec-
tion II-B): . The problem is to find a so
that , which implies that
simulation with is much more efficient.

1) Failure Biasing: As mentioned in Section I, the imple-
mentation of IS involves failure biasing [71], in which the basic
idea is to take the system along typical sample paths to failure,
more frequently. All states of the MC, other than, have both
failure and repair transitions.

• A failure-transition is a transition from one state to an-
other, corresponding to the failure of at least one compo-
nent.

• A repair-transition is a transition from one state to another
corresponding to the repair of at least one component.

We do not allow a single transition to correspond to some com-
ponents failing and other components being repaired. Typically,
the total probability of repair transitions is close to 1, and the
total probability of failure transitions is close to 0. In failure bi-
asing, the total probability of failure transitions is increased to
some value , the failure-biasing parameter; thus the total proba-
bility of repair transitions is decreased to . Empirical studies

4The repair discipline in which the RP works on all failed components simul-
taneously, with the effort devoted to each component proportional to the repair
rate of that component.
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suggest that we should choose . (Setting too
close to 1, e.g., , can sometimes lead to a variance
increase or even infinite variance.) Thus failure biasing enables
the system to go along paths to system failure more often.

However, just making the rare event occur more often might
not always work. How the rare event happens (the sequence of
events that lead to the rare event) plays a crucial role. Under
the original probability measure, some sample paths to system
failure are more likely than others. For IS to be effective,

• All the most likely (in terms of order of magnitude of their
probabilities under the original measure) sample paths
should be made more probable under the new measure.

• Secondary sample paths (those paths with probability
under that are at least an order of magnitude smaller
than the probability of the most likely ones) also need to
be made more probable under but not as much as the
most likely paths.

If an IS distribution does not assign enough probability to a
likely path to system failure, then the resulting variance can be
worse than that of ordinary simulation. (In mathematical terms,
this means that will be large, because, for a sample
path for which is large relative
to , the is large [81].) In
the original version of failure biasing, called “simple failure-bi-
asing” here, the relative probabilities under the new measure of
individual failure (repair) transitions with respect to each other
remain unchanged. In systems where the failure-transition prob-
abilities are of different orders of magnitude (e.g., unbalanced
systems), this can deprive a path of a high enough probability
under IS, thus causing inefficient estimation.

2) Balanced Failure-Biasing:BFB [47], [98] overcomes the
problem in Section III-A-1 by making all failure transitions
occur with equal probabilities (this is also done in state). This
ensures that all paths get sufficient probability, though it also
wastes some probability by giving certain paths more weight
than necessary. This can degrade a simulation’s performance
when there are large redundancies in the system. IS schemes that
try to minimize this waste include “failure-distance biasing” and
“BLR methods.” is used on the sample paths of

in which is used until system failure, and is used after
that.

3) MSDIS: In (5), one can use different probability mea-
sures (and thus different regenerative cycles) to estimate
and . This approach is called MSDIS [46], [47]. When
implementing MSDIS, we typically use IS to estimate ,
and use ordinary simulation to estimate , because it
provides accurate estimates of without using IS. Hence,
one can run regenerative cycles using to get the sample
tuples of , and
can run regenerative cycles using to get the samples

of . Then is estimated

(6)

The asymptotic variance of this estimator (largeand ) is [47]

(7)

which when estimated (by replacing, ,
and in (7) by their respective simulation estimates) can
be used to construct 99%;-confidence intervals.

Another quantity of interest is the MTTF defined by .
For regenerative systems, the MTTF can be expressed as a ratio
of regenerative-cycle-based quantities [47], [64], [103], [108]:

(8)

A sample of [or a sample of ] can be
obtained from 1 regenerative cycle. Hence, again use MSDIS to
estimate by separately estimating each term of the ratio
[47], [103]. In this case, the rare-event problem occurs in esti-
mating the denominator of the ratio. Hence, useto estimate
the denominator and to estimate the numerator.

To estimate and , one can use other heuristic IS
measures instead of BFB.

4) Mathematical Analysis of Failure Biasing:Mathematical
analysis of failure biasing techniques began in [97], [98]. This
analysis is used to study the increase in simulation efficiency
obtained by using these techniques, or for proving BRE proper-
ties of these techniques. In [97], [98], the failure rate of compo-
nent-type is assumed to be of the form , where is
a small parameter (rarity parameter) andand are positive
constants. This enables modeling a situation in which compo-
nents have small failure rates (components are highly reliable).
Prior to [97], [98], there was other work [32] that studied the
asymptotic behavior (nonsimulation aspects) of systems with
highly reliable components. However, this earlier work assumed
that , for all , which does not allow the modeling of
systems in which component failure rates are of different or-
ders of magnitude. The use of the exponentsfacilitates this
modeling. This paper assumes that the repair rates are constants
and the failure-propagation probabilities (probabilities used to
determine if the failure of certain components cause others to
fail simultaneously) are either constants or are of the same gen-
eral form as the failure rates: a constant multiplied byraised
to some power. The simulation analysis in [3], [77]–[79], [81],
[97]–[99], [115], [102], [105] deals with the asymptotic be-
havior of the simulation efficiency for small. The simulation
technique for highly dependable systems is formally said to have
BRE if the RE remains bounded as .

