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Techniques for Fast Simulation of Models of Highly
Dependable Systems

Victor F. Nicola, Perwez Shahabuddin, and Marvin K. Nakayama

Abstract—With the ever-increasing complexity and require- NHPP nonhomogeneous Poisson process

ments of highly dependable systems, their evaluation during pdf probability density function

design and operation is becoming more crucial. Realistic models of rv random variable

such systems are often not amenable to analysis using conventional_, _ .

analytic or numerical methods. Therefore, analysts and designers RE relatlye Sl

turn to simulation to evaluate these models. However, accurate RP repair person

estimation of dependability measures of these models requires that SAVE system availability estimator

the simulation frequently observes system failures, which are rare TH time horizon

events in highly dependable systems. This renders ordinary sim- TRR total effort reduction ratio

ulation impractical for evaluating such systems. To overcome this . . .

problem, simulation techniques based on importance sampling VRR variance reduction ratio.

have been developed, and are very effective in certain settings.

When importance sampling works well, simulation run lengths |. INTRODUCTION

can be reduced by several orders of magnitude when estimating

transient as well as steady-state dependability measures. This IGH dependability requirements of today’s critical and/or
paper reviews some of the importance-sampling techniques that commercial systems often lead to complicated and costly

have been developed in recent years to estimate dependability jesjgns. The ability to predict relevant dependability measures
énee&s#égzlzfgftg%y Markov and non-Markov models of highly - ¢, 1,0k complex systems is essential, not only to guarantee high
. . ) levels of dependability during system operation but also to im-
" '”gex TﬁfmS—H'ghl'y dependable system, |mporta_r|1_ce sampling, 6 the cost-effectiveness during system design and develop-
v :r:sicézvntcd :;)r;,nzgrtl)ﬁi?ytl%rgazﬁzdy-state dependability measure, ment.
' Several measures are commonly used for assessing the de-
pendability of a system, and the choice of the particular de-

ACRONYMS! pendability measures used to evaluate a particular system de-
BEB balanced failure biasing pends on the intended operation and the environment of such a
BLBLR balance over links BLR system. For example, mission-oriented systems are often evalu-
BLBLRC BLBLR with cuts ated using transient measures, such as system reliability (prob-
BLR balanced likelihood ratio ability that the system is operational during the entire mission
BRE bounded RE time). Given that the system is initially in an operational state,
CLT central limit theorem MTTF is the mean time to the first system failure; this is an-
CTMC  continuous-time MC other measure of interest for mission-oriented systems. On the
DTMC  discrete-time MC other hand, MTBF is the mean time between subsequent system
GSMP  generalized semi-Markov process failures in steady-state. MTBF and the steady-state availability
iid. s-independent and identically distributed (fraction of time the system is operational in the long run) are
IS importance sampling often used for evaluating continuously operating systems.
MC Markov chain Fault-tolerance and recovery techniques are frequently used
MSDIS  measure-specific dynamic IS in the design of complex systems to enhance their depend-
MTBE mean time between failures ability. As a consequence, very high reliability/availability
MTTE mean time to failure requirements of systems can now be sustained. However,

the performance of continuously operating systems can be
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s-expectation) of interval availability, which is the fractionnamics (different from the original probability-dynamics of the
of time the system is operational (regardless of performang)stem), so as to increase the probability of typical sequences
during a given interval of time. The distribution of intervalof events leading to system failure. For example, in a redundant
availability (or guaranteed availability [48]) is a relevansystem with 2 components, accelerating the component#2
attribute of continuously operating systems, because it giviedlure while component#l is being repaired, typically in-
the probability that the system is operational for more thammeases the probability of another component failure, which
a specified fraction of a given interval of time. For exampleyould lead to system failure. The obtained measure in a
one might be interested in computing the probability that thggven observation (a sample path of a simulation trial) is then
system is unavailable for more than 0.1% of the time in 1 yeamultiplied by a correction factor called the “likelihood ratio”

of system-operation. to yield a s-unbiased estimate of the measure. This factor
is the ratio of the probabilities (likelihoods) of the sample
A. Numerical Evaluation of Dependability Measures path in the original and modified systems, respectively; its

Researchers have long been aware of the importance gﬂawputation is straightforward and can be done recursively

necessity of developing techniques and tools to evalua%smulatmn event times. Appropriate and careful choice of

highly dependable systems effectively. Most of the efforts a e new undelréylng proba_bllljllty d)énamlcg OL the ;mulatfeci}
limited to analytic or numerical solutions, usually restricted tgyStem can yield an appreciable reduction in the variance of the

Markov (less often, semi-Markov) models. For a more detailéﬁsumng estimate, which implies appreciable reduction in the

discussion on performability measures and state-of-the- pinulation time.r)eeded to.achieveaspecified precision. Also,
techniques for their evaluation, see [23]. The applicability € new probability dynamics should be easy to implement.

these techniques, however, is quickly hindered by prac'[icalFor a fixed run-length, ordinary simulation produces esti-

problems, such as state-space explosion and/or the inadeq s W'th RE (a constaﬂtpe;the coefficient of yarlatlon of
of Markov or semi-Markov representations of real system e estimate) that tends to infinity as the probability of the rare

Because the number of states in Markov models usua vent tends to zero. An “effective” heuristic for IS is one that,

grows exponentially with the number of system-componen gr a fixed run-length, producgs estimates with a RE that re-
and because of storage and computational limitations, o ins bounded as the probability of the rare event tends to zero.

relatively small systems can be analyzed using numeri pWEVer, BRE is an asymptotic property, and in practice, even

solution techniques. Several techniques have been propoI IS heuristic possesses this property, the amount of simu-

and, if applicable, can help to reduce the state-space of la gon effort required to achieve a given precision can still be
Markov models. For example, exact lumping [45], [84], o rge. Also, the BRE property might not ensure a variance re-

approximations obtained by truncation and bounding [7 ,UCIIOI’(;I'(E:IatIVE tto ordinary SImLtJ|atIOI’] fi);manytypeg %]cl hllghlyl f
are used. However, even for a moderately-sized system, end avie sys ims (., system? VI\I"' ‘3:‘ appretplal e eve- ,(:
corresponding Markov model can be “stif'(usually when redundancies) whose parameters fall in the practical range; i

transition rates are of different orders of magnitude), Ieadir?é‘ly gua;r?jntees thf‘t ?s_thele;_/ent Of: |ntterest _bect()) mez rz:;r?)r, the
to difficulties when using numerical solvers [92]. Behavioraf cXPECied amount of simuation eflort remains bounded by a

decomposition [9] and iterative decomposition/aggregati nstant.(ir.1 _contrast to ordinary simulation where this effort
techniques [19] are among several techniques that can ht&Bds to infinity), but the bound can be large.
overcome “stiffness” of Markov models. i
C. This Work

B. Effective Simulation This paper reviews some of the recent IS techniques devel-

ed for the efficient estimation of transient and steady-state
ependability measures in Markov and non-Markov models of
ighly dependable systeraRarts of [53] also review some IS
696:hniques for the simulation of dependability measures, with

storage requirements. However, the accurate estimation e&apha&s on the underlying mathematical ideas needed to es-

dependability measures using simulation requires frequéﬁ lish their theoretical properties; thus, it is more suitable for

observations of the system-failure event, which by definitiorr?seamhers' This paper presents a comprehensive and less math-
' atical treatment of the subject; therefore, it is more suited for

are rare events in highly dependable systems. This rend@ o " . ; .
conventional (ordinary) simulation impractical for evaluatinge lability p_ractmoners_, a_nd requires only a basic understanding
such systems [30]. To attack this problem, in recent years, th J rr]obabllltytand stapshcs. in which ¢ b q
have been considerable and successful efforts to develop fas Iers are dwcb)l main wa);s :? V\: Ich a system can be made
simulation techniques based on IS [41], [51]. The basic id [ghly dependable in a cost-efiective manner.

is quite simple: simulate the system using new probability-dy- 1) Use components thatare “highly reliable” and have “low”
built-in redundancies in the system. Examples of these

are computer systems where the main components (e.g.,
processors) fail rarely.

When conventional analytic/numerical methods are
longer feasible, analysts often turn to computer simulatio
with the obvious advantages of flexible representation
complex systems at the desired level of abstraction and |

2A stochastic process is “stiff” when it contains 2 essentially different types of
transitions, slow and rapid [66, ch. 8]. Highly dependable systems consisting of
highly dependable components fit this description because, typically, the com-
ponent lifetimes are very long, whereas repairs take only a short time to com3Preliminary versions of some parts of this review have appeared in [80] and
plete. [100].
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2) Build “significant” redundancies in the system and usB. Related Work and Software

components that are just “reliable” instead of “highly re- 15 can e applied, not only for estimating dependability mea-
liable.” (The distinction is clearer when some examplegres of reliability systems, but for estimating buffer-overflow
are examined later in the paper.) probabilities in queuing systems and networks [18], [28], [91],

; : . “ : " 6], [107]. Applications to communication systems are of par-
Th ht also be a third U liabl { _ . :
ere MIght a1so be a 'ird way: LIse tinreliable: componen cular interest [4], [15], [113], [67]. The IS techniques used in

but have “very high” built-in redundancies in the system. Exanﬁ'ﬁ. i ften based on the th ] deviati A
ples are more difficult to find in practice. IS Setling are often based on the theory ot farge deviations.
survey on existing techniques is in [53].

