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Abstract. A number of recently proposed mobile sensor network archi-
tectures rely on uncontrolled, or weakly-controlled mobility to achieve
sensing coverage over time at low cost, an opportunistic sensor network-
ing approach. However, this reliance on mobility also introduces a num-
ber of challenges. In this paper, we discuss the challenges inherent in
this networking paradigm, and describe two composable techniques, sen-
sor sharing and substitution, to make the system more robust in terms
of data fidelity and delay. We present a numerical analysis of these tech-
niques, separately and in combination, based on a simple Markov model
of an opportunistic sensor network.

Key words: Architecture, Mobility, Modeling, Performance, Wireless
Sensor Networks, Opportunistic Networking.

1 Introduction

The recent integration of sensors with personal electronic devices like mobile
phones has invited a number of researchers to consider appropriate architec-
tures [4] [12] [23] [1] and applications (e.g., social [16] [25], recreational [8] [9])
for large-scale people-centric sensing systems. Generally, these systems leverage
human-carried or vehicle-mounted sensors networked using short/mid-range ra-
dios (e.g., ZigBee, WiFi, Bluetooth), and an Internet gateway tier composed of
tasking and collection entities. The gateway tier delivers sensing instructions to
the mobile sensors on behalf of user applications and accepts incoming sensed
data. These proposals rely to some extent on the mobility of humans and their
vehicles to get wide area sensing coverage over time with a relatively sparse
deployment of heterogeneous mobile sensors. We term sensing with this depen-
dence on uncontrolled mobility opportunistic sensor networking (OSN). While
this novel OSN approach can allow large scale sensing at a lower cost compared
to an ubiquitous static infrastructure of sensing devices, the opportunistic na-
ture of sensing and communication presents challenges to the fundamental sensor
networking operations. In the OSN approach, these operations can be described
in terms of opportunistic tasking, opportunistic sensing and opportunistic col-
lection. Opportunistic tasking refers to the process by which a tasking entity



instructs an appropriate mobile sensor to attempt to meet a certain application
request. The tasking is opportunistic since there is no guarantee that an appro-
priate mobile sensor will stay within the radio range of a tasking entity long
enough for the tasking operation to complete. By “appropriate”, we refer mini-
mally to a mobile sensor that has the necessary sensing equipment to meet the
application request, and may include other requirements (e.g., remaining energy,
security clearance, inferred direction of motion). Opportunistic sensing refers to
the process by which a mobile sensor that has been assigned a given application
task senses the target within the preferred time frame. The sensing is oppor-
tunistic since the tasked mobile sensor may not move close enough to the target
within the preferred time frame. Opportunistic collection refers to the process
by which a mobile sensor that has sensed data in line with the requirements of
an application request delivers this data to a collection entity. The collection is
again opportunistic since the mobility of the mobile sensor that has sensed the
target may not bring it within the radio range of the collection entity and keep
it there long enough for the sensed data upload operation to complete.

Noting the aforementioned challenges of OSNs, in [10], we define in situ sen-
sor sharing in the context of real sensing applications, and design, implement and
experimentally evaluate the system performance for these application scenarios.
In this paper, we augment that experimental work with a theoretical analysis of
the properties (e.g., scalability and sensitivity to device heterogeneity) of sensor
sharing, alone and in combination with sensor substitution. These two compos-
able techniques aim to increase the robustness of the OSN paradigm, mitigating
the fundamental challenges of uncontrolled human mobility and device hetero-
geneity to successfully and more expediently complete tasking, sensing and data
collection. In particular, we effectively loosen the constraints on which mobile
sensors are fit to be tasked for a particular application query. Sensor sharing
does this by allowing tasked sensors without the right sensor type for a given
sensing task to exploit the resources of others it encounters in the field. Sensor
substitution is used in situations where one measurements from one sensor type
can act as a reasonable (i.e., within fidelity bounds acceptable to the application)
stand-in for another’s. In Section 2, we give a more detailed description of each
technique in the context of the OSN challenges it addresses. In Section 3, we pro-
vide a baseline numerical analysis of an OSN using a Markov model, and then
provide an analysis of the potential improvement provided by sensor sharing and
sensor substitution, first separately and then in combination, with respect to the
Markov model. Section 4 discusses related work before we conclude.