References [97], [98] show that BFB has the BRE property
when estimating and . This leads to the
BRE property of the MSDIS approach (using BFB) to estimate
the steady-state unavailability and the MTTF. It was shown that,
for fixed numbers , of regenerative cycles, the RE in the es-
timation of using standard regenerative simulation is ,
for some constant ; whereas the RE using the MSDIS
scheme is . [A function is , , if there exist
constants , such that for all suf-
ficiently small .]
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References [97], [98] also show that simple failure biasing
has the BRE property for the special class of balanced-systems
(systems in which the failure transition probabilities are of the
same order of magnitude; e.g., when for all , and the
failure propagation probabilities are-independent of). Using
a counter-example, it was shown that the BRE property might
not hold when simple failure-biasing is usedor unbalanced
systems. More general conditions (on the system) under which
any failure biasing method (or any more general IS scheme)
does or does not give BRE are in [79], [81]. Although it seems
difficult to check these conditions except in very simple cases,
they provide insight into how IS should be implemented. Some
additional results are in [109].

5) Failure-Distance Biasing:Failure-distance biasing [12]
attempts to refine failure-biasing schemes to make the system
go mainly along the most likely paths to system failure (for bal-
anced systems with no failure propagation, the most likely paths
are those with the least number of transitions): there is no im-
portant waste of probabilities on paths that are not most likely.
As in failure biasing, the total failure transition probability is in-
creased to . However, now, the way in which is allocated to
the individual failure transitions from a state depends
on the “distance” from state to some failure state. To do this,
compute, for each state, the : the minimum number of
failing components whose failure in would bring the system
to a state in which the system is failed. The failure distance
for a state is 0. The “criticality” of a failure transition

is defined as . Failure-distance
biasing is implemented by partitioning the set of failure transi-
tions from the current statebased on the criticalities of the in-
dividual transitions: each set contains all failure transitions from

having a particular criticality. Each set is assigned a portion of
the failure-biasing probability, with sets having larger critical-
ities getting larger portions of. Failure transitions within the
same set occur with their original relative probabilities (simple
failure-distance biasing) or with equal probabilities (balanced
failure-distance biasing).

Exact computation of the failure distances assumes a descrip-
tion of the structure function of the system [5] and requires de-
termining all the minimal cutsets corresponding to that struc-
ture function. The latter is NP-hard [94]. Hence the users need
to limit the number of minimal cutsets considered. An efficient
algorithm for computing and maintaining the data structures of
the failure distances is in [12].

It follows directly from [98] that balanced failure-distance
biasing also has the BRE property, but [81] presents an example
showing that simple failure-distance biasing might not have
this property. Experiments on examples in [12] seem to support
the intuition that failure distance based biasing schemes should
have better simulation efficiency than the usual biasing schemes
(but with an important implementation overhead). However,
the amount of efficiency improvement, if any, on a particular
system in practice depends on whether each computed distance
from a state correctly reflects its true proximity to the set.
The distance defined in this subsection seems to reflect the
actual proximity only for the class of balanced systems with no
failure propagation (the structure function, by definition, does
not consider any failure propagation). It appears to be difficult

and computationally expensive to compute a distance reflecting
the actual proximity for the general case. Even for the balanced
case with no failure propagation, only an approximation to the
failure distance is computed, because the users need to limit
the number of minimal cutsets considered.

6) Balanced Likelihood Ratio Methods:References [2], [3],
[105] show, experimentally, that the methods in this section
might not work well for systems that have an important de-
gree of redundancy. The “BLR methods” [2], [3], [105] are ap-
proaches for effectively simulating such systems. They attempt
to cancel terms of the likelihood ratio within a regenerative cycle
by defining the IS probabilities for events in such a way that the
contribution to the likelihood ratio from a repair-event cancels
the contribution to the likelihood ratio from a failure-event that
occurred previously in the current cycle.

Some additional terminology is needed to describe the basic
method. Partition the set of component types into
sets , such that contains all compo-
nent types with failure rates of theth largest order of magni-
tude. Throughout the simulation of a cycle, one stores the event
likelihood ratios associated with component failure events from

in a stack . If , let be the likelihood ratio on
top of ; . The system state is denoted by , where

is the number of components of each type
that are operational, and is the number of
RP currently repairing components of each type. References
[2], [3], [105] consider models for which completely de-
scribes the system state, which is a subset of the class of models
described in this paper, but one can easily apply the method to
the more general setting of models in this paper.

In terms of the algorithm, the BLR method differs from the
failure biasing methods in two respects.

1) Instead of using a fixedfor the failure biasing parameter,
use a that is a function of the current state

and the . In particular,

2) The total (new) probability allotted to repair transitions of
components of type is proportional to ,
instead of their being proportional to (as usually
done in the failure biasing methods).

By doing this, one can ensure the cancellation of likelihood
ratios, and guarantee that the overall likelihood ratio on any re-
generative cycle is always bounded above by 1). This implies
that

thus the variance under the new measureis never greater
than that under the original measure. The method is espe-
cially useful for systems with important redundancies, where the
number of transitions until system failure can be large, leading
to high variabilities in the likelihood ratios when using methods
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like BFB. Reference [3] also shows that the resulting estimators
have the BRE property when the particular way in which indi-
vidual failure transition probabilities are assigned is similar to
that in BFB.

Failure-distance biasing tries to exploit system structure in
allocating probabilities to transitions, and [2], [105] apply sim-
ilar ideas to BLR methods. In particular, they obtain additional
efficiency gains by allocating probabilities to the individual
failure transitions so that those failure transitions corresponding
to component types that lie on minimum-cuts are more heavily
weighted. Their algorithm does not need to maintain a list of
all the minimum cuts; it needs only to maintain a list of all the
components in a minimum cut. This can be done in time,
where is the number of links. As with failure-distance biasing,
one might not get any additional efficiency gains in certain
systems that are unbalanced and/or have failure propagation.
This is because in such systems the most likely paths to system
failure might not lie along minimum cuts (the definition of
minimum cut does not consider failure propagation).