_Much of the recent research work on effective simulation of pp approach, other than IS, based on “fault-injection” is
highly dependable systems has been done for systems thatfallg in [75] to speed up steady-state simulations involving
in categories 1 and 2, and this paper mainly covers those. rare (failure) events in communication systems. The method

The focus in this paper is on “dynamic” systems (systems tregsumes knowledge of the frequency of the “rare failure event”
change over time), in contrast to “static” systems. An exampd#d exploits the fact that, except for relatively short periods
of a static system is a 2-terminal reliability network witinde-  after failures, the system is operating normally in a failure-free
pendent components and no repairs (strictly speaking, there eamironment. Fault-injection is used to obtain an accurate
be repairs as long as they do not creatdependencies amongestimate of the performance measure of interest during periods
components). See, [69], [70], [95] for fast simulation methodfected by the failure. This estimate is appropriately combined
for such systems. with an accurate estimate under failure-free environment (with

Section Il formally describes the wide class of systems f&P 'ar€ events) to yield an overall steady-state estimate of the

which these IS techniques are designed, and reviews the b4§pendability measure. _
idea of IS. Another method to simulate rare sample paths is to use the
Section lll discusses IS techniques for estimating depentg-Chmq.ue of spll_ttl.ng sample paths. Spll_ttmg for rare-event
fs|mulat|on was originally discussed in [62] in the context of es-

ability measures in Markov models. “Markov” implies that all. . . . L .
y P imating rare particle transmission probabilities in physics [51].

failure, repair, and other underlying distributions in the syste i : ) !
ce then, it continues to be an active area of research in that

are exponential, so that it can be modeled by a CTMC. Sor; e . :
work is reviewed on the estimation of derivatives with respellf!d [24]. Variations of this technique for steady-state rare-event

to model parameters (e.g., component failure rates) for varigelimation in stochastic service systems seem to have been first
steady-state and transient measures in these models. This vita®Re in [6], [7], and later in [57] (see [14] for a related idea);

is of much interest, because it can be used to identify Systeq]variation for transient rare-event estimation in stochastic ser-
components that might need improvement and to optimize syéce systems is in [65]. It was revisited in [110], [111], [112]
tems. for estimating probabilities of rare events in computer and com-

Section IV considers the estimation of dependability meJaunication systems; the version of the technique used in these
sures for models in which the failure and repair times aR&Pers was called “RESTART.” Some of the most recent ver-
not exponentially distributed. Because these types of systéfins/implementations of the technique are in [29], [35], [43],
can no longer be directly modeled as a MC, they are call€Rl-

“non-Markov models.” A mathematical framework for studying The basic idea behind the splitting technique is explained
such systems is the GSMP; see [37] for a formal developmér&re. The goal typically is to estimate some performance mea-
of GSMP. The general theory of IS for discrete-event systeragre that is “associated with” visiting some set of stdtesf the
(without discussing the particular changes of measures fiate space of the stochastic process, and th#e isatisited only
specific models) is in [37], [41]. For the IS heuristics discusseadrely. For example, compute the probability of a buffer over-
in this paper, some empirical studies have been presented infib®, where B corresponds to states in which the buffer content
literature, and many of these methods are provably effective has reached its capacity. In ordinary simulation, the stochastic

In both Markov and non-Markov models, the concern is esfrocess being simulated spends a lot of time in regions of the
mation of state space that are “far away” from the interesting rar&4es-

gions from where the chance of entering the rare setis extremely

* transient measures, such as system unreliabititistri- o). In one version of splitting, a region of the state space thatis

bution ands-expectation of interval unavailability, «c|oser” to the rare set is defined. Each time the process enters

* steady-state measures, such as steady-state unavailaility reion from the “far away” region, many identical copies

UL of the process are generated. Each of the split copies is sim-

Although MTTF is in fact a transient measure, for regeneratiyd@ted until the process exits back into the “far away” region.
models it can be represented as a ratio afépectations of From there on, only one of the split copies is continued until
regenerative-cycle-based quantities that can be estimated ugiRgther entrance into the “closer” region. This way gives more
the regenerative method of simulation. Thus MTTF is includdfistances of the stochastic process spending time in the “closer”
in discussions of steady-state measures. region where the rare event is more likely to occur. The idea can
Section V discusses ongoing work and directions for futulee extended to: instead of just 2 regions, use multiple regions of
research. slowly increasing degrees of rarity. Reference [35] describes a
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unifying class of models and implementation conditions undér. Highly Dependable Systems

which this type of multi-level splitting is provably effective for s section discusses the broad class of highly dependable
steady-state rare-event simulation. Related work is in [33], [34}stems that can be described by SAVE [45] (basically, a gen-
The method of splitting has also been used and analyzed in cgpylized Machine Repairman Model). These models consist of
texts other than rare-event simulation, e.g., [73]. multiple types of components, where each component can be in
There are a few software-based modeling tools which ugeyf 4 states:

rare-event simulation techniques for dependability evaluation.
SAVE [45] is a software package that consists of a high-level
modeling language that can be used to specify the model of , spare,
interest. From this specification and Markov assumptions on

o L R ) » dormant.
the lifetime and repair-time distributions, the detailed Marko,

chain is derived. It is then solved for dependability measurig'e first 3 of these states are self-explanatory. An operational

using either numerical (nonsimulation) or simulation method%(.)mpo.nent becomes dormant if its operation depends upon the
operation of some other component and that other component

A recent version of SAVE [8] incorporates the IS techniqu? s F | iaht not b tional unl
BFB (as described in Section IlI-A) at the MC level to estimat lIS. FOr exampleé, a processor mignt not be operational uniess
8 power supply is also operational; therefore, if the power

dependability measures efficiently. Another software packa Soply fails, then the processor is dormant. In SAVE, different

where IS is used is ULTRASAN [20]. In ULTRASAN, the . . o X
high-level modeling construct of stochastic activity networkgeXponent'al) failure rates can be specified for the operational,

is used to specify the model of interest. Again, from thigPare: and dormant states. The SAVE modeling language is

specification, the detailed stochastic process is derived a%lao used to describe operaponal/ repair dependencies among
ponents (e.g., the operation/repair of a component depends

solved for performance/dependability measures of interest, usiin some other components being operational), as well as
either numerical (nonsimulation) MC methods or simulatiop . . P ~Ing op ’
ailure propagation (e.g., the failure of a component causes

methods. In recent versions of ULTRASAN [89], [90] an me other components to fail with given probabilities). The

“IS governor” has been incorporated. Here, instead of the . ) . . LI
sa/stem is operational if certain combinations of components are

IS heuristic being built-in as in SAVE, one can choose an erational. Unlike SAVE, in non-Markov models (Section 1V)

specify the IS change of measure at the stochastic activi . L
network level. The RESTART version of the splitting methoggneral failure and repair distributions are allowed. Also, there

has also been implemented in ASTRO [112]. 's a set of RP vyho repair_failed components "%‘C‘?‘”d”?g to some
reasonably arbitrary service (priority or nonpriority) discipline.

To simplify the presentation, systems are considered in which

each component is either operational or failed. (Unless other-

e operational,
« failed,

II. BACKGROUND wise specified, the results also apply to the more general models
in the SAVE modeling language.) Section II-B briefly reviews
Notation the basic idea of IS and shows how (when applied appropri-
ately) it could appreciably speed-up simulations involving rare
N number of types of components events. For illustration, also consider estimating the system un-
i number of components of typel < i < N reliability; however, the same concepts also apply to other de-
Xi(s) qumber of operational components of typat pendability measures.
time s

X(s) vector(Xi(s), ..., Xn(s)) .
X stochastic procesX (s): s > 0} B. Importance Sampling
Z(s) state of the system at time Consider a system witt component-types. Each compo-
VA stochastic procesgZ(s): s > 0} nent is subject to failure and repair.
S state space of All components are operational at timeX);(0) = n;, for all
F subset of failure states ifi 1.
Ty time to first system-failure All components are “new” at time 0.
Py probability under measurg In general Z(s) contains the informatioX(s), but other in-
E; s-expectation under measufe formation might be needed, e.g., the queuing of failed compo-
Var variance under measuye nents waiting to be repaired and the remaining lifetimes and re-
u(t) system unreliability at time pair times of components when using distributions other than
I() indicator function of event-) exponential.
= convergence in distribution There is some subsét of the state spacé such that the
N(a, b) s-normal distribution with mean, varianceh ~ System is failed at time if Z(s) € F.
RE relative error of an estimator System unreliability is
w a sample path
we w in the sef of all w of a stochastic process uw(t) = Pe{Tr <t} = Ef[I(TF < 1)), 1)
df(w) pdf of w under measurg

L(w) likelihood ratio onw. t =TH.
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The subscrip)f denotes the original probability measure: the An s-unbiased estimate af(¢) is
underlying original probability distributions governing the dy-
namics of the system. N i (t) = 1 N kL

In a highly reliable system, for a sufficiently small the n
w(t) = 0: {TF < t}israre.

In ordinary (naive) simulation generaté.i.d. replications of The variance ofu(t) is

Z from time 0 to timemin(7r, ¢) to obtain samples df(Tx < E,[[(Tp < t)- L?] — u?(2)

t), say,I1, I, ..., I,. Then — - Var [[(Tp <t)-L] =
n n
() = 1 & I One measure of effectiveness of any new simulation algo-
(1) = n Z ‘ rithm is the VRR: ratio of the variance using ordinary simulation

to that using the new simulation algorithm; in this case:

is ans-unbiased estimator af(¢). The variance of this estimator Var [I(Tr < 1))

is .
Var,[I(Tr < t)- L]
1
- - Varp[I(Tr < t)], The VRR gives the ratio of the number of samples using ordi-
Var [ I(Te < )] = B [I2(Te < 8] — E2[I(Tr < ¢ nary simulation to that using the new algorlthm.so as to achieve
bl <] s i ) sUTr <t the same RE. However this measure of effectiveness does not
= u(t) — u (®). consider the effort (e.g., CPU time) required to simulate each

sample under the two methods. Hence a more fair measure of ef-
fectiveness is the TRR: ratio of (the product of the variance and
e _ ) the effort per sample using ordinary simulation) to (that using
Vi (i () —u(t)) = N(O, Varg [(Tr <)), asn — oo, the new simulation algorithm), [42]. The TRR gives the ratio of

. 2576 [Vary[I(Tr < t)] the total effort using ordinary simulation to that using the new
RE of i, (t) = u(t) ' n algorithm so as to achieve the same RE.