2 Sensor Sharing and Substitution

To meet the requirements of the application request, a tasking entity must choose
an appropriate mobile sensor from the pool of available mobile sensors in its
radio range. However, this sensor selection problem is difficult for two reasons:
(i) the available pool of mobile sensors is limited by the uncontrolled mobility of
humans and vehicles and may not contain an appropriate mobile sensor, and (ii)



it is difficult to predict whether the mobility of a given available mobile sensor
will keep it within the tasking entity’s radio range long enough to complete
the tasking, and take it to the target region within the preferred time window.
For convenience, we term these the tasking availability problem and the tasking
prediction problem, respectively.

The tasking availability problem can be addressed by relaxing the require-
ments on what constitutes an appropriate mobile sensor, probabilistically in-
creasing the chances that a “taskable” mobile sensor will enter the radio range
of the tasking entity within the preferred time window. In particular, we pro-
pose to relax the requirement on sensing instrumentation by allowing for sensor
sharing and sensor substitution. With sensor sharing, a mobile sensor A that
requires sensor type α, e.g., a CO2 sensor, to meet the application requirements,
but does not itself possess this sensor type (α might be expensive, heavy or
rare), can conscript another sensor B that does possess sensor type α to share
its sensed data. We envision two scenarios for sensor sharing: (i) sensor A en-
counters sensor B at the target region, asks B to capture and share data from
sensor type α, and receives this data from B, and (ii) sensor A encounters sen-
sor B outside the target region, and leverages the approach proposed in [17] to
request and receive data from sensor type α from sensor B. As an example of
the former scenario, for an allergen mapping application, a mobile sensor A may
be instructed to record particulates in the vicinity of a busy street intersection
in the center of the city. Lacking a particle counter, when sensor A finds itself at
the target intersection it might broadcast a request for a particulate reading and
receive a response from sensor B which is within radio range of A and possesses
a particle counter (pull-based sharing). In a more constrained case, a system
might be engineered such that at least one mobile sensor Q with sensor type α

is present among a group of mobile sensors that might require data from sensor
type α. Here, node Q might periodically broadcast readings from sensor type
α to the group (push-based sharing). An investigation of a more sophisticated
communication protocol in support of sensor sharing, and algorithms to decide
which of the possible neighbors is most appropriate to share from is left as fu-
ture work. We assume an environment where sensors are willing to cooperate to
complete sensing tasks. The cooperation might be pro bono, or quid pro quo as
in social-network-based sharing [16].

With sensor substitution, a mobile sensor C that requires data from sen-
sor type β to meet the application requirements but does not possess this sensor
type, can instead use a substitute method of acquiring equivalent or similar data.
We envision two scenarios for sensor substitution that we term direct substitution
and indirect substitution. In direct substitution, a mobile sensor C instructed to
collect data from sensor type β uses sensor type γ to collect data equivalent
to that given by β, where equivalence does not necessarily include accuracy or
precision specifications. For example, for a simple terrain mapping application
a mobile sensor may be instructed to measure the slope of a given section of
road using a three dimensional accelerometer. Lacking a three axis accelerom-
eter, but possessing a GPS receiver (e.g., the Nokia N95), the mobile sensor



can use interpolation between periodic altitude readings from the GPS receiver
to calculate and report the slope of the road [26]. Note that GPS-derived al-
titude measurements are less accurate and less precise that those provided by
a three axis accelerometer, but nonetheless for the case of road slope mapping
the GPS receiver can act as a direct substitute for the three axis accelerome-
ter. In indirect substitution, a mobile sensor C instructed to collect data from
sensor type β instead reports a combination of sensed data from a number of
other sensor types that can be used to generate, e.g., using inference techniques,
data which is similar to the requested data. For example, for a simple location
mapping application a mobile sensor may be instructed to periodically record
latitude/longitude readings from a GPS receiver. Lacking a GPS receiver, but
possessing a three axis magnetometer and a three axis accelerometer, the mobile
sensor can report direction relative to the magnetic field of the Earth (i.e., a
compass reading), and distance calculated as the double integral of the acceler-
ation. With knowledge of at starting location, the latitude/longitude values can
be approximated using the combination of the the direction and distance trav-
eled (i.e., dead reckoning [21]). Note that localization using dead reckoning is less
accurate than localization using data from a GPS receiver, but for localization
over relatively short distances the combination of a three axis magnetometer and
a three axis accelerometer can act as an indirect substitute for a GPS receiver.
Another example is recognizing locations that can be uniquely identified by their
sensor signature [13], as a substitute to GPS.