References [2], [3], [105] also describe improvements that are
based on using semi-stationary cycles [106] rather than regen-
erative cycles. The simulation method is similar to the-cycle
method [88] but the motivation for its use is different. In steady-
state simulations of highly dependable systems, one usually uses
the set of states with all components “up” as the regenerative
state. However, when the BLR method is applied to systems
with high degrees of redundancy, the regenerative cycles can be-
come very long, leading to inefficient estimation. Thus, [2], [3],
[105] instead consider a set of states with no 1-step transition
probabilities within the set. An example is the set of states
with failed components, whereis less than the redundancy of
the system (the least number of components that have to fail for
the system to fail). The process in between two entrances to
is a semi-stationary cycle, and has properties similar to regen-
erative cycles, except that these cycles are not necessarily-in-
dependent (thus complicating the construction of-confidence
intervals). Also one needs to know the steady-state distribution
on the set of states in at the times of entrances to this set, in
order to apply IS; in general, this is very difficult to compute.
These problems are similar to those in the-cycle method (see
Section IV-B).

7) Other IS Methods:Another heuristic for failure biasing
in acyclic models (of nonrepairable systems) is considered in
[31], in which the extent to which one biases the failure transi-
tions along a path leading to system failure is proportional to the
path’s contribution to the measure being estimated. When appli-
cable, this heuristic requires more overhead than simple failure
biasing or BFB. Reference [66, ch. 10] describes some efficient
simulation methods for -out-of- : G systems; these methods
combine the IS technique known as forcing (see Section III-B)
with some analytic calculations.

8) Some Empirical Results:Example #1 is a computing
system (originally presented in [47] and then in many papers
thereafter). Consider the unbalanced version of this computing
system. Fig. 1 is the block diagram. It consists of

• 2 sets of processors with 4 processors/set,
• 2 sets of controllers with 2 controllers/set,
• 6 clusters of discs, each consisting of 4 disk units.

Fig. 1. Computing-system example.

In a disk cluster, data are replicated so that one disk can fail
without affecting the system. The “primary” data on a disk are
replicated so that 1/3 is on each of the other 3 disks in the same
cluster. Thus 1 disk in each cluster can be inaccessible without
losing access to the data. It is assumed that when a processor of a
given type fails it has a 0.01 probability of causing the operating
processor of the other type to fail. Each unit in the system has
2 failure modes which occur with equal probability. The failure
rates (per hour) are

• 1/1000 for processors,
• 1/20 000 for controllers,
• 1/60 000 for disks.

The repair rates (per hour) are

• 1 for all mode 1 failures,
• 1/2 for all mode 2 failures.

This is an unbalanced system with a redundancy of 2. Compo-
nents are repaired by a single RP who chooses a component at
random from the set of failed units. The system is operational
if all data are accessible to both processor types, which means
that at least 1 processor of each type, 1 controller in each set,
and 3 out of 4 disk units in each disk cluster are operational.
Operational components continue to fail at given rates when the
system is failed.

To facilitate comparisons between simulation methods on the
same CPU, simulation results (in the MSDIS framework) are
quoted from the latest implementation of these methods [3].
BFB using a total of 200 000 cycles (100 000 cycles each for
the numerator and the denominator) and gave the
steady-state unavailability estimate of 3.8%, the
3.8% is the estimate of the RE corresponding to a 90%-confi-
dence interval.

The corresponding VRR was 167 with a TRR of 415.
The BFB estimate of the MTTF was 6.5% with

and .
For the same problem, the most promising MSDIS implemen-

tation of the BLR method without the use of minimum cuts (de-
noted by BLBLR in [3]) gave

• for the steady-state unavailability
• for the MTTF.
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Fig. 2. Network with redundancies.

Hence, for this example, without the use of additional informa-
tion about the system, BFB does better than the BLR method.
For the balanced version of this computing system (the results
of which are in [3]), the improvements obtained by BFB and
BLBLR are similar.

The performance of the failure biasing method and BLR
methods can be improved by using some information about
component types on minimum cuts in the system. The most
recommended MSDIS version of the BLR method with min-
imum cuts (denoted by BLBLRC in [3]) gave

• for the steady-state unavailability
• for the MTTF.

There is appreciable improvement over BFB for the MTTF. For
the balanced case of this network, there was appreciable im-
provement over BFB for both the MTTF and the unavailability.

Consider the system (see Fig. 2) with important redundancies
that was considered in [3]. The following description is from
[3], with minor modification. The network contains 3 types of
components:

• Type A links contain 3 -identical components, which on
average fail every 13(1/3) hours and can be repaired in half
an hour. The type A link fails when 2 components are in
the failed states.

• Type B links contain 1 component, which on average fail
every 40 hours and can be repaired in 1 hour.

• Type C links contain 2 components, which on average fail
every 26(1/3) hours and can be repaired in 2/3 hour. One
component failure on a type C link causes the link to fail.

The system operates as long as there exists a path along oper-
ating links between node 1 and node 20. There are 5 RP, and
repairs make components “good as new.” Upon completing a
repair, a RP selects (uniformly over the failed components in
the network) the next component to repair.

The results are

• , , for the BLBLR
• , , for the BLBLRC
• , , for BFB (worse than

ordinary simulation) in the estimation of the unavailability
(estimates of which were of the order of 10).

The BLBLRC methods when applied to another version of
the same network yield orders of magnitude improvement over
BFB when estimating unavailabilities that are of the order of
10 . No comparisons were made with ordinary simulation for

these cases because there were no system failure events with this
method, even in the allotted run time of 10events. The results
suggest that for systems with appreciable redundancies, BFB is
not at all effective, and the BLR method (with and without cuts)
seems to improve the simulation efficiency.