26 The main challenge in IS is to find a robust new probability
N measurgy that can be implemented in a computationally effi-
n - u(t) cient manner such thafRR. >> 1:

From the CLT

Whi_ch is the relative haIfWidth of the 99%con_fidence interval E,[[(Tr < t) L?| = Ef[I(Tr < t)- L] < E;[[(Tr < t)].
derived from the CLT approximation. For a fixedtheRE — (3)

oo asu(t) — 0. This is the main problem when using ordinaryzppreciable variance reduction from (3) is obtained if
simulation to evaluate highly dependable systems. The goal of

IS is to overcome this inherent difficulty. L(w) = jf((w; < 1 wheneveflp(w) < t. (4)
glw
Notation Choosingg(-) such that (4) is satisfied is usually very difficult
g another probability measure because it involves each sample path. But the general intuition
w a sample path (of a replication) in the $@tof all  one obtains is thag should be chosen to appreciable increase
possible sample paths af taking the system from the probability of the rare evefifls < t}. Atthe same time one
time O to timemin(1F, ?) has to be very careful; choosing an arbitrary (but not suitable)
dg(w)  pdfofw according tog g that increases the probability of the rare event can lead to a

substantial increase in variance.
For highly dependable systems, try to come up with IS tech-

u(t) = / L,(Tr < t)df(w) nigues that are “effective” (see Section I-B): techniques whose
west d RE remains bounded (implying th&iRR — o) as the prob-
= / 1. (Tp <t)- () dg(w) ability of the rare event tends to zero. This property has been
w2 dg(w) established at least empirically (and, in many cases, also theo-
- / I(Tp<t) - L(w) dg(w) = E,[I(Tr < t) - L], retically) for most of the IS techniques in this paper. However,
wC as mentioned before, this does not always guarantee efficient
df(w) simulation of systems with high redundancies.
Liw) =—-+. (2)
ds(w) . F
. FAST SIMULATION OF MARKOV MODELS
The only condition imposed ogis: Notation
dg(w) > 0 wheneved,,(Tr < t)df(w) > 0. F collection of all (measurable) subsets{df
Y DTMC embedded oty (whenZ is a CTMC)
Thus the system can be simulated usjrtg obtainn i.i.d. sam- x,y generic states from the state sp&ce

ples of ({(Tr < t), L): (1, L1), (L2, L2), ..., (In, Ly). P transition probability matrix of the DTMQ"
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1 system state in which all components are operational For systems with repair-unit sharindet Z(s) = X(s); they

T. time to first return ofZ to statel are defined in Section 1I-B. For systems with more general re-

A-cycle sample path between two successive entries tgair disciplines, add a list of components either waiting-for or
subset of stated undergoing repair at each R (s), s > 0} is a CTMC when

D system failure time in a regenerative-cycle, ogllfailure and repair times are exponentially distributed, and the
A-cycle methodologies in this section are independent of the definition

o steady-state unavailability of the system of the state.

& estimator ofc Unless stated otherwise, I&(0) = Y, = 1. One can sim-

o, 9 original and IS probability measures gfon # ulate a CTMC by generating the next state visited u&nand

D, IS probability measure under BFB then generating the exponentially-distributed holding-time in

Varg,,e Vvariance of a ratio estimator; probability measuregat state with the appropriate rate. When estimating steady-
¢, and ¢ are used to estimate the numerator anstate measures, instead of sampling the holding times in a state,

denominator, respectively use thes-expected holding time in that state [25], [26], [56].

p failure biasing parameter CTMC are regenerative processes, where entrance to any

P, transition probability matrix of the DTMQ” under fixed state constitutes a system regeneration. Let the regenera-
BFB tion epochs to be the entrances to sthté\s in Section II-B,

Aoy i failure, repair rates of component type Tr = time to first system-failure.

i parameter in the failure rate of component type

€ failure rarity parameter A. Steady-State Measures

Q) exact asymptotic order of magnitude For estimating steady-state measures, the regenerative

d(y) "distance” of statey from the failure set” method of simulation is often used, and it is usually sufficient

c(x,y) ‘“criticality” of the transition(x, y) to simulate the embedded process at transition times, as

4; ;et of component types havmg failure rates of hgescrined in Section . Many steady-state measures can be
Jth Iargest_ orQer of magnltude , . . expressed by a ratio of regenerative-cycle-based quantities

L; stack of likelihood ratios associated with fallure[21] e.g
events of components iA; T

%» likelihood ratio on top ofZ; ' N o= EelD] )

X, V] 2-dimensional vector, whete (respectivelyy;) is Eo[T}]
the number of operational (respectively, currently
under repair) components of typel < i < N The ordinary way of estimating unavailability is to run some re-

P, set of states in which components are failed generative cycles and collect sampled&xdndl,. Then one can

D(t) total system failure time if0, ¢] estimatelio [ D] and E4 7] by their respective sample means.

n(t) s-expected interval unavailability However most samples @ are zero, thus one often uses IS to

q total transition rate out of stateunder the original try to obtain more precise estimatest{f[D]. Then (as in Sec-
probability measure tion 1I-B): Eq[D] = Eg/[D - L]. The problem is to find &’ so

h(-) IS pdf used to sample a random holding time whethatEq/ [D? - L?] = E¢[D? - L] < Eo[D?], which implies that
in statel simulation with®’ is much more efficient.

H total time in statd in a regenerative cycle 1) Failure Biasing: As mentioned in Section I, the imple-

w total time in states other than from the beginning mentation of IS involves failure biasing [71], in which the basic
of a regenerative cycle until either the system failglea is to take the system along typical sample paths to failure,
or the end of the cycle more frequently. All states of the MC, other thanhave both

5 Pr{system fails during a regenerative cycle} failure and repair transitions.

u(t) upper bound for(t) « A failure-transition is a transition from one state to an-

u(t) lower bound foru(t) other, corresponding to the failure of at least one compo-

v generic parameter (e.g., a component failure rate) nent.

9 partial derivative operator with respectito + Arepair-transition is a transition from one state to another

Te hitting time of statel corresponding to the repair of at least one component.

i h'tt'ng time Of_ set . o \We do not allow a single transition to correspond to some com-

Sy E)Oartlal derivative of the likelihood ratio with resm'mtponents failing and other components being repaired. Typically,

V.

_ _ ) the total probability of repair transitions is close to 1, and the
Most of the approaches in the following sections are apprgsia| probability of failure transitions is close to 0. In failure bi-

priate for highly dependable Markov systems consisting @king, the total probability of failure transitions is increased to
highly reliable components (i.e., component failure rates a§8me valug, the failure-biasing parameter; thus the total proba-
much smaller than the repair rates) that satisfy: bility of repair transitions is decreasedite p. Empirical studies
Assumption A:Each state, other than the state in which all S _ ,
4The repair discipline in which the RP works on all failed components simul-

component; are .up, has at least one repair transn!on pOSSIbItgneously, with the effort devoted to each component proportional to the repair
Assumption A is satisfied by systems of the type in [44], [45}ate of that component.
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suggest that we should choodé < p < 0.9. (Settingp too  The asymptotic variance of this estimator (largandn) is [47]
close to 1, e.g.p = 0.999, can sometimes lead to a variance

increase or even infinite variance.) Thus failure biasing enablegiay,, o[a] = 21 | Yare,[D-L] 5 Vare[T] 7
the system to go along paths to system failure more often. ’ E3[T¢] n m
However, just making the rare event occur more often might (7)

not always work. How the rare event happens (the sequence of ] )
events that lead to the rare event) plays a crucial role. Undépich when estimated (by replacing Varg, [D - L], Varg[T¢]
the original probability measure, some sample paths to syst8RfiE[Z:] in (7) by thelg r.espe_ctwe simulation estimates) can
failure are more likely than others. For IS to be effective, beisetﬂ to Constt_rtUthg_gt’@?COP_f'dti”C'\e/l_:_rjlflir:j’a:f- Ay (7]
. . . . . nother quantity of interest is the efined By [TF].
Srli)tgaebriﬂgztshﬁﬁge(rlTﬁgrgfg?;;r%eésgggg;;upt ggi?li'rFor regenerative systems, the MTTF can be expressed as a ratio
should be made more probable under the new meure of regenerative-cycle-based quantities [47], [64], [103], [108]:

e Secondary sample paths (those paths with probability BTl — Eg¢[min(Tr, T.)]  Ee[min(Tr, 1¢)] 8
under® that are at least an ordgr of magnitude smaller o[l¥] = Pro{Tr <T,}  Eoll(Tr <T1.)]’ (8)
than the probability of the most likely ones) also need to
be made more probable undet but not as much as the A sample ofmin(Z’, 1) [or a sample off (T < 1.)] can be
most likely paths. obtained from 1 regenerative cycle. Hence, again use MSDIS to

If an IS distribution does not assign enough probability to &Slimateis (7] by separately estimating each term of the ratio
likely path to system failure, then the resulting variance can B&/1: [103]. In this case, the rare-event problem occurs in esti-
worse than that of ordinary simulation. (In mathematical term@!2ting the denominator of the ratio. Hence, @seto estimate
this means thas[D? - L] will be large, because, for a samplethe deno.mlnator and to estimate the numerator. o
pathwo € {w: Tp < T.} for which dd(w) is large relative To estlm_atea andE4[Tr], one can use other heuristic IS
t0 d®’ (wo), the L(wy) = d®(wp)/d®’ (wo) is large [81].) In Measures instead of BFB. o _

the original version of failure biasing, called “simple failure-bi- 4) Mathematical Analysis of Failure Biasingvlathematical
asing” here, the relative probabilities under the new measure®§falysis of failure biasing techniques began in [97], [98]. This
individual failure (repair) transitions with respect to each oth@nalysis is used to study the increase in simulation efficiency
remain unchanged. In systems where the failure-transition pr@Rt@ined by using these techniques, or for proving BRE proper-
abilities are of different orders of magnitude (e.g., unbalancd§s Of these techniques. In [97], [98], the failure rate of compo-

systems), this can deprive a path of a high enough probabilffgnt-tyP€ is assumed to be of the for = A; - ", wherex is
under IS, thus causing inefficient estimation. a’small parameter (rarity parameter) anydandr; are positive