Note that the use of sensor sharing or sensor substitution is not exclusive, but
rather both are composable blocks that can be used in combination to increase
the probability an application request is met. The sensing action that is likely
to yield the higher fidelity data is taken. Extending the previous example, if the
terrain mapping application requests a slope measurement, we first check if the
hardware natively supports high accuracy slope measurement via accelerometer.
If not, it tries sensor sharing to see if another nearby node (with appropriate
context) will share its accelerometer. If not, it tries sensor substitution to at
least get a (lower accuracy) estimate of slope via GPS. Thus, success is achieved
if the tasked mobile node has the required sensor, or if it has an appropriate
substitute sensor, or if it meets a mobile node at the right place that is willing
to share the required sensor, with the commensurate impact on data fidelity.
In this way, sensor sharing and substitution help to decouple application design
from hardware design (i.e., sensors, on board and opportunistically encountered
as people rendezvous in the field), helping to support multiple applications on
heterogeneous mobile devices.

3 Analysis and Discussion

To get a preliminary understanding of the baseline performance of an OSN and
the theoretical impact of sensor sharing and sensor substitution, we model an
OSN scenario using mobile sensor nodes moving according to a discrete Markov
model. In the following, we develop the baseline OSN model, and then compare
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Fig. 1. An N2 element Markov chain models a neighborhood where the states represent
a grid of points covering the 2-D ground surface of the neighborhood. The grid points
are numbered as shown in Figure 1(a). We study a toroidal scenario where nodes may
move north, east, south, west, or remain stationary with equal probability (Figure
1(b)); and a more realistic scenario where transition probabilities are derived from the
connectivity graph shown in Figure 2.

the performance of sensor sharing and sensor substitution with the baseline
in terms of sensing success probability. We numerically evaluate the derived
probability expressions to get a sense of the performance boost given by sensor
sharing and substitution, and the sensitivity to the number of mobile sensor
nodes and the number of sensors per node.

3.1 Model

We model a neighborhood with a Markov chain with a state space SS of size N2.
We investigate two topology scenarios. In the first, the states represent an N×N

toroidal grid of points covering the 2-D ground surface of the neighborhood.
The grid points are numbered as shown in Figure 1(a). We assign the transition
probabilities of the Markov matrix M to allow mobile sensor nodes to move
north, east, south, west, or remain stationary with equal probability (see Figure
1(b). To investigate a more realistic application of the model, in the second
topology scenario we overlay the N ×N grid on a physical map of the northwest
corner of the Columbia University Morningside campus [6] and assign transition
probabilities that respect human pathways in the actual campus. To start, the
map (see Figure 2) is sectioned into a 10x10 grid (solid lines), and a connectivity
graph (solid squares in the center of each grid square, and dotted lines) of the
sections is derived on the basis of walls, doors, pathways, etc. Then, each of
the nodes in the graph is treated as a state in the Markov chain, where at each
node in the graph each edge (including the implicit self-edge) is taken with equal
probability.

Suppose that a query injection point at location σ receives a query from
an application running on a back end server at time t for information from
sensor type s at target location τ in the grid. Suppose that the request has
deadline u, such that the mobile sensor node must be tasked with the request



Fig. 2. A partial campus map showing the northwest corner of the Columbia University
campus. The map is sectioned into a 10x10 grid (solid lines), and a connectivity graph
(solid squares in the center of each grid square, and dotted lines) of the sections is
derived on the basis of doors, pathways, etc. in the actual campus. This graph serves
as the basis for the campus scenario probability transition matrix used in Section 3.2.

by the query injection point and arrive at the sensing target location τ by time
t + u. We assume there are sensors S = {s1, ..., sz} and that each mobile sensor
node possesses r ≤ z of these sensors through random assignment (e.g., at the
factory), with the constraint that the r sensors are distinct (i.e., there are

(

z
r

)

sensor configurations).