B. Transient Measures

This section considers the estimation of transient measures
in highly dependable Markov systems. Consider the three mea-
sures:

unreliability:

-expected interval unavailability:

guaranteed availability:

Research in fast simulation for guaranteed availability is limited
to experiments; see [47].

1) Case 1: Small TH:Small TH means that the THis small
compared to the-expected lifetimes of components. From the
analytic standpoint, it means that the THis a constant, i.e.,
-independent of. The effectiveness of simulation techniques

for small are studied again.
For transient measures, failure biasing (relative to repair)

alone might not be sufficient to observe many system failures,
because it affects only the transitions of the embedded DTMC
and not the random holding times in each state. To see why
this is the case, note that the first component failure in a
system occurs at a very low rate (the sum of failure rates of all
the components). Thus, typically, the first component-failure
occurs after time ; thus the chance that the system fails
before the mission time expires is very small. To address this
issue, “forcing” was introduced [71] to modify the random
holding times in particular states. With forcing, the time to first
component failure is sampled conditionally on the fact that it is
less than , i.e., the time to first component failure is sampled
from the distribution:

for (9)

the transition rate out of stateunder the original measure
.
References [99], [115], [101] show that a “combination of

BFB and forcing” gives BRE in estimating the unreliability and
the -expected interval unavailability. From a modeling view-
point, this implies that for small TH, the simulation can be very
efficient. This agrees with experimental results [47], [99], [115],
[101].

Another technique for estimating transient dependability
measures is to combine failure biasing with “conditioning”
[47]. Conditioning is applied by simulating the embedded
DTMC until the system fails; failure biasing is used to gen-
erate the transitions. Random holding times are generated for
each of the states visited, except for those states having slow
transition rates (e.g., the “fully operational” state, which has
no repairs taking place). Then for each generated sample path,
one can analytically compute the conditional probability that
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the system fails before time, given the path of the embedded
DTMC and the sum of the holding times in the states that
do not have slow transition rates. This computation involves
calculating the convolution of exponentially distributed r.v.,
corresponding to the visits of the “conditioned out” states. The
technique is guaranteed to reduce variance, but requires more
computation. Experimental results and comparisons with the
forcing technique, are in [47].

2) Case 2: Moderate and Large TH:Even though, for small
TH, the IS-based simulation of transient measures has the BRE
property, it becomes inefficient for moderate and large TH. A
moderate TH implies: is of the same order (of magnitude) as
the -expected time to first component-failure. Any TH that is at
least 1 order larger is termed “large.” For moderate TH, tuning
the value of the failure biasing parameterthrough experimen-
tation can yield efficient estimates [85], but it is difficult to pro-
vide guidelines for how should be set in general. For large
TH, irrespective of the value of, the estimates using failure bi-
asing are always poor, because the variance of the IS estimator
increases with the variance of the likelihood ratio. The larger
is, the more transitions there are in , and the variance of
the likelihood ratio grows approximately exponentially with the
number of transitions [39].

In estimating unavailability and MTTF, the expressions used
in this paper are in terms of regenerative-cycle-based quanti-
ties, which are estimated using the regenerative method of sim-
ulation. Since in highly dependable systems, regenerative cy-
cles typically contain a small number of transitions, the use of
IS does not lead to a likelihood ratio with an important vari-
ance. A similar approach can be used in the context of transient
measures. Though transient measures cannot be expressed ex-
actly in terms of regenerative-cycle-based quantities, it is pos-
sible to develop bounds that are expressed in terms of regener-
ative-cycle-based quantities. Thus, when the direct application
of IS to estimate the transient measure itself is inefficient, it is
possible to estimate the bounds efficiently. For highly depend-
able systems these bounds are close to the transient measure in
the sense explained in this section, [99], [115], [101], [102].

The is exponentially distributed with rate, which is equal
to the sum of all component failure rates in state. From its
definition, . Let

• if the system does not fail in a regenerative cycle,
• time between the first system failure in a cycle and

the end of the cycle if the system does fail:
. Hence .

When the highly dependable system consists of highly reliable
components, then most regenerative cycles consist of a single
component failure transition followed by a component repair
transition. Because component repair times are typically much
smaller than component failure times, the regenerative cycle
time consists mainly of the first component failure time,
( implies ), which is
exponentially distributed with rate. The number of regenera-
tive cycles until system failure is geometrically distributed with
probability . The geometric sum (with ac-
ceptance probability) of exponentially distributed r.v. (each of
which has rate ) is exponentially distributed (with rate ).

Thus, is approximately exponentially distributed with rate
. Let

(10)

then it has been shown [101], [102] that
TH are modeled by , ( corresponds
to a small TH), then for (corresponding to moderate and
large TH),

as and

thus we have an upper bound. Similarly, let

(11)

then , for all .
Also, as for ,

as

i.e., the lower bound is close to the unreliability for moderate
and large TH.

Both and are in terms of regenerative-cycle-based
quantities. Hence for estimating and , use a MSDIS
type procedure in which is used to estimate the quantities
associated with rare events likeand and
the original probability measure to estimate other quantities
like .

There are other bounds on the unreliability (in terms of re-
generative-cycle-based quantities), like the ones in [11], [63].
These bounds are close for large, whereas the bounds in [101],
[102] are close for both moderate and large. Bounds for the
-expected interval unavailability were developed in [99], [115]

and (as for the unreliability bounds) close to the actual measure
for moderate and large.