2) Balanced Failure-Biasing:BFB [47], [98] overcomes the constants. This ena}bles modeling a situation in \{vhich compo-
problem in Section I11-A-1 by making all failure transitions”e_nts have small failure rates (components are highly rellable).
occur with equal probabilities (this is also done in stiteThis  Tior 10 [97], [98], there was other work [32] that studied the
ensures that all paths get sufficient probability, though it al@YmPptotic behavior (nonsimulation aspects) of systems with
wastes some probability by giving certain paths more Weigmghly reliable compoqents_. However, this earlier work a_ssumed
than necessary. This can degrade a simulation’s performaffé@ii = A: - ¢, for allZ, which does not allow the modeling of
when there are large redundancies in the system. IS schemesHS{EMS in which component failure rates are of different or-

try to minimize this waste include “failure-distance biasing” anders O_f magn_itude. The use of the exponem_t&acilitates this
“BLR methods.”®, is used on the sample paths{d(s), s > modeling. This paper assumes that the repair rates are constants

0} in which P, is used until system failure, aridlis used after and the failure-propagation probabilities (probabilities used to
that. determine if the failure of certain components cause others to
3) MSDIS: In (5), one can use different probability mealfail simultaneously) are either constants or are of the same gen-

sures (and thus different regenerative cycles) to estitafé] eral form as the failurg rateg: a constgnt_ multipliedcbgpised
andE4[Z,]. This approach is called MSDIS [46], [47]. Whent© some power. The simulation analys_|s in [3], [77]—[79], [81],
implementing MSDIS, we typically use IS to estimate[p], 271991, [115], [102], [105] deals with the asymptotic be-
and use ordinary simulation to estima[7.], because it havior of the simulation efficiency for smadl The simulation
provides accurate estimateskg[Z.] without using IS. Hence, techn.iquefor higtherendabIe systems is formally said to have
one can rum regenerative cycles using, to get the sample BRE if the RE remains bounded as- 0.

tuples (D1, Ly), (D, La), .., (Du, Ln) of (D, L), and References [97], [98] show that BFB has the BRE property

can runm regenerative cycles using to get the samples When estimatings [D] andEq[I(TF < 1.)]. This leads to the
BRE property of the MSDIS approach (using BFB) to estimate

T.1,T.2,...,T. ,, of T.. Then« is estimated Do
’ ’ ’ the steady-state unavailability and the MTTF. It was shown that,
for fixed numbersn, n of regenerative cycles, the RE in the es-
1 & timation of« using standard regenerative simulatiofis—°),
n ZDi L for some constant > 0; whereas the RE using the MSDIS
& = % (6) scheme i€2(1). [A function f(e) is ©(¢°), ¢ > 0, if there exist
1 'ZT” constants(y, K, such thati{; - ¢¢ < f(e) < Ke for all suf-

= ficiently smalle.]
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References [97], [98] also show that simple failure biasirand computationally expensive to compute a distance reflecting
has the BRE property for the special class of balanced-systettms actual proximity for the general case. Even for the balanced
(systems in which the failure transition probabilities are of thease with no failure propagation, only an approximation to the
same order of magnitude; e.g., when= ), -« for all ¢, and the failure distance is computed, because the users need to limit
failure propagation probabilities aseindependent of). Using the number of minimal cutsets considered.

a counter-example, it was shown that the BRE property might6) Balanced Likelihood Ratio MethodRReferences [2], [3],

not hold when simple failure-biasing is usgdor unbalanced [105] show, experimentally, that the methods in this section
systems. More general conditions (on the system) under whitlight not work well for systems that have an important de-
any failure biasing method (or any more general IS schemgee of redundancy. The “BLR methods” [2], [3], [LO5] are ap-
does or does not give BRE are in [79], [81]. Although it seenmroaches for effectively simulating such systems. They attempt
difficult to check these conditions except in very simple caset® cancel terms of the likelihood ratio within a regenerative cycle
they provide insight into how IS should be implemented. Sontey defining the IS probabilities for events in such a way that the
additional results are in [109]. contribution to the likelihood ratio from a repair-event cancels

5) Failure-Distance Biasing:Failure-distance biasing [12] the contribution to the likelihood ratio from a failure-event that
attempts to refine failure-biasing schemes to make the systenturred previously in the current cycle.
go mainly along the most likely paths to system failure (for bal- Some additional terminology is needed to describe the basic
anced systems with no failure propagation, the most likely pathrethod. Partition the set of component tygés..., N} into
are those with the least number of transitions): there is no igetsA,, ... Ax (K < N), such thatd; contains all compo-
portant waste of probabilities on paths that are not most likelyent types with failure rates of thih largest order of magni-

As in failure biasing, the total failure transition probability is intude. Throughout the simulation of a cycle, one stores the event
creased t@. However, now, the way in which is allocated to likelihood ratios associated with component failure events from
the individual failure transitionéx, y) from a statex depends A; in a stackZ;. If £; # @, leti; be the likelihood ratio on

on the “distance” from statg to some failure state. To do this,top of £;; Zj = 1. The system state is denoted[lay v], where
compute, for each state, the d(y): the minimum number of x = (x4, ..., ) is the number of components of each type
failing components whose failure 1 would bring the system that are operational, and = (v, ..., vy) is the number of

to a state in which the system is failed. The failure distané®P currently repairing components of each type. References
for a statey € I'is 0. The “criticality” of a failure transition [2], [3], [105] consider models for whicfk, v] completely de-

(x, y) is defined as:(x, y) = d(x) — d(y). Failure-distance scribes the system state, which is a subset of the class of models
biasing is implemented by partitioning the set of failure transgescribed in this paper, but one can easily apply the method to
tions from the current statebased on the criticalities of the in-the more general setting of models in this paper.

dividual transitions: each set contains all failure transitions from In terms of the algorithm, the BLR method differs from the
x having a particular criticality. Each set is assigned a portion f&ilure biasing methods in two respects.

the failure-biasing probability, with sets having larger critical- 1) Instead of using a fixeglfor the failure biasing parameter,
ities getting larger portions gf. Failure transitions within the use ap = pp,+ that is a function of the current state
same set occur with their original relative probabilities (simple [x, v] and thel;. In particular,

failure-distance biasing) or with equal probabilities (balanced

failure-distance biasing).

K
Exact computation of the failure distances assumes a descrip- Z L Z Vit i
j=1

tion of the structure function of the system [5] and requires de- Pev)=1— ey )
termining all the minimal cutsets corresponding to that struc- ' L
ture function. The latter is NP-hard [94]. Hence the users need Z Z (iXi +vi - pa)
to limit the number of minimal cutsets considered. An efficient J=licdy
algorithm for computing and maintaining the data structures of 2) The total (new) probability allotted to repair transitions of
the failure distances is in [12]. components of typé € A; is proportional td; - v; - u;,
It follows directly from [98] that balanced failure-distance instead of their being proportional tg - ; (as usually

biasing also has the BRE property, but [81] presents an example  gone in the failure biasing methods).

ShOWing that Simpl? failure-distance bi?-Sing might not have By doing this, one can ensure the cancellation of likelihood
this property. Experiments on examples in [12] seem to suppe4tios, and guarantee that the overall likelihood ratio on any re-

the intuition that failure distance based biasing schemes shogkherative cycle is always bounded above by 1). This implies
have better simulation efficiency than the usual biasing schempggt

(but with an important implementation overhead). However,

the amount of efficiency improvement, if any, on a particular E¢/[D? - L?]| = E4[D? - L] < Eo[D?)

system in practice depends on whether each computed distance

from a state correctly reflects its true proximity to the &t thus the variance under the new measififes never greater
The distance defined in this subsection seems to reflect than that under the original measube The method is espe-
actual proximity only for the class of balanced systems with raally useful for systems with important redundancies, where the
failure propagation (the structure function, by definition, doesumber of transitions until system failure can be large, leading
not consider any failure propagation). It appears to be difficuth high variabilities in the likelihood ratios when using methods
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like BFB. Reference [3] also shows that the resulting estimators - \
have the BRE property when the particular way in which indi- b | _|:__|
vidual failure transition probabilities are assigned is similar to DJ DJ_
that in BFB. y o

Failure-distance biasing tries to exploit system structure in
allocating probabilities to transitions, and [2], [105] apply sim-
ilar ideas to BLR methods. In particular, they obtain additional
efficiency gains by allocating probabilities to the individual
failure transitions so that those failure transitions corresponding
to component types that lie on minimum-cuts are more heavily
weighted. Their algorithm does not need to maintain a list of i : i !
all the minimum cuts; it needs only to maintain a list of all the
components in a minimum cut. This can be don®f{ia?) time, UEE Oﬂ} ij:' '::jj:-;:l
whereq is the number of links. As with failure-distance biasing, . S TG i
one might not get any additional efficiency gains in certain
systems that are unbalanced and/or have failure propagatiag.1. Computing-system example.
This is because in such systems the most likely paths to system

failure might not lie along minimum cuts (the definition of ) ) ) )
g d ( In a disk cluster, data are replicated so that one disk can fail

minimum cut does not consider failure propagation). thout affecting th term. The “ofi » dat disk
References [2],[3], [105] also describe improvements that apgihout atiecting the system. 1he ‘primary” data on a disk are
plicated so that 1/3 is on each of the other 3 disks in the same

based on using semi-stationary cycles [106] rather than regé L . : :
erative cycles. The simulation method is similar to theycle cluster. Thus 1 disk in each cluster can be inaccessible without

method [88] but the motivation for its use is different. In stead;llgs'ng access tq the data. Itis assume d that wh'en aprocessor ofa
n type fails it has a 0.01 probability of causing the operating

state simulations of highly dependable systems, one usually udNE

the set of states with all components “up” as the regenerat cessor of the other type to fail. Each unit in the system has
state. However, when the BLR method is applied to syste ailure modes which occur with equal probability. The failure

with high degrees of redundancy, the regenerative cycles can fes (per hour) are

come very long, leading to inefficient estimation. Thus, [2], [3], * 1/1000 for processors,
[105] instead consider a set of states with no 1-step transition ® 1/20 000 for controllers,
probabilities within the set. An example is the set of stdfes ~ * 1/60000 for disks.