3.2 Baseline OSN

We wish to determine the probability of success as a function of the node density,
sensor configuration, and sensing deadline in this Markov state space. We start
by determining the probability that a suitable mobile sensor node will first visit
the query injection point at time t + k, k ≤ u. We assume that t is large enough
that the population is well mixed, i.e., the probability that a given mobile sensor
node is in a given state i at time t is pi = 1

N2 , or equivalently that the initial
probability distribution for all states i is νi = 1

N2 . Let Ak(i, σ) denote the event
that a single mobile sensor node starting at location i will first visit the query
injection point σ at time t+k. The probability Fk(i, σ) = Prob(Ak(i, σ)) is given
by the recursion



Fk(i, σ) =











M(i, σ), k = 1,
∑

b∈SS−{σ}

M(i, b)Fk−1(b, σ) k ≥ 2.

or equivalently as

Fk(i, σ) = Qk−1M(i, σ). (1)

where M(i, j) represents the (i, j)th entry of the Markov probability transition
matrix, and Q is the matrix obtained from M by replacing its column σ with
all zeros. Summing over all starting positions i, we have

Fk(σ) =
1

N2

N2−1
∑

i=0

Qk−1M(i, σ), (2)

However, we are only interested in those mobile sensor nodes that are equipped
with the sensor s that can meet the application/query request (else we assume
the mobile sensor node will not be tasked by the query injection point). We
model the query arrival process by assuming that a s ∈ S is chosen uniformly at
random for each application query, such that Prob(s = si) = 1

z
. Let B denote

the event that a given mobile sensor node’s sensor configuration includes the
sensor s ∈ S specified in the query. Then,

Prob(B) =
z

∑

i=1

Prob(s = si)

(

z−1
r−1

)

(

z
r

) =
r

z
. (3)

Let C denote that event that a mobile sensor node equipped with the proper
sensor first visits the query injection point at time t+k. Since the mobile sensor
node’s sensor configuration assignment and the mobile node’s motion on the
neighborhood grid are independent, the probability of event C is simply obtained
from Equations 2 and 3 as Prob(C) = Prob(B) · Fk(σ).

Once the appropriate mobile sensor is tasked by the query injection point at
location σ, it must reach the target at location τ by the sensing deadline t + u

in order for the mission to be successful. Thus, we can write the probability of
success in the baseline OSN as

Prob(Success) =

u
∑

l=1

Prob(C)

u−l
∑

m=1

Fm(σ, τ), (4)

where l is the time when the SAP is visited.
Finally, suppose there are y mobile sensor nodes moving in the neighborhood

grid. We write the probability that any of the y mobile sensor nodes succeed as

Prob(y)(Success) = 1 − (1 − Prob(Success))y). (5)

As the deadline goes to infinity, the probability of success is limited by 1−(1− r
z
)y,

regardless of the grid dimension N . This limitation imposed by the probability



of a matching sensor configuration ( r
z
) strongly motivates the consideration of

both sensor sharing and sensor substitution.

In Figure 3, we compare the success probability for both of the baseline
OSN scenarios described previously, i.e., toroid and campus. The tasking point
is placed in the lower right corner of the neighborhood (Markov state 99) and the
sensing target is placed in the center of the neighborhood (Markov state 45). For
both scenarios, we choose a grid granularity of N = 10 and use z = 20 based on
the set of sensors currently used in personal mobile devices and personal sensing
systems (viz., camera, microphone, Bluetooth, WiFi, accelerometer, GPS, and
temperature samples can be taken from the Nokia N95; the Moteiv Tmote Invent
includes light and humidity sensors; magnetometer, galvanic skin resistance, and
CO2 sensors are used in the BikeNet sensing system [8]; the Intel Mobile Sensing
Platform includes a barometer and a gyroscope; and the Apple iPhone adds an
FM transceiver and an infrared sensor). Future hardware generations will be even
more sensor rich, but it is unlikely that any device will integrate all available
sensors. In Figure 3(a), we plot Equation 5 versus a range of sensing deadlines
u for different numbers of mobile sensor nodes y. Here the ranges of tested y