3) Estimation of the Laplace Transform Function:An ap-
proach for estimating the actual transient measure (instead of
estimating close bounds) for large TH is outlined in [13]. In-
stead of estimating the transient measure, the “Laplace trans-
form function” of the transient measure is estimated (the tran-
sient measure is a function of). Then a Laplace transform in-
version method is used to estimate the transient measure for
any given . The advantage of this approach is that the Laplace
transform function of the transient measure can be expressed
exactly in terms of Laplace transform functions of regenera-
tive-cycle-based quantities, which can be estimated very effi-
ciently using IS (if necessary).
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For example, consider the unreliability. For any function ,
the Laplace transform function is:

Let:

and

Then the Laplace transform of the unreliability is [13]:

(12)

Both and are regenerative-cycle-based quantities.
For any fixed , the can be efficiently estimated using
IS, and the can be efficiently estimated using ordinary
simulation. Then, the method is: estimate for some values
of [by estimating and ], and then use a Laplace
transform inversion algorithm to obtain for a given . A
similar method for estimating the interval unavailability is in
[13]. This transform approach [13] is a bit tedious to implement,
but yields good experimental results.

C. Estimation of Derivatives

Performance measures of a system are (complicated) func-
tions of the system parameters, such as the component failure
and repair rates. Thus, one can compute derivatives of perfor-
mance measures with respect to these parameters. This section
reviews work in this area for highly dependable Markov sys-
tems. For example, determining the derivative of the MTTF
with respect to a particular component’s failure rate. The deriva-
tive information is useful when designing systems, because this
knowledge can help the designer identify system parts that need
improvement.

First consider estimating derivatives of the MTTF. Recall the
ratio expression in (8) for the MTTF; then differentiate it with
respect to some system parameter(e.g., some component’s
failure rate).

(13)

derivative operator with respect to.
Thus, estimating requires estimating each of these

4 quantities in (13). A central limit theorem for the resulting es-
timator of is derived in [83]; -confidence intervals
for the derivative can be formed. Section III-A discussed esti-
mating and ; thus the focus
here is on estimating their derivatives.

One simulation-based approach for estimating derivatives is
the likelihood-ratio derivative method [38], [93], which is now
briefly described. Focus on estimating and its
derivative with respect to. To estimate , only
requires simulating the embedded DTMC, .
Let and be the hitting time to and the cycle length of
the embedded DTMC, respectively (the numbers of transitions
until hitting and , respectively); then

The (original) transition-probability matrix of (under ) is .
Then, under certain regularity conditions [38], [93],

The is determined within a single regenerative cycle. Thus,
to estimate , generate regenerative cycles
using the original measure, and collect observations:

of

The standard-simulation estimator of

is

Similarly, estimate in (13).
One drawback of the likelihood-ratio derivative method is

that it yields derivative estimators with large variances in many
settings. Specifically, theoretical and empirical work, [36], [93],
show that the variances of derivative estimators—

• are typically much larger than those of the respective per-
formance-measure estimators,

• grow linearly in the -expected number of events in an
observation.

When regenerative simulation is used, an observation corre-
sponds to a regenerative cycle, which typically consists of very
few transitions for highly dependable Markov systems. Thus,
the likelihood-ratio method seems to be well-suited for these
types of systems.

Theoretical studies in [77], [78] established that when esti-
mating derivatives with respect to certain system parameters
(e.g., failure rates of certain components) using ordinary simu-
lation, the ratio of the RE of the estimate of
and the estimate of remains bounded. This oc-
curs when the parameter corresponds to one of the largest (in
absolute value) sensitivities, where the sensitivity with respect
to a parameter is defined as the product ofand the derivative
with respect to . Sensitivities measure how relative changes in
a parameter value affect the overall performance. Thus, for pa-
rameters corresponding to the largest sensitivities, one can es-
timate the derivative with respect toand the performance mea-
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sure with about the same relative accuracy. However, the RE of
both these estimators go to infinity as the system unreliability
tends to zero (see Section II-B); therefore IS must be used. The
derivatives with respect to parameters that do not correspond to
the largest sensitivities might not be estimated as efficiently as
the performance measure when using ordinary simulation; [78]
gives an example illustrating this.

This section implements IS by simulatingregenerative cy-
cles using another probability measure and collecting observa-
tions , of
the triplet , where is the likelihood ratio.
Then the IS estimator of is

WhenBFBisapplied, then theestimatorof has
BRE[78].Necessaryandsufficientconditions forBREofderiva-
tive estimators obtained using other failure-biasing methods and
moregeneral IS schemes are established in [79], [81].

Reference [82] shows that even though the numerator
in the MTTF ratio formula can be estimated

with BRE using ordinary simulation, its derivative estimators
can have unbounded RE. Consequently, if

• and its derivative are estimated using
ordinary simulation,

• BFB is applied to the estimation of the denominator
and its derivative,

• all 4 terms are estimated mutually-independently (using
measure-specific IS),

then the resulting estimator of the derivative of the MTTF can
have unbounded RE. On the other hand, if BFB is also used to
estimate , then its estimator has BRE and
so does the resulting estimator of the derivative of the MTTF.

Experimental work in [83] seems to indicate that derivatives
of the MTTF and the steady-state unavailability for large sys-
tems can be estimated efficiently using BFB. When estimating
derivatives of the unreliability using BFB and forcing (see Sec-
tionIII-B), theempirical resultsshowthat theREof theestimators
are typically small when the TH is small, but they grow as the TH
increases [101]. This is analogous to the behavior of (nonderiva-
tive) estimators of the unreliability, as discussed in Section III-B.
Estimation of derivatives of the unreliability for large TH, using
the boundingmethod inSection III-B, is treated in [101].