with & failed components, wherfgs less than the redundancy ofThe repair rates (per hour) are
the system (the !east number of _components that have to fail for, 1 for all mode 1 failures,
_the syste_m to_fall). The process in between _two gnt_rancé}s t0 . 1/2 for all mode 2 failures.
is a semi-stationary cycle, and has properties similar to reg
erative cycles, except that these cycles are not necessanty

eﬂiis is an unbalanced system with a redundancy of 2. Compo-
dependent (thus complicating the constructios-gbnfidence nents are repaired by a single RP who chooses a component at

intervals). Also one needs to know the steady-state distributir"’F‘nndom from the set .Of failed units. The system is operaﬂonal
- I all data are accessible to both processor types, which means

on the set of states ify. at the times of entrances to this set, IrEhat at least 1 processor of each type, 1 controller in each set
order to apply IS; in general, this is very difficult to compute, P ype, '

These problems are similar to those in theycle method (see and 3 C.)Ut of 4 disk units in egch disk .clustgr are operational.
Section IV-B). Operational components continue to fail at given rates when the

7) Other IS Methods:Another heuristic for failure biasing sy:_tefm I'T‘tfi"ed. . betw imulati thod h
in acyclic models (of nonrepairable systems) is considered in o faciiitate comparisons between simuiation methods on the

[31], in which the extent to which one biases the failure transto '€ CPU, simulation .results (in thg MSDIS framework) are
oted from the latest implementation of these methods [3].

tions along a path leading to system failure is proportional to t .

path’s contribution to the measure being estimated. When ap ~B using ? total dOfthz O%OOO CYCI?S (100d0:OOOC3/ cles e?ﬁ h for
cable, this heuristic requires more overhead than simple faiILIP@ numerator and the denomina or) an _7") gave the
ady-state unavailability estimatedo?820-10~" +3.8%, the

biasing or BFB. Reference [66, ch. 10] describes some efﬁcie? ) \ . )
simulation methods fom-out-of-n : G systems; these methods;’ %is the estimate of the RE corresponding to a 36eénfi-

combine the IS technique known as forcing (see Section Ill-gfnﬁe interval. di ith f
with some analytic calculations. The corresponding VRR was 167 with a TRR of 415.

. ] .
8) Some Empirical ReSUltSEX&mple #1 is a Computing The BFB estimate of the MTTF wa&s2161-10° £6.5% with

system (originally presented in [47] and then in many papetacik = 2390 andTRR = 5909.

thereafter). Consider the unbalanced version of this comICJutinctf_:O”he same problem, th_e most promising MS.DIS implemen-
system. Fig. 1 is the block diagram. It consists of tation of the BLR method without the use of minimum cuts (de-

* 2 sets of processors with 4 processors/set, noted by BLBLR in [3]) gave
« 2 sets of controllers with 2 controllers/set, « TRR = 66 for the steady-state unavailability
« 6 clusters of discs, each consisting of 4 disk units. e TRR = 2150 for the MTTF.
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these cases because there were no system failure events with this
method, even in the allotted run time of*1évents. The results
suggest that for systems with appreciable redundancies, BFB is
not at all effective, and the BLR method (with and without cuts)
seems to improve the simulation efficiency.

B. Transient Measures

This section considers the estimation of transient measures
in highly dependable Markov systems. Consider the three mea-
sures:

o unreliability: u(t) =Pro(Tr < t).

Fig. 2. Network with redundancies. ) A Es[D(t
e s-expected interval unavailability:n(t) = M

Hence, for this example, without the use of additional informa- e guaranteed availability:
tion about the system, BFB does better than the BLR method.
. ' . t— D(t)
For the balanced version of this computing system (the results  Prg — >z, 0<z <1y,
of which are in [3]), the improvements obtained by BFB and ) _ ) S
BLBLR are similar. Research in fast simulation for guaranteed availability is limited
The performance of the failure biasing method and BLF® expenmer.lts; see [4?]-
methods can be improved by using some information aboutl) Case 1:SmallTH:Small TH means thatthe THs small
component types on minimum cuts in the system. The md&mpared to the-expected lifetimes of components. From the

recommended MSDIS version of the BLR method with mir@nalytic standpoint, it means that the FHs a constant, i.e.,
imum cuts (denoted by BLBLRC in [3]) gave s-independent of. The effectiveness of simulation techniques

 TRR = 431 for the steady-state unavailabilit for smalle are studied again.
~ Y y For transient measures, failure biasing (relative to repair)

» TRR = 19130 for the MTTF. alone might not be sufficient to observe many system failures,

There is appreciable improvement over BFB for the MTTF. F‘Hecause it affects only the transitions of the embedded DTMC

the balanced case of this network, there was appreciable MY not the random holding times in each state. To see why

provement over BFB for both the MTTF and the unavailabilit3{.hiS is the case, note that the first component failure in a

Consider the system (see Fig. 2) with important redundanCigg ey occurs at a very low rate (the sum of failure rates of all

e was c_onsidereq_ n [3]' The following description is frorW.]he components). Thus, typically, the first component-failure
[3], with minor modification. The network contains 3 types Opcoyrs after timet; thus the chance that the system fails

components: before the mission time expires is very small. To address this
* Type A links contain 3-identical components, which onjssye, “forcing” was introduced [71] to modify the random
average fail every 13(1/3) hours and can be repaired in hgH|ding times in particular states. With forcing, the time to first

an hour. The type A link fails when 2 components are iBomponent failure is sampled conditionally on the fact that it is

the failed states. _ less thary, i.e., the time to first component failure is sampled
» Type B links contain 1 component, which on average fajtom the distribution:

every 40 hours and can be repaired in 1 hour. 1—exp(—q-s)
 Type C links contain 2 components, which on average fail h(s) = m7

every 26(1/3) hours and can be repaired in 2/3 hour. One_ . .
. . . .g = the transition rate out of staleunder the original measure
component failure on a type C link causes the link to falg)

Tr_\e system operates as long as there exists a path along OP&feferences [99], [115], [101] show that a “combination of
atlng links between node 1 and node 20. There are 5 R'_D' B and forcing” gives BRE in estimating the unreliability and
repairs make components “good as new.” Upon completing@, ;_expected interval unavailability. From a modeling view-
repair, a RP selects (uniformly over the failed components ipyine this implies that for small TH, the simulation can be very
the network) the next component to repair. efficient. This agrees with experimental results [47], [99], [115],

foro0 <s <t 9)

The results are [101].
* TRR = 21.08, MTTF = 6.59, for the BLBLR Another technique for estimating transient dependability
* TRR = 15.35, MTTF = 4.63, for the BLBLRC measures is to combine failure biasing with “conditioning”

« TRR = 0.31, MTTF = 0,02, for BFB (worse than [47]. Conditioning is applied by simulating the embedded
ordinary simulation) in the estimation of the unavailabilitypTMC until the system fails; failure biasing is used to gen-
(estimates of which were of the order of 1. erate the transitions. Random holding times are generated for

The BLBLRC methods when applied to another version @&ach of the states visited, except for those states having slow
the same network yield orders of magnitude improvement oveansition rates (e.g., the “fully operational” state, which has
BFB when estimating unavailabilities that are of the order ofo repairs taking place). Then for each generated sample path,
10~''. No comparisons were made with ordinary simulation fawne can analytically compute the conditional probability that
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the system fails before timg given the path of the embeddedThus, T is approximately exponentially distributed with rate

DTMC and the sum of the holding times in the states that. ¢. Let

do not have slow transition rates. This computation involves

calculating the convolution of exponentially distributed r.v., u(t) =1 —exp(—y-q-1); (10)

corresponding to the visits of the “conditioned out” states. The _

technique is guaranteed to reduce variance, but requires m@NPr{ZF < ) ~ wu(?) it has been shown [101], [102] that

computation. Experimental results and comparisons with th&! are modeled by = Q(e"), ; > 0 (r, = 0 corresponds

forcing technique, are in [47]. to a small TH), then for, > 0 (corresponding to moderate and
2) Case 2: Moderate and Large THEven though, for small large TH),

TH, the IS-based simulation of transient measures has the BRE

property, it becomes inefficient for moderate and large TH. A @ — lase— 0, and wu(t) <u(t);

moderate TH impliest is of the same order (of magnitude) as u(t) B

thes-expected time to first component-failure. Any TH that is at?]us we have an upper bound. Similarly, let

least 1 order larger is termed “large.” For moderate TH, tuning ' '

the value of the failure biasing paramegethrough experimen-

tation can yield efficient estimates [85], but it is difficult to pro- l'= max [\/E’ t \/6} ;

vide guidelines for how should be set in general. For large w(t) =u(t) — (P1(t) + P2(t) — ¥3(t));
TH, irrespective of the value ¢f the estimates using failure bi- Bo(t) = exp(—y - q- (t = 1))

asing are always poor, because the variance of the IS estimator ’
increases with the variance of the likelihood ratio. The latger i1 (t) =¢o(t) —exp(—7 - ¢ -1),

is, the more transitions there are[in ¢], and the variance of Eo[W]

the likelihood ratio grows approximately exponentially with the 2 (t) vl (1= %0(t),
number.of tr.ansmons .[39]_.. . ¢ (t—1) Bo[W - I(T. < Tp)]
In estimating unavailability and MTTF, the expressions used  5(¢) ;

in this paper are in terms of regenerative-cycle-based quanti-

ties, which are estimated using the regenerative method of sifen () > w(#), for all ¢.

ulation. Since in highly dependable systems, regenerative cya|so, as forz(t),

cles typically contain a small number of transitions, the use of

IS does not lead to a likelihood ratio with an important vari- u(t)

ance. A similar approach can be used in the context of transient u(t) — lase—~0,

measures. Though transient measures cannot be expressed ex-

actly in terms of regenerative-cycle-based quantities, it is pd., the lower bound is close to the unreliability for moderate

sible to develop bounds that are expressed in terms of regersard large TH.

ative-cycle-based quantities. Thus, when the direct applicatiorBoth u(¢) and«(¢) are in terms of regenerative-cycle-based

of IS to estimate the transient measure itself is inefficient, it guantities. Hence for estimatingt) andu(¢), use a MSDIS

possible to estimate the bounds efficiently. For highly depentype procedure in whicl®, is used to estimate the gquantities

able systems these bounds are close to the transient measuassociated with rare events likeandEq[WI(Tr < T.)] and

the sense explained in this section, [99], [115], [101], [102]. the original probability measuré to estimate other quantities

The H is exponentially distributed with ratg which is equal like E¢[W].

to the sum of all component failure rates in stateFrom its ~ There are other bounds on the unreliability (in terms of re-

definition, W = min(7,, Tr) — H. Let generative-cycle-based quantities), like the ones in [11], [63].