values is meant to represent the rough number of participating users of the OSN
in the area of campus shown in Figure 2 throughout the day (y=200) and night
(y=20). We use r = 3 to reflect the camera, microphone, and Bluetooth link that
nearly all mobile phones on the market possess. The expected trend is evident,
as more time is allowed for the sensing to occur the probability of sensing success
goes up. It is interesting to note, however, the effect of topology on the success
probability. The campus topology from Figure 2 limits the free flow of mobile
nodes as compared with the unobstructed toroid scenario, requiring a longer
time to reach the same success probability. We also observe (plots omitted due
to space constraints) that in the campus scenario, the performance can change
substantially depending on the placement of the tasking point σ and the sensing
target τ . In Figure 3(a), we again plot Equation 5, but this time versus the
number of equipped sensors per node r for different numbers of mobile sensor
nodes y when the sensing deadline u is fixed at 50. As intuition suggests, the
more sensors each node carries, the higher the chance that a query for a random
sensor type will be successful. We also see that, as r is an intrinsic property of
a mobile node and not dependent on mobility or node interactions per se, the
campus ensemble qualitatively matches the toroid ensemble, albeit at a lower
success probability. This is due to the fixed sensing deadline of u = 50 used,
since from 3(a) we see that the success probability rises more slowly for the
campus topology than for the toroid topology.

In the following analysis of sensor sharing and sensor substitution we report
only results of the toroid scenario. We do this both to avoid cluttering the figures
and also, since we have seen that the placement of the tasking point and sensing
target greatly impacts importance in the campus scenario, to get a more general
idea of the impact of sharing and substitution.
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3.3 Sensor Sharing

To analyze sensor sharing3, in the following development we relax the constraint
that the query injection points task only those mobile sensor nodes that have the
proper sensors to satisfy the application query. We allow a tasked mobile sensor
node that arrives at the target region, but does not have the sensor required, to
ask other mobile sensor nodes that may be at the target at the same time and
do have the required sensor for their samples. In the analysis presented here we
use a narrower form of sharing and do not consider the possibility of leveraging
the mobile sensor node rendezvous outside of the target region [17].

In Equation 4, Fk(σ, τ) represents the probability that the mobile sensor
node tasked by the query injection point first makes it to the sensing target
location by time t + k. Successful sensor sampling at that point occurs with
unity probability in the baseline scenario since the query injection point only
tasks a mobile sensor node with the appropriate sensor equipment (as captured
by Prob(C) in the same equation). With sensor sharing a tasked mobile sensor
node arriving at the target may not have the appropriate sensor. Let D denote
the event that successful sampling occurs under these conditions. Then, the
probability of D covers two cases: (i) the tasked mobile sensor node arrives
at the target and has the required sensor, or (ii) the tasked mobile sensor node
arrives at the target and does not have the required sensor but at least one other
mobile sensor node at the target concurrently does have the sensor. Assuming
there are y total mobile sensor nodes,

Prob(D) = Fk(σ, τ) ·

[

r

z
+(1−

r

z
) ·

(

1−
(

1−
r

z
·

1

N2

N2−1
∑

i=0

Mk(i, τ)
)y−1

)]

. (6)

Thus, to modify the baseline expression for success probability for sensor
sharing, we substitute Prob(D) in for Fk(σ, τ) in Equation 4. Further, since the
constraint on the query injection point to task only a node with the required
sensor no longer applies, Prob(C) in Equation 4 is replaced with simply Fk(σ),
and we get

Prob(Success) =

u
∑

l=1

Fk(σ)

u−l
∑

m=1

Prob(D). (7)

This success probability from Equation 7 is then plugged into Equation 5 to get
the final result for sensor sharing. As the deadline goes to infinity, the success
probability is limited by approximately 1 − (1 − ( r

z
+ (1 − r

z
) · 1

N2 )y.

3 In our model we do not treat communication costs for either the baseline case or
sharing, and consider only the opportunity for sensing mission success. The sensor
sharing implementation in [10] minimizes this cost by limiting communications to a
single wireless hop, given the increased complexity and loss probability for multi-hop
routing.



 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0  20  40  60  80  100

S
uc

ce
ss

 P
ro

ba
bi

lit
y 

Im
pr

ov
em

en
t

Sensing Deadline u (time steps)

y=20
y=40
y=60
y=80

y=120
y=200

(a) Plot of the success probability improvement ratio versus sensing
deadline u for various values of y (number of mobile sensor nodes)
when sharing is allowed.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 2  4  6  8  10  12

S
uc

ce
ss

 P
ro

ba
bi

lit
y 

Im
pr

ov
em

en
t

Number of Equipped Sensors r

y=20
y=40
y=60
y=80

y=120
y=200

(b) Plot of success probability improvement ratio versus number
of sensors r equipped per node for various values of y (number of
nodes) when sharing is allowed.