Reference [79] presents an example of a system showing
that when estimating and its derivatives using
simple failure biasing, estimators of derivatives with respect
to certain component failure rates can have BRE, while the
performance-measure estimator does not. Thus, it is possible
to estimate a derivative more efficiently than the performance
measure when using simple failure biasing.

IV. FAST SIMULATION OF NON-MARKOV MODELS

Notation

NHPP
intensity rate function of NHPP,

upper bound for intensity rate function
time-homogeneous Poisson process with
rate
time of event of

, Cdf, pdf of the lifetime of component, eval-
uated at
hazard rate of the lifetime of component
evaluated at
hazard rate of the repair-time of component

evaluated at
, failure rate of componentat time without,

with IS
, repair rate of componentat time without,

with IS
, total failure rate of all components at time

without, with IS
, total repair rate of all components at time

without, with IS
, total event rate at time without, with IS

, likelihood ratio of failure, repair events at
time

, likelihood ratio of pseudo, all events at time
number of componentfailures by time
det of operational components at time
time component fails at its failure #
length of a generic -cycle
number of system failures in an-cycle in
the steady-state

DL total system failure time multiplied by
the likelihood ratio on a generic (biased)

-cycle
-expectation under probability measure

and initial distribution
variance under probability measure and
initial distribution
number of batches used in the batch means
method

, generic batch mean of and its estimator
, generic batch mean of DL and its estimator

covariance under probability measures:
for the first r.v., for the second r.v., and
under initial distribution .

This section uses IS to estimate dependability measures when
the failure and repair times of components might not be expo-
nentially distributed (under certain assumptions), and is based
on [40], [54], [55], [87], [88].

Except for some technical and implementation details, most
of the IS heuristics developed for Markov models also apply to
non-Markov models. One approach to implement failure biasing
(or forcing) in discrete-event systems is to reschedule failure
events by sampling from new accelerated failure distributions
[85].5 Heuristics and their implementation, as well as experi-
mental results demonstrating the effectiveness of the techniques
to estimate steady-state and transient measures are in [85], [86].
Another approach to IS in discrete-event systems (briefly de-
scribed in this section) is based on the uniformization method of

5There is considerable freedom in the choice of the new distributions.
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simulation. The method requires the underlying (uniformized)
distributions to have bounded hazard-rate functions. A closely
related method which avoids generation of pseudo events is
exponential transformation; here, the time to the next failure
event is sampled directly from an exponential distribution [87].
Failure biasing or forcing are affected by increasing the failure
rate (relative to the repair rate or the mission time, respectively).
The latter two techniques are somewhat simpler to implement
than the technique in [85], because failure events need not be
rescheduled and are generated using only the exponential dis-
tribution.

The next paragraph briefly describes the uniformization
method of simulation, which is use in this section as a basis of
our approach to IS in non-Markov models.

Uniformization-Based Sampling:Uniformization (or thin-
ning) is a simple technique for sampling (simulating) the event
times of certain stochastic processes including NHPP, renewal
processes, or Markov processes in continuous time on either
discrete or continuous state spaces [22], [26], [49], [58], [72],
[104]. It is describe for a NHPP with intensity function

. Assume that for all for some finite
constant . Then the event times of can be sampled by
thinning the process as follows:

For each , include (accept) as an event-time in
with probability ; otherwise the point is not in-

cluded (is rejected).
Rejected events are sometimes calledpseudo events.
Throughout it is assumed that all rate functions are left-con-

tinuous: ; thus if an event occurs at some random
time , then is the event rate just prior to time.

Renewal processes can be simulated using uniformization,
provided that is the hazard rate of the inter-event time dis-
tribution at time . Uniformization can be generalized to cases
in which the process being thinned is not a time-homogeneous
Poisson process [72]. For example, at time , set

, where has an exponential distribution with rate
. The point is then accepted with probability .

This requires only that , for all .
Section IV-A describes how the uniformization method of

simulation can be combined with IS to develop an effective tech-
nique for estimating transient measures in non-Markov models
of highly dependable systems.

A. Transient Measures

Consider the problem of estimating the unreliability
{time to system failure, for some fixed value of}.

To simplify the notation, let there be 1 component of each
type (although more general situations can be handled). The
hazard rate [5] of componentis then

, which we assume is well defined and finite.
, age of component at time .

[If component is not operational at time then .]
, elapsed repair time on compo-

nent at time . [If component is not being repaired at time
then .

There are a variety of ways to use IS in simulations of such
a system. Begin with a direct analog of forcing and BFB. This
method is based on uniformization. If components are highly

reliable, then . If the failure and repair rates are
bounded, then the system can be simulated (without IS) by uni-
formization as follows.

Assume , for all times ;
is a constant.

Then a Poisson process with rateis simulated.
Let an event in this Poisson process occur at time.
That event is accepted as a componentfailure event with

probability , and is accepted as a componentrepair
event with probability . However, because it might be
that , another possibility exists: a pseudo-event (neither
a failure nor a repair occurs). This occurs with probability

. The probability of a failure event is , and of a
repair event is .

For highly reliable components, when-
ever repairs are ongoing, thus the probability of a failure is
very small. To accelerate failures, simply change the acceptance
probabilities of the various event types, which is equivalent to
changing componentfailure and repair rates to, say,

• [such that ],
• [such that ].

The likelihood ratio (at time ) is:

(14)

These likelihood ratios have a simple form. For example, let
component fails on its own (not through failure propagation)

times in .