These bounds are close for largevhereas the bounds in [101],

[1102] are close for both moderate and latg®ounds for the

. . s-expected interval unavailability were developed in [99], [115
thg end of the cycle if the system does fail: = 7. — and ?as for the unreliability bouri/ds) close to trE)e actu[al r]ngasu]re
min(7,, Tr). Hencel. = H+ W + V. for moderate and large

When the highly dependable system consists of highly reliable3) Estimation of the Laplace Transform FunctioAn ap-

components, then most regenerative cycles consist of a singteach for estimating the actual transient measure (instead of

component failure transition followed by a component repa@istimating close bounds) for large TH is outlined in [13]. In-

transition. Because component repair times are typically mustead of estimating the transient measure, the “Laplace trans-

smaller than component failure times, the regenerative cydtem function” of the transient measure is estimated (the tran-

time consists mainly of the first component failure tin¥é, sient measure is a function ¢f Then a Laplace transform in-

(H > W 4+ VimpliesT, = H+ W 4+ V = H), which is version method is used to estimate the transient measure for

exponentially distributed with rate The number of regenera-any givent. The advantage of this approach is that the Laplace

tive cycles until system failure is geometrically distributed witfransform function of the transient measure can be expressed

probabilityy = Pre{Tr < T.}. The geometric sum (with ac- exactly in terms of Laplace transform functions of regenera-

ceptance probability) of exponentially distributed r.v. (each oftive-cycle-based quantities, which can be estimated very effi-

which has ratey) is exponentially distributed (with rate - ¢).  ciently using IS (if necessary).

“Po(t); (11)

» V = 0if the system does not fail in a regenerative cycle
» V = time between the first system failure in a cycle an
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For example, consider the unreliability. For any functfgn),
the Laplace transform function is:

F(s)= /too exp(—s-t) - f(t)dt.

=0
Let:

hl(t) = PI‘@{TF <t and Tr < Tc},
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One simulation-based approach for estimating derivatives is
the likelihood-ratio derivative method [38], [93], which is how
briefly described. Focus on estimatifig [/ (TF < T.)] and its
derivative with respect to. To estimatéie [I(TF < T.)], only
requires simulating the embedded DTMC,= {Y,,, n > 0}.

Let 7 and, be the hitting time ta#" and the cycle length of
the embedded DTMC, respectively (the numbers of transitions

ho(t) = Pro{min[Tr, 7] < t}. until hitting £ and1, respectively); then

Then the Laplace transform of the unreliability is [13]: Eo[{(Tr < T.)]| = Eg[I(rp < 7))

_ Hi(s) :
1— s [Hay(s) — Hi(s)]’

eXp(—s~TF)} 7

The (original) transition-probability matrix &f (under®) isP.

Uls
(5) Then, under certain regularity conditions [38], [93],

O Ea[l(tr < 7.)] = Ea[I(7F < 7.), S.];

7—1

Hy(s) =Fs [I(TF <1 TP

aVP(Yk7 Yk—l—l)
P(Yy, Yiq1) '

(12) S,

Ha(s) =Eaq [exp(—s -min[7F, Tc])} .

s k=0

Both H; (s) and H»(s) are regenerative-cycle-based quantities. 7 = minfrr, el

For any fixeds, the H;(s) can be efficiently estimated using
IS, and theH»(s) can be efficiently estimated using ordinar
simulation. Then, the method is: estiméiés) for some values
of s [by estimatingH; (s) and H»(s)], and then use a Laplace
transform inversion algorithm to obtain(¢) for a givent. A
similar method for estimating the interval unavailability is in
[13]. This transform approach [13] is a bit tedious to impleme
but yields good experimental results.

The S, is determined within a single regenerative cycle. Thus,
Yo estimated, Eq [I(rr < 7.)], generaten regenerative cycles
using the original measure, and collect observations:

(Il, S,,71), (IQ, S,,72), ey (Im, S,,7m) of (I(TF < Tc), S,,)

r]'["he standard-simulation estimator of

C. Estimation of Derivatives Esll S isi- N I.-5, .
o[l(Tr < 7c) 5] m Z JPv g

Performance measures of a system are (complicated) func- j=1
tions of the system parameters, such as the component failure
and repair rates. Thus, one can compute derivatives of perfimilarly, estimate), Ee [min(7r, 7¢.)] in (13).
mance measures with respect to these parameters. This sectiépne drawback of the likelihood-ratio derivative method is
reviews work in this area for highly dependable Markov Syghat it yields derivative estimators with large variances in many
tems. For example, determining the derivative of the MTT8ettings. Specifically, theoretical and empirical work, [36], [93],
with respect to a particular component’s failure rate. The derivbow that the variances of derivative estimators—
tive information is useful when designing systems, because thise are typically much larger than those of the respective per-
knowledge can help the designer identify system parts that need formance-measure estimators,
improvement. e grow linearly in thes-expected number of events in an
First consider estimating derivatives of the MTTF. Recall the  observation.
ratio expression in (8) for the MTTF; then differentiate it withiWhen regenerative simulation is used, an observation corre-
respect to some system parametgfe.g., some component’ssponds to a regenerative cycle, which typically consists of very
failure rate). few transitions for highly dependable Markov systems. Thus,
the likelihood-ratio method seems to be well-suited for these
O Es[TF] types of systems.
4 - (0, Eq[min(Ty, T,)])— Ee[min(Tr, T.)]-(0,95) Theoreti_cal ;tudieg in [77], [78] estat_)lished that when esti-
= 02 ;  mating glenvatwes with respect to certain system parameters
F (e.g., failure rates of certain components) using ordinary simu-
(13) lation, the ratio of the RE of the estimate@&fEs[I (77 < 7.)]
and the estimate ds[/(7F < 7.)] remains bounded. This oc-
d, = derivative operator with respect to curs when the parameter corresponds to one of the largest (in
Thus, estimating, E4[TF] requires estimating each of thesebsolute value) sensitivities, where the sensitivity with respect
4 quantities in (13). A central limit theorem for the resulting ego a parameter is defined as the product efand the derivative
timator of 9, E4 (7] is derived in [83];s-confidence intervals with respect ta.. Sensitivities measure how relative changes in
for the derivative can be formed. Section IlI-A discussed est-parameter value affect the overall performance. Thus, for pa-
matingEq¢ [{(TF < T¢)] andEg [min(TF, T¢)]; thus the focus rameters corresponding to the largest sensitivities, one can es-
here is on estimating their derivatives. timate the derivative with respecttaand the performance mea-

vr = Eo[I(Tr < T0)]-



258 IEEE TRANSACTIONS ON RELIABILITY, VOL. 50, NO. 3, SEPTEMBER 2001

sure with about the same relative accuracy. However, the RE®Df upper bound for intensity rate functiéiz)
both these estimators go to infinity as the system unreliabilifyVs(¢)} time-homogeneous Poisson process with
tends to zero (see Section II-B); therefore IS must be used. The rate3
derivatives with respect to parameters that do not corresponditp time of eventh of {Ns(¢)}
the largest sensitivities might not be estimated as efficiently é5(x), g;(z) Cdf, pdf of the lifetime of componetit eval-
the performance measure when using ordinary simulation; [78] uated ate
gives an example illustrating this. hi(x) hazard rate of the lifetime of component
This section implements IS by simulatingregenerative cy- evaluated at:
cles using another probability measure and collecting observatz) hazard rate of the repair-time of component
tions (11, Sy 1, L1), (Z2, Sy, 2, L2), ..., (Ipm, Sy s Lip) Of 1 evaluated af:
the triplet(I(7r < 7.), S,, L), whereL is the likelihood ratio. A;(s), AL(s) failure rate of componeritat times without,
Then the IS estimator &g [I(7F < 7.) S.] is with 1S
wi(s), pl(s) repair rate of componefitat times without,
1T with IS
o Z I;- S, ;- Lj. Ar(s), Np(s) to_tal failure; rate of all components at time
j=1 without, with 1S
pr(s), te(s) total repair rate of all components at time
When BFBis applied, thenthe estimatofpE ¢ [I (75 < 7.)| has without, with 1S
BRE [78]. Necessary and sufficientconditions for BRE of derivas(s), ¢/(s) total event rate at time without, with IS
tive estimators obtained using other failure-biasing methods ahg(7), Lr(7)  likelihood ratio of failure, repair events at
more general IS schemes are establishedin[79], [81]. time 7
Reference [82] shows that even though the numeratbp (), L(T) likelihood ratio of pseudo, all events attime
Eo[min(7r, T.)] in the MTTF ratio formula can be estimatedV;(r) number of componernitfailures by timer
with BRE using ordinary simulation, its derivative estimator&(s) det of operational components at time
can have unbounded RE. Consequently, if T ; time component fails at its failure #
* Eg[min(7F, 7,)] and its derivative are estimated using” length of a generici-cycle
ordinary simulation, Ny number of system failures in aa-cycle in
« BFB is applied to the estimation of the denominator the steady-state
Es[I(Tr < T.)] and its derivative, DL total system failure time multiplied by
« all 4 terms are estimated mutuathindependently (using the likelihood ratio on a generic (biased)
measure-specific IS), A-cycle -
then the resulting estimator of the derivative of the MTTF cafi=. ® s-expectation under probability measube
have unbounded RE. On the other hand, if BFB is also used to and initial distributionr
estimated, Eq[min(Tr, 75)], then its estimator has BRE andYat, variance under probability measude and

initial distribution =

so does the resulting estimator of the derivative of the MTTF. )
number of batches used in the batch means