Fig. 4.

Comparison. We calculate the normalized sensing success probability improve-
ment given by sensor sharing in our model by first evaluating Equation 5 for both
the baseline and sensor sharing cases, and then calculating



(Succ. prob. w/ sensor sharing) − (Succ. prob. w/ baseline)

(Succ. prob. w/ baseline)
.

We plot this success probability improvement in Figure 4(a) as a function of the
sensing deadline u for various numbers of mobile sensors nodes y in the neigh-
borhood when r = 3. In Figure 4(b) we plot the success probability improvement
as a function of the number of sensors per configuration r for various numbers
of mobile sensor nodes y in the neighborhood when u = 50. For both plots, we
fix N = 10, and z = 20.

From Figure 4(a), we see that using sharing we can get an improvement
of up to 16%, which is mainly dictated by the ratio r

z
. As the sensing dead-

line increases, the possible improvement decreases since even without sharing a
properly equipped node will eventually go to the tasking point and then to the
sensing target. Similarly, we see that with an increasing number of nodes in the
system the baseline success probability also increases, reducing the space for pos-
sible improvement due to sharing. Figure 4(b) shows an improvement up to 70%
when using sharing across all tested conditions. We observe the same general
trend with respect to the equipped number of nodes whereby the possible im-
provement decreases with increasing node density. Similarly, the improvement
generally decreases with increasing r, since it is increasingly likely that even
without sharing a properly equipped node will visit the tasking point and sens-
ing target before the deadline. Additionally, there exists an interesting interplay
between the node density and r when r is low with a relatively small deadline
u. In these situations, we conjecture, even when the node density is high, sensor
sharing an offer a large improvement in success probability over the baseline case
since sharing takes advantage of the higher density of sharing candidates in a
shorter amount of time, while with few sensors a mobile node in the baseline
case must rely on the uncontrolled mobility over time. When the deadline u is
extended this effect disappears. In remains to be seen to what extent, if any, this
effect persists under a different mobility model.

3.4 Sensor Substitution

Here we address direct sensor substitution (deferring a study of indirect sen-
sor substitution to future work). In the context of the model we are developing
we essentially extend the notion of a suitable sensor. We model the fact that
a more sophisticated/expensive sensor can to some degree do the job of other
simpler sensors, either through direct sensing (e.g., a GPS sensor substituting
for a 3-axis accelerometer to measure road slope [26]) or inference (e.g., a CO2

sensor substituting for a magnetometer to detect car density [8]). The potential
for one sensor to substitute for another in some capacity, and the commensurate
sensed data fidelity penalty, are dependent on the specific sensors in question.
In our initial model, we abstract away these particulars and use p to denote the
probability that a given sensor can act as a direct substitute for the sensor s

specified by the application query, incorporating in p the probability that the



corresponding loss of fidelity (if any) is within bounds acceptable to the appli-
cation. A study of empirically generated correlation functions between various
common sensor types will be the subject of our future work. We write

Prob{i ≃ j} =

{

1, i = j,

p, i 6= j,
(8)

where i ≃ j denotes that sensor i is a suitable substitute for sensor j. Letting B′

denote the event that a given mobile sensor’s configuration of r sensors includes
a suitable (substitute) sensor, given a randomly chosen s ∈ S we have

Prob(B′) = Prob{i ≃ j | i = j}Prob{i = j} + Prob{i ≃ j | i 6= j}Prob{i 6= j}

= 1 ·
r

z
+ (1 − (1 − p)r)(1 −

r

z
). (9)

The modified success probability when using direct sensor substitution is
given by simply substituting Prob(B′) in for Prob(B). Comparing Equation 9
with Equation 3, it is clear that the benefit of direct sensor substitution is given
by the second term in Equation 9.

Comparison. We calculate the normalized sensing success probability improve-
ment given by sensor substitution in our model by first evaluating Equation 5
for both the baseline and sensor substitution cases, and then calculating

(Succ. prob. w/ sensor subst.) − (Succ. prob. w/ baseline)

(Succ. prob. w/ baseline)
.