(15)

Equation (15) assumes that the failure propagation probabilities
are sampled from their given distributions. However, IS can also
be applied to these as well. The terms and can
be expressed similarly. The likelihood ratio can be computed
(updated) recursively at uniformization event times during the
simulation.

The analog of BFB with forcing is accomplished as follows.
If no repairs are ongoing (e.g., in the state where all compo-
nents are operational), let , for some constant

. (In practice [87], could be chosen such that
. This means that, with probability 0.8, some com-

ponent fails before the TH expires.) If repairs are ongoing,
let : the total event rates the same as without IS.
Then, let , for some constant: given that the
event is real, make it a failure event with probability. (In prac-
tice [87], is usually set in the range from 0.3 to 0.5.) Given a
failure event, pick an operating componentto fail with prob-
ability . Under appropriate technical conditions, it can
be shown that such a heuristic for IS (which is the analog of
forcing and failure biasing) results in estimates having BRE
[55]. In particular, let , and let there
exist a small positive parametersuch that

, where and . If IS is done such
that, for all , [when ],
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(when component is under-
going repair), then under some additional minor assumptions
(including that the failure propagation probabilities are-inde-
pendent of ), the estimates of have BRE as .

Because repair distributions might not have bounded hazard
rates (e.g., discrete and uniform), it is desirable to seek effec-
tive IS methods that do not rely on uniformization for repair
events. The above uniformization-based algorithm can be ap-
plied to just failure events: repair times are sampled directly
from their original distributions, while uniformization is used
to simulate failure events. The likelihood ratio is then

: it does not include the repair event term .
Again, under appropriate technical conditions, this modification
results in BRE [55].

Uniformization can be computationally inefficient if there are
many pseudo events. In addition, suppose events from a Poisson
process with rate are accepted as failure events with proba-
bility . Then the time until an accepted event has an exponen-
tial distribution with rate . This suggests sampling the time to
next failure event directly from an exponential distribution with
rate . A generalization of this approach (exponential transfor-
mation) also results in estimates having BRE (under appropriate
technical conditions [55]). The likelihood ratio takes on a some-
what different form [55], [87].

Empirical studies testing the competence of these methods
are reported in [54], [55], [87]. Generally, good variance reduc-
tion is obtained if is small, say, less than 10. The
smaller and are, the greater thecan be made.
Finally, though no formal study has been done, we anticipate
that these techniques (with minor modifications) apply also for
estimating the -expected interval unavailability.

B. Steady-State Measures

Non-Markov models of highly dependable systems might not
possess an explicit regenerative structure. If they do not, then
a ratio representation of steady-state measures in terms of re-
generative-cycle-based quantities, such as in (5), is no longer
possible. This section discusses an approach for the efficient es-
timation of steady-state measures, such as system unavailability
and MTBF, in non-Markov nonregenerative models. The ap-
proach uses a representation of steady-state measures in terms of
quantities based on-cycles: a sample path between two suc-
cessive entries of the system into some set of states. In the
context of highly dependable systems (as in Section II), choose

to be the state in which all components are operational. Only
when all component failure-time distributions are exponential
(regardless of the repair-time distributions), entrance into the
set constitutes a regeneration point, and a ratio representa-
tion of the steady-state unavailability,, in terms of regener-
ative-cycle-based quantities, as in (5), is still valid [85]. How-
ever, this is no longer true if component failure times are gen-
erally distributed. Therefore, in general,-cycles are not i.i.d.,
and one cannot use classical statistical techniques to estimate
the variances of -cycle-based quantities. Instead, one can use
the method of batch means to estimate the variances of these
quantities by grouping successive-cycle-based quantities into
nonoverlapping batches, and then treating the batch means as

i.i.d. observations; this is an approximation whose validity in-
creases with the batch size.

Let be the initial distribution of the corresponding (original)
stochastic process upon entering the set, after the stochastic
process has reached the steady-state. According to the definition
of , is the steady-state joint distribution of the components’
ages upon entering the state in which all components are oper-
ational; upon entering , at least 1 component has an age0.

Under fairly general ergodicity conditions (which also ensure
that the system returns to the setinfinitely often), the ratio
representation of in terms of -cycle-based quantities is:6

(16)

the subscripts denote that the-expectation is with respect to the
original probability measure (which governs the behavior of
the original system) and the steady-state initial distributionof
the -cycles. A ratio representation for the MTBF in terms of

-cycle-based quantities is

(17)

The remainder of this section reviews the estimation of, which
has been considered in [88]. A similar approach to estimate the
MTBF is in [40].

Because system-failure is a rare event, ordinary simulation is
very inefficient to estimate ; this motivates the use of
IS.

a new probability measure to simulate the system.
a sample path in the original process, on which the

total system down-time is evaluated to be.
must satisfy the condition , “ when-

ever .
With IS, an -unbiased estimate of ,

( likelihood ratio).
An appropriate choice of should yield

, which implies much better precision in estimating
.

can be estimated efficiently using ordinary simula-
tion. Therefore, the ratio estimator in (16) can be written as

(18)

The resulting scheme is analogous to MSDIS for estimating
the steady-state unavailability in Markov models [46] (see Sec-
tion III-B). First, the system is simulated using the originalfor
a sufficiently long time to approximately reach the steady-state.
At that time, the initial distribution upon entry of -cycles is
sufficiently close to , and begin to use the following splitting
technique. For each (steady-state)-cycle, run the simulation
(once or more) starting with the same component failure ages
and using to get samples of and ; these are-biased -cy-
cles. Then run the same-cycle using the to get a sample of

6For details, see [10], [16], [27], [106].



NICOLA et al.: TECHNIQUES FOR FAST SIMULATION OF MODELS 261

; this is an original -cycle. This last run also ensures that the
initial distribution, upon entering the next-cycle, is .