Experimental work in [83] seems to indicate that derivatives
of the MTTF and the steady-state unavailability for large sys- . method _ _
tems can be estimated efficiently using BFB. When estimatifg & generic batch mean & and its estimator
derivatives of the unreliability using BFB and forcing (see Seé: generic batch mean of DL and its estimator
tion I11-B), the empirical results show thatthe RE of the estimatof®Vr, @, @[-, -] ~ covariance under probability measures:
are typically small when the TH is small, but they grow as the TH for the first r.v., @’ for the second r.v., and
increases [101]. This is analogous to the behavior of (nonderiva-_ _ under initial distributions.
tive) estimators of the unreliability, as discussed in Section I11-B. ThiS section uses IS to estimate dependability measures when

Estimation of derivatives of the unreliability for large TH, using€ failure and repair times of components might not be expo-

the bounding method in Section I11-B, is treated in [101]. nentially distributed (under certain assumptions), and is based
Reference [79] presents an example of a system showaﬁE[A'O]' [54], [55], [87], [8_8]- . . .

that when estimatings[I(7r < 7.)] and its derivatives using xcept for some technical and implementation details, most

simple failure biasing, estimators of derivatives with respe€f the IS heuristics developed for Markov models also apply to

to certain component failure rates can have BRE, while tfon-Markovmodels. One approach toimplement failure biasing
performance-measure estimator does not. Thus, it is possitfg forcing) in discrete-event systems is to reschedule failure

to estimate a derivative more efficiently than the performan&€nts by sampling from new accelerated failure distributions
measure when using simple failure biasing. [85].5 Heuristics and their implementation, as well as experi-

mental results demonstrating the effectiveness of the techniques
to estimate steady-state and transient measures are in [85], [86].
Another approach to IS in discrete-event systems (briefly de-
Notation scribed in this section) is based on the uniformization method of
{N(®)} NHPP

6(¢) intensity rate function of NHPR,N (¢)} 5There is considerable freedom in the choice of the new distributions.

IV. FAST SIMULATION OF NON-MARKOV MODELS
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simulation. The method requires the underlying (uniformizedgliable, thenAr(s) ~ 0. If the failure and repair rates are
distributions to have bounded hazard-rate functions. A closddpunded, then the system can be simulated (without IS) by uni-
related method which avoids generation of pseudo eventsfasmization as follows.

exponential transformation; here, the time to the next failure Assumee(s) = Ar(s) + ur(s) < g, for all timess < ¢; 3
event is sampled directly from an exponential distribution [87is a constant.

Failure biasing or forcing are affected by increasing the failure Then a Poisson process with régtés simulated.

rate (relative to the repair rate or the mission time, respectively).Let an event in this Poisson process occur at time

The latter two techniques are somewhat simpler to implementThat event is accepted as a compongfdilure event with
than the technique in [85], because failure events need notgzebability A;(.5)/3, and is accepted as a componémépair
rescheduled and are generated using only the exponential digent with probability.;(S)/3. However, because it might be
tribution. thate(s) < /3, another possibility exists: a pseudo-event (neither

The next paragraph briefly describes the uniformizatiom failure nor a repair occurs). This occurs with probability
method of simulation, which is use in this section as a basis€fs)//3. The probability of a failure event i5x(5)/3, and of a
our approach to IS in non-Markov models. repair event isig(S)//3.

Uniformization-Based SamplingJniformization (or thin- For highly reliable components\r(S) < pr(S) when-
ning) is a simple technique for sampling (simulating) the eveaver repairs are ongoing, thus the probability of a failure is
times of certain stochastic processes including NHPP, renewaty small. To accelerate failures, simply change the acceptance
processes, or Markov processes in continuous time on eitipeobabilities of the various event types, which is equivalent to
discrete or continuous state spaces [22], [26], [49], [58], [72Zhanging componeritfailure and repair rates to, say,
[104]. It is describe for a NHPPN (¢)} with intensity function * X(s) [such that\.(s) > 0iff A;(s) > 0],
6(t). Assume that(t) < g for all t > 0 for some finite  + ,/(s) [such thayi(s) > 0, iff ui(s) > 0].
constant3. Then the event times dfV(¢)} can be sampled by The |ikelihood ratio (at time’) is:
thinning the{/V3(t)} process as follows:

For eachn > 1, include (accept),, as an event-time in

{N(¢)} with probability(7;,)/3; otherwise the point is not in- L(r) = Lp(7) - Lr(7) - Lp(7)- (14)
cluded (is rejected).
Rejected events are sometimes cafjsdudo events These likelihood ratios have a simple form. For example, let

Throughout it is assumed that all rate functions are left-conemponent fails on its own (not through failure propagation)
tinuous:4(t) = 6(¢+~); thus if an event occurs at some randondV;(7) times in(0, 7).
time T, thend(T) is the event rate just prior to tiniE.

Renewal processes can be simulated using uniformization, N Ni(7) M(TL)
provided tha®(t) is the hazard rate of the inter-event time dis- Lp(r)= H H L (15)
tribution at timet. Uniformization can be generalized to cases i=1 j=1 XilTig)
in which the process being thinned is not a time-homogeneous
Poisson process [72]. For example, at tiffie ;, setl,, = Equation (15) assumes that the failure propagation probabilities

T.—1+E,, whereE,, has an exponential distribution with rateare sampled from their given distributions. However, IS can also
$,.. The pointZ;, is then accepted with probabili(1,)/5.. be applied to these as well. The terthg () and Lp(7) can
This requires only that,, > 6(t), forallt > T;,_;. be expressed similarly. The likelihood ratio can be computed

Section IV-A describes how the uniformization method ofupdated) recursively at uniformization event times during the
simulation can be combined with IS to develop an effective tecimulation.

nique for estimating transient measures in non-Markov modelsThe analog of BFB with forcing is accomplished as follows.

of highly dependable systems. If no repairs are ongoing (e.g., in the state where all compo-
i nents are operational), l&f(s) = X > 0, for some constant
A. Transient Measures X. (In practice [87],\ could be chosen such thiat- exp(— N -

Consider the problem of estimating the unreliabilit) = - t) = 0.8. This means that, with probability 0.8, some com-
Pr {time to system failure < t for some fixed value of}.  ponent fails before the TH expires.) If repairs are ongoing,

To simplify the notation, let there be 1 component of eadht ¢/(s) = e(s): the total event rates the same as without IS.
type (although more general situations can be handled). THeen, let\-(s)/¢'(s) = p, for some constant: given that the

hazard rate [5] of componeritis thenh;(z) = g¢;(xz)/(1 — eventisreal, make it a failure event with probability(In prac-

G;(x)), which we assume is well defined and finite. tice [87], p is usually set in the range from 0.3 to 0.5.) Given a
Xi(s) = hi(Ai(s)), Ai(s) = age of componentat times. failure event, pick an operating componerio fail with prob-

[If component: is not operational at time then;(s) = 0.] ability 1/|O(s)|. Under appropriate technical conditions, it can

wi(s) = m(R;(s)), R;(s) = elapsed repair time on compo-be shown that such a heuristic for IS (which is the analog of
nent: at times. [If component: is not being repaired at time forcing and failure biasing) results in estimates having BRE
theny;(s) = 0. [55]. In particular, letd < p < 7;(z) < Iz < oo, and let there
There are a variety of ways to use IS in simulations of su@xist a small positive parametersuch that\e < h;(z) <
a system. Begin with a direct analog of forcing and BFB. Thise®:, where0 < A < X < oo andb; > 0. If IS is done such
method is based on uniformization. If components are hightigat, for alls < ¢,0 < ) < N(s) < ¥ < oo [wheni € O(s)],
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0 < ¢/ < pi(s) < ' < oo (When component is under- i.i.d. observations; this is an approximation whose validity in-
going repair), then under some additional minor assumptioaseases with the batch size.
(including that the failure propagation probabilities afimde- Letw be the initial distribution of the corresponding (original)

pendent of), the estimates & {7 < ¢} have BRE ag — 0. stochastic process upon entering the Aeafter the stochastic
Because repair distributions might not have bounded hazgbcess has reached the steady-state. According to the definition

rates (e.g., discrete and uniform), it is desirable to seek effef-A, 7 is the steady-state joint distribution of the components’

tive IS methods that do not rely on uniformization for repaiages upon entering the state in which all components are oper-

events. The above uniformization-based algorithm can be @ional; upon enteringl, at least 1 component has an ag®.

plied to just failure events: repair times are sampled directly Under fairly general ergodicity conditions (which also ensure

from their original distributions, while uniformization is usedhat the system returns to the setinfinitely often), the ratio

to simulate failure events. The likelihood ratio is thefr) = representation of in terms ofA-cycle-based quantities ¢s:
Lp(r)- Lp(7):itdoes not include the repair event tefmp (7).
Again, under appropriate technical conditions, this modification o Exs[D] (16)

results in BRE [55].

Uniformization can be computationally inefficient if there are
many pseudo events. In addition, suppose events from a Poisggisubscripts denote that thexpectation is with respect to the
process with ratgs are accepted as failure events with probasriginal probability measuré (which governs the behavior of
bility p. Then the time until an accepted event has an exponene original system) and the steady-state initial distributiari
tial distribution with rate3p. This suggests sampling the time tahe A-cycles. A ratio representation for the MTBF in terms of
next failure event directly from an exponential distribution withi-cycle-based quantities is
rategp. A generalization of this approach (exponential transfor-
mation) also results in estimates having BRE (under appropriate Exa[C]
technical conditions [55]). The likelihood ratio takes on a some- MTBF = m'
what different form [55], [87]. "

Empirical studies testing the competence of these metheglg, remainder of this section reviews the estimation,afihich

are reported in [54], [55], [87]. Generally, good variance redugys peen considered in [88]. A similar approach to estimate the
tion is obtained iPr{7x < ¢} is small, say, lessthan 10. The \TBE is in [40].

smallert andPr{Tx < t} are, the greater thecan be made.  ggcqase system-failure is a rare event, ordinary simulation is

Finally, though no formal study has been done, we anticipajg,y inefficient to estimaté,. [D]; this motivates the use of
that these techniques (with minor modifications) apply also feg

estimating thes-expected interval unavailability.