We plot this success probability improvement in Figure 5(a) as a function of
the sensing deadline u for various values of the substitution probability p when
y = 20 and r = 3. In Figure 5(b) we plot the success probability improvement
as a function of the number of sensors per configuration r for various numbers
of mobile sensor nodes y in the neighborhood when p = 0.02 and u = 50. For
both plots, we fix N = 10, and z = 20.

From Figure 5(a), we see success probability improvements ranging from 25%
to 155% for relatively modest substitution probabilities, over the first 100 time
steps. As before, the gain decreases over time due to the fact that eventually a
properly equipped mobile sensor will visit the tasking point and then the sens-
ing target even when sensor substitution is not used to increase the pool of
“properly equipped” sensors. Figure 5(b) shows that an improvement over the
baseline is achieved across all tested node densities and numbers of equipped
sensors. Similar to the sensor sharing results in Section 3.3, we observe the pos-
sible improvement decreases with increasing node density, and the improvement
also decreases with increasing r, since it is increasingly likely that even without
substitution a properly equipped node will visit the tasking and sensing target
before the deadline. The feature of overlapping curves seen in Figure 4(b) is
not seen in Figure 5(b) since substitution does not involve interactions between
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nodes but rather operates independently on each node. Generally, the improve-
ment given by sensor substitution is less sensitive to node density, as indicated
by the tighter envelope of the curve ensemble, than is sensor sharing. On the
other hand, substitution is more sensitive than sharing is to r, as indicated by



the larger delta across the tested range of r (e.g., 0.28 for sensor substitution
and 0.13 for sensor sharing when y = 20).

3.5 Composing Sensor Sharing and Sensor Substitution

In the following we demonstrate the cumulative benefit of composing both sensor
sharing and sensor substitution. In this scenario, again the constraint on exactly
matching the preferred sensor is relaxed and all mobile sensor nodes reaching
the tasking point before the deadline are tasked. Sensing success occurs if a
node reaches the sensing target before the deadline, and: (i) it possesses the
preferred sensor; or (ii) it does not have the preferred sensor but it is equipped
with a suitable substitute sensor; or (iii) it does not have either the preferred or
a substitute sensor, but it is able to share sensor readings from another mobile
node at the sensing target.

We calculate the normalized sensing success probability improvement given
by sensor substitution and sharing in our model by first evaluating Equation 5
for both the baseline, then applying both sensor sharing and sensor substitution,
and calculating

(Succ. prob. w/ sharing and subst.) − (Succ. prob. w/ baseline)

(Succ. prob. w/ baseline)
.

We plot this success probability improvement in Figure 6(a) as a function of
the sensing deadline u for various values of the substitution probability p when
y = 20 and r = 3. In Figure 6(b) we plot the success probability improvement
as a function of the number of sensors per configuration r for various numbers
of mobile sensor nodes y in the neighborhood when p = 0.02 and u = 50. For
both plots, we fix N = 10, and z = 20.

From Figure 6, the benefit of enabling both sharing and substitution is clear.
In Figure 6(a), the success probability improvement over the baseline is up to
270%, far outpacing the gains given by sharing (up to 16%) or substitution (up to
160%) alone, over the same range of sensing deadlines (u) (c.f. Figures 4(a) and
5(a)). Similarly, Figure 6(b) shows a success probability improvement across the
same range of equipped sensors (r) over the baseline of up to 140% as opposed
to only 70% for sharing and 35% for substitution alone. When both techniques
are enabled, even when a node is equipped neither with the preferred sensor
nor with a suitable substitute sensor, sensor sharing can probabilistically help
to compensate, and vice versa.