Because successive-cycles are not -independent, use the
method of batch means [68] to estimate variances and form
-confidence intervals. After (approximately) reaching the

steady-state, use and ; should be sufficiently large, so
as to make the dependence between successive batch means
-insignificant. (Experimental results in [88] indicate that in

practice, need not be very large. In [88], was used.)
It follows that the total number of original -cycles used in the
simulation is .

length of the original -cycle # ,
sample mean based on batch #:

For sufficiently large , the s can be viewed as i.i.d. samples
of a generic r.v. . The estimate of based on the batch
means method is .

An estimate of is

(19)

Let be the number of-biased cycles run for each orig-
inal cycle. Usually, , because typically more cycles are
required to estimate than those required to estimate

to the same degree of RE. Thus the number of-biased
-cycles in 1 batch is , and the total number of-biased
-cycles used in the simulation is .
Let , , be a sample of , evaluated

at -biased -cycle # .
Let , , be the sample mean based on batch #:

For sufficiently large , the s can be viewed as i.i.d. samples
of a generic r.v. . The respective estimate of is:

An estimate of is

(20)

An estimate of is

(21)

An estimate of the steady-state unavailability is

(22)

From the CLT, for large and ,

An estimate for the variance of of the estimate
is obtained from

(23)

One could try to estimate without using -cycles by using the
fact that

as

with probability 1, where is the process repre-
senting the state-evolution of the system over time. One could
then estimate using simulation as follows. Run a simulation
of length , with large , and break-up the sample path into
batches, each of size . To apply IS, one might have to use
a change of measure for an entire batch. However, this would
probably result in poor estimates because the batches would be
large and the variance of the likelihood ratio grows approxi-
mately exponentially with the number of transitions [39]. Using

-cycles avoids this problem by breaking the sample path into
smaller pieces, and thus IS is typically applied for only a small
number of events. A similar justification applies to the use of
regenerative cycles when doing IS for Markov systems.

This paper’s heuristic for IS is similar to that for regenera-
tive non-Markov models [85]. In a biased-cycle, upon the oc-
currence of the first component failure, activate failure biasing
to accelerate subsequent component failures relative to the on-
going repair. Failure biasing is continued until system failure or
the end of the current -cycle. In BFB, various types of compo-
nents have the same failure probability. As in Section IV-A, the
uniformization method of simulation can be used to implement
IS. In [40], [88], uniformization, combined with BFB, is used to
estimate the steady-state unavailability and the MTBF, respec-
tively. No proof is yet available to establish the BRE property of
the resulting estimates. However, empirical results in [40], [88]
seem to indicate the effectiveness of the approach in this sec-
tion.

Some experimental results from [88] are presented here. The
system structure in this example is the same as described at the
end of Section III-A except there are 2 processors in each set.
However, the failure and repair behavior are appreciably dif-
ferent. Each component can now fail in only 1 failure mode. A
preemptive resume-repair discipline is now assumed, with pro-
cessors having the highest priority, and disks having the lowest
priority. All repair time distributions are exponential with mean

1 hour. A failing processor in any of the 2 sets causes one
processor in the other set to fail with probability 0.1. The mean
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lifetimes for processors, controllers, and disks are assumed to be
20 k, 20 k, and 60 k hours, respectively. In [88], experimental re-
sults are presented for the Erlang, Weibull, exponential, and hy-
perexponential lifetime distributions. Results are presented here
only for: all lifetimes have the Weibull distribution with shape
parameter 1.25. For mean lifetimes of 20 k and 60 k hours, the
scale parameters were 3.84710 and 9.744 10 , respec-
tively. The steady-state unavailability using IS was estimated to
be 6.610 10 9.18%. The RE corresponds to 99%-con-
fidence. The estimate without IS was highly unstable and did
not converge. All simulations were run for 64 k original-cy-
cles with original cycles per batch and biased
cycles for each original cycle. When the mean lifetimes were
reduced by a factor of 10, the estimate of steady-state unavail-
ability using IS was 6.85610 9.87%. Even though the
steady-state unavailability estimate dropped by a factor of 100,
the RE did not change appreciably, giving some validity to the
BRE hypothesis.

V. CURRENTWORK AND FUTURE RESEARCHDIRECTIONS

It is important to extend the applicability of IS to other
classes of highly dependable systems. Reference [59] states
that most of the failure biasing techniques mentioned in this
paper break down when Assumption A (see Section III) does
not hold. This can happen, for example, in systems with
complicated repair policies like deferred and group repair. Two
different approaches for the fast simulation of these models in
the Markov setting have been presented in [60], [114], [61].
Extensions of these to non-Markov settings is an open-problem.

Another area of research for non-Markov models is the de-
velopment of techniques that handle systems with appreciable
redundancies; the techniques in [2], [3], [105] apply mainly
to Markov models. Also important from a practical viewpoint,
is the development & extension of derivative estimation tech-
niques [83] to

• Markov models not satisfying Assumption A,
• Markov models with appreciable redundancies,
• non-Markov models.

The robust implementation of fast simulation techniques in tools
to evaluate highly dependable systems is the ultimate goal of this
research and should be given an increasing attention. For related
attempts, see [8], [47], [89], [90].

From a theoretical viewpoint, it is relevant to establish re-
sults pertaining to the effectiveness of IS techniques in Markov
and non-Markov models, such as those in [3], [55], [60], [114],
[61], [78], [79], [81], [98], [99], [115]. These results enhance
our understanding of the capabilities and limitations of these
techniques when used to estimate various measures in different
classes of systems.
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