Exo[C]

(17)

&’ = a new probability measure to simulate the system.
w € © = a sample path in the original process, on which the
B. Steady-State Measures total system down-time is evaluated to bg.

_ _ ¢’ must satisfy the conditiodw € €, “d®’(w) > 0 when-
Non-Markov models of highly dependable systems might ”BQ/eer dd(w) > 0.

possess an explicit regenerative structure. If they do not, theryi, IS,E,. ¢ [D - L] = ans-unbiased estimate &, ¢[D],

a ratio representation of steady-state measures in terms of(gf,-—E likelihood ratio). ’
generative-cycle-based quantities, such as in (5), is no longep, appropriate choice b’ should yieldVar, o [D - L] <
possible. This section discusses an approach for the efficient ¢g; [ D], which implies much better precisié)n in estimating

2

timation of steady-state measures, such as system unavailabjii;[yq), D - L]
and MTBF, in non-Markov nonregenerative models. The ap-p »[C] can be estimated efficiently using ordinary simula-

proach uses arepresentation of steady-state measuresin terméﬁ’ﬁherefore, the ratio estimator in (16) can be written as
guantities based oA-cycles: a sample path between two suc-

cessive entries of the system into some set of statds the E, o[D- L]
context of highly dependable systems (as in Section Il), choose = W-
A to be the state in which all components are operational. Only ™
when all component failure-time distributions are exponentirillhe resulting scheme is analogous to MSDIS for estimating
(regardless of the repair-time distributions), entrance into tr}%ae steady-state unavailability in Markov models [46] (see Sec-
s_etA constitutes a regeneratiqn p_qint,_and a ratio represen:tl%h I1I-B). First, the system is simulated using the origiteefbr
g?i\r;e(-)(f:;(r:llee _it:;fg (?ltjjr?tittjig:/iaikr?“(%, 'ir; imnvsaﬁ; r[gginHeLWa sufficiently long time to approximately reach the steady-state.

o ; . . At that time, the initial distribution upon entry of-cycles is
ever, this is no longer true if component failure times are gen

erally distributed. Therefore, in general;cycles are not i.i.d., sufficiently close tor, and begin to use the following splitting

and one cannot use classical statistical techniques to estinig eh nique. For each (steady-statexycle, run the simulation

: " once or more) starting with the same component failure ages
the variances ofi-cycle-based quantities. Instead, one can use s . .
: . and usingd’ to get samples ab andL; these are-biasedA-cy-
the method of batch means to estimate the variances of these .
. . . -~ . Cles. Then run the sam#-cycle using thed to get a sample of
guantities by grouping successidecycle-based quantities into
nonoverlapping batches, and then treating the batch means &or details, see [10], [16], [27], [106].

(18)
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C; this is an originald-cycle. This last run also ensures that thé&n estimate of the steady-state unavailability is
initial distribution, upon entering the nex-cycle, isx.

Because successivi-cycles are nos-independent, use the
method of batch means [68] to estimate variances and form
s-confidence intervals. After (approximately) reaching the
steady-state, usk and k; & should be sufficiently large, so From the CLT, for large: andb,
as to make the dependence between successive batch means
s-insignificant. (Experimental results in [88] indicate that in Vb (& —a) ~ N(0, Varr ¢ o [c]).
practice,k need not be very large. In [88}, = 64 was used.)
It follows that the total number of original-cycles used in the
simulation isk - b.

C;, 1 < i< k-b=length of the originalA-cycle #,

(22)

o=

| A

An estimate for the variance &ar, ¢, ¢ [¥] Of the estimatet
is obtained from

¢j, 1 £ j < b =sample mean based on batgh # 2 _ o
er[ 1= Vfu[é] + & Vfu[C] 2-é& - Covld, (] (23)
o ¢
¢ = Z 9
T k- One could try to estimate without usingA-cycles by using the
i=(j—1)-k+1
fact that
For sufficiently largek, the ;s can be viewed as i.i.d. samples 1/t
of a generic r.v¢. The estimate oE, 4[C] based on the batch i / I(Z(s) € F)ds — « ast — oo
means method i§ = >°7_, (¢;/). 0
An estimate ofVar, 4[(] is with probability 1, wherg(Z(s): s > 0) is the process repre-

senting the state-evolution of the system over time. One could
b (Cj _ C)Q then estimat@z using simulation as follows. Run a simul_ation
@[C] - Z AT (19) of length¢, with larget, and break-up the sample path irto
=1 b—1 batches, each of sizgb. To apply IS, one might have to use
a change of measure for an entire batch. However, this would
Letm > 1 be the number of-biased cycles run for each orig-probably result in poor estimates because the batches would be
inal cycle. Usuallyn > 1, because typically more cycles ardarge and the variance of the likelihood ratio grows approxi-
required to estimatg,. ¢ [D- L] than those required to estimatemately exponentially with the number of transitions [39]. Using
E~, 5[C]to the same degree of RE. Thus the numberbiased A-cycles avoids this problem by breaking the sample path into
A-cycles in 1 batch isn - k, and the total number of-biased smaller pieces, and thus IS is typically applied for only a small

A-cycles used in the simulationis - & - b. number of events. A similar justification applies to the use of
LetD;-L;,1<i<m-k-b beasample ab - L, evaluated regenerative cycles when doing IS for Markov systems.
at s-biasedA-cycle #. This paper’s heuristic for IS is similar to that for regenera-

Leté;, 1 < j < b, be the sample mean based on bat¢h #  tive non-Markov models [85]. In a biasettcycle, upon the oc-
currence of the first component failure, activate failure biasing

Jomek D. - L. to accelerate subsequent component failures relative to the on-
6 = Z ﬂ; - kz. going repair. Failure biasing is continued until system failure or
i=(j—1)-m-k+1 the end of the currem-cycle. In BFB, various types of compo-

nents have the same failure probability. As in Section IV-A, the
For sufficiently largek, theé;s can be viewed as i.i.d. samplesginiformization method of simulation can be used to implement
of a generic r.vs. The respective estimate Bf. ¢/ [D - L]is:  |S, In [40], [88], uniformization, combined with BFB, is used to

estimate the steady-state unavailability and the MTBF, respec-

b 8; tively. No proof is yet available to establish the BRE property of
= Z D the resulting estimates. However, empirical results in [40], [88]
J=1 seem to indicate the effectiveness of the approach in this sec-

tion.
Some experimental results from [88] are presented here. The
, system structure in this example is the same as described at the
Z (6; — 5 (20) end of Section IlI-A except there are 2 processors in each set.
b—1 However, the failure and repair behavior are appreciably dif-
ferent. Each component can now fail in only 1 failure mode. A
An estimate ofCov, ¢ o[6, ] is preemptive resume-repair discipline is now assumed, with pro-
cessors having the highest priority, and disks having the lowest
b p priority. All repair time distributions are exponential with mean
Cov [6, ¢] = Z — C)_ (21) = 1 hour. A failing processor in any of the 2 sets causes one
=1 b - 1 processor in the other set to fail with probability 0.1. The mean

An estimate ofVar, ¢/ (6) is

for =
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lifetimes for processors, controllers, and disks are assumed to be
20k, 20 k, and 60 k hours, respectively. In [88], experimental re-
sults are presented for the Erlang, Weibull, exponential, and hy-
perexponential lifetime distributions. Results are presented here
only for: all lifetimes have the Weibull distribution with shape [?!
parametet= 1.25. For mean lifetimes of 20 k and 60 k hours, the
scale parameters were 3.84%0% and 9.744x 107, respec-
tively. The steady-state unavailability using IS was estimated tol3]

be 6.610 1078 4 9.18%. The RE corresponds to 99%on-

fidence. The estimate without IS was highly unstable and did

not converge. All simulations were run for 64 k origin&lcy-

cles withk = 64 original cycles per batch and = 4 biased
cycles for each original cycle. When the mean lifetimes were
reduced by a factor of 10, the estimate of steady-state unavaill®!
ability using 1S was 6.856 10710 & 9.87%. Even though the
steady-state unavailability estimate dropped by a factor of 100,
the RE did not change appreciably, giving some validity to the (8l

BRE hypothesis.

V. CURRENT WORK AND FUTURE RESEARCHDIRECTIONS

It is important to extend the applicability of IS to other [11]
classes of highly dependable systems. Reference [59] stat
that most of the failure biasing techniques mentioned in thi
paper break down when Assumption A (see Section Ill) does
not hold. This can happen, for example, in systems witH3]
complicated repair policies like deferred and group repair. Two
different approaches for the fast simulation of these models ifi4]
the Markov setting have been presented in [60], [114], [61].
Extensions of these to non-Markov settings is an open—problen@lS]

Another area of research for non-Markov models is the de-
velopment of techniques that handle systems with appreciab
redundancies; the techniques in [2], [3], [105] apply mainly
to Markov models. Also important from a practical viewpoint, [17]
is the development & extension of derivative estimation tech-

nigues [83] to
« Markov models not satisfying Assumption A,

« Markov models with appreciable redundancies,
* non-Markov models.

The robustimplementation of fast simulation techniques in tool
to evaluate highly dependable systems is the ultimate goal of thjg1]
research and should be given an increasing attention. For related

attempts, see [8], [47], [89], [90].

From a theoretical viewpoint, it is relevant to establish re-[22
sults pertaining to the effectiveness of IS techniques in Markov
and non-Markov models, such as those in [3], [55], [60], [114],[23
[61], [78], [79], [81], [98], [99], [115]. These results enhance
our understanding of the capabilities and limitations of these
techniques when used to estimate various measures in differdff!

classes of systems.
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