4 Related Work

In the relatively new area of opportunistic sensor networking, there is little pub-
lished work specifically addressing its challenges. However, more generally, there
are alternative approaches for dealing with missing data points, both spatially
and temporally. For example, Bayesian nets and other interpolation techniques



 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 0  20  40  60  80  100

S
uc

ce
ss

 P
ro

ba
bi

lit
y 

Im
pr

ov
em

en
t

Sensing Deadline u (time steps)

p=0.10
p=0.08
p=0.06
p=0.04
p=0.02

(a) Plot of success probability versus sensing deadline u for various
values of p (substitute probability), when both sensor sharing and
direct substitution are allowed.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 2  4  6  8  10  12

S
uc

ce
ss

 P
ro

ba
bi

lit
y 

Im
pr

ov
em

en
t

Number of Equipped Sensors r

y=20
y=40
y=60
y=80

y=120
y=200

(b) Plot of success probability versus number of sensors r for various
values of y (number of mobile sensors), when both sensor sharing
and direct substitution are allowed.

Fig. 6.

can be used to infer missing data (e.g., [11]) when nodes lack access to the sens-
ing hardware they require, at the time they require it. This approach allows for
a reasonable approximation of missing data (within the accuracy of the sensor
and sensed phenomenon models), but in the end is still an approximation. In
contrast, both sensor sharing and substitution provide access to the real sen-



sor samples, if supported by opportunistic rendezvous, without requiring any
heavyweight computation or access to a central data store. Clearly, sharing and
substitution can be used in concert with approximation techniques.

While in situ sensor sharing in opportunistic sensor networks is unaddressed
in the literature, sensor sharing has been studied in the non-opportunistic net-
working setting. The authors of [19] present a mechanism enabling robot team
members to share sensor information to achieve tightly-coupled cooperative
tasks. The approach uses dynamically configured schema to route information
among preformed groups to generate different cooperative control strategies.
Conversely, our notion of sensor sharing relies only on completely opportunistic
mobile node rendezvous. Analogous to mobile nodes that can carry a limited
number of sensors, [5] explores the possibility of sensor sharing between inte-
grated wired aerospace subsystems to reduce system part count. The authors
of [15] explore the same design concept for reconfigurable sensor networking
platforms. These subsystems are statically connected and therefore do not have
to deal with the same challenges as the OSN domain we consider. When one
considers the radio as a sensor, there are many examples of sensor data being
shared between nodes as part of a system control mechanism. As an example of
this type of sharing, in [24], the authors propose a system of mobile nodes that
adjust their communication protocol parameters based on collaboratively-sensed
environmental conditions. Using their radio receivers as sensors these nodes mea-
sure and share RSSI readings of WiFi AP beacons. While this sharing is in situ
and the networking can be opportunistic, it is notable that in these cases each
of the nodes possesses the sensor (the radio). Thus, this type of sharing is really
by-design in-network information sharing, and not sensor sharing to meet an ad
hoc application query. The authors of [18] and [22] have proposed a conceptual
architecture and a prototype implementation to facilitate the sharing of sensor
data among scientists and others once the data has been harvested to the back
end. In contrast to this type of data sharing, the sensor sharing we propose takes
place between mobile nodes in situ. These two types of sharing are complemen-
tary, as sensor sharing helps to provide the data streams that can be shared on
the back end systems.

The concept of sensor substitution, though straightforward, has received lit-
tle explicit attention in the sensor networking literature. This is likely due to the
fact that to date the bulk of sensor network deployments have been engineered
to meet the needs of a single application. We believe that both sensor sharing
and sensor substitution will receive more attention as sparse, multi-application,
device-heterogeneous, mobile sensor networks gain momentum. We are moti-
vated by parallels in the health sciences domain where sensor substitution is an
area of active interest for the treatment of human disabilities arising from the
damage or decay of primary sensory systems. In [2], the authors summarize a
study on people with balance disorders that concludes that sound may substi-
tute, at least partially, for the lack of vestibular sensory information to control
postural sway in stance.



In a broader context, methods for gaining ad hoc access to required resources
(e.g., speakers, projectors, printers) have been considered by researchers in the
pervasive networking community, in support of smart environments [20] and
nomadic applications like “smart projector” and mobile “music service” [3].

5 Conclusion

While mobility in the context of OSNs enables sensing coverage at a lower deploy-
ment cost compared to an ubiquitous static sensor deployment, this uncontrolled
mobility also poses a number of challenges related to tasking, sensing and data
collection. With sensor sharing and sensor substitution we have proposed two
techniques that can be used together or alone to improve the probability of suc-
cessfully and more expediently completing these activities. The initial numerical
evaluation is encouraging, showing non-negligible gains through low complexity
techniques, warranting further study.
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