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ABSTRACT

Interconnect structures including dielectrics can be modeled by an
integral equation method using volume currents and surface charges
for the conductors, and volume polarization currents and surface
charges for the dielectrics. In this paper we describe a mesh anal-
ysis approach for computing the discretized currents in both the
conductors and the dielectrics. We then show that this fully mesh-
based formulation can be cast into a form using provably posi-
tive semidefinite matrices, making for easy application of Krylov-
subspace based model-reduction schemes to generate accurate guar-
anteed passive reduced-order models. Several printed circuit board
examples are given to demonstrate the effectiveness of the strategy.

1. INTRODUCTION
Dielectric materials are present in almost all modern electronic

circuits: from Printed Circuit Boards (PCBs), to packages, Multi-
Chips Modules (MCMs), and Integrated Circuits. Dielectrics can
significantly affect both the performance and the functionality of
electronic circuits. For instance, they can change interconnect de-
lays, as well as the positions of frequency response resonances. Ig-
noring dielectrics can therefore potentially lead to very inaccurate
results both in timing analysis tools and in signal integrity tools.

Integral equation methods have proved to be very effective tools
for analyzing on-chip and off-chip interconnect structures, and there
are several approaches for including dielectric interfaces in inte-
gral formulations. For problems which can be viewed as flat inter-
faces of infinite extent, such as multilayer printed circuit boards,
the dielectric interface conditions can be satisfied by an appropri-
ate choice of Green’s function [1, 2, 3, 4, 5]. For general shape
or finite-size dielectric bodies, it is possible to “replace” the di-
electrics with equivalent fictitious electric and/or magnetic surface
currents [6, 7]. General dielectric shapes can also be handled by a
volume integral equation (VIE) approach, in which case the polar-
ization currents are introduced in the volume of the dielectrics, and�
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charges are introduced on their surfaces [8, 9].
As the last decade has made clear, detailed electromagnetic anal-

ysis is a vastly more effective tool if it can be used to automatically
generate accurate circuit-level models of the interconnect. In this
paper we show that careful discretization of the VIE method leads
to, at least in the low frequency regime, a linear dynamical system
with positive semi-definite matrices. This positive-definite result is
important because it makes possible the straight-forward applica-
tion of the Krylov-subspace based guaranteed passive model-order
reduction (MOR) techniques [10, 11, 12, 13, 14, 15, 16, 17].

The paper is organized as follows: in Section 2 we summarize
Maxwell equations in VIE form. In Section 3, we describe the mesh
analysis formulation for dielectrics. In Section 4 we show that the
matrices resulting from the VIE full mesh analysis approach can be
cast into a positive semidefinite form, hence allowing guaranteed
passive low order models extraction. Finally, in Sections 6 and 7
we show the results of our implementation on simple examples of
interconnect structures including dielectrics.

2. BACKGROUND
Maxwell equations in Mixed Potential Integral Equation (MPIE)

form are as shown in (1)-(4), where Vc and Vd are the union of the
conductor and dielectric volumes respectively, rc and rd are vec-
tors indicating points in Vc and Vd respectively. µ is the magnetic
permeability, ε

0
is the permittivity, εr is the dielectric relative per-

mittivity, σc is the conductivity of the metal, and ω is the angular
frequency of the conductor excitation. Jc is the current density in
the conductors. Jd

✁ jω
✂
ε ✄ ε

0 ☎ E is the polarization current den-
sity in the interior of the dielectrics, and E is the electric field. The
kernel K

✂✝✆✟✞✠✆ ☎ for a full-wave formulation is a frequency dependent
function

K
✂
r1

✞
r2 ☎ ✁ e jω✡ ε0µ ☛ r1 ☞ r2 ☛✌

r1 ✄ r2

✌✎✍ (5)

When the relevant length scales are much smaller than a wave-
length, the above kernel can be approximated with the frequency
independent function

K
✂
r1

✞
r2 ☎ ✁ 1✌

r1 ✄ r2

✌ ✍ (6)

The scalar potentials φc and φd , can be related to the surface charge
ρc and ρd , on both the conductor and dielectric surfaces as shown
in (3)-(4), where Sc is the union of the conductor surfaces, Sd is the
union of the dielectric surfaces, rcs is a vector indicating a point
in Sc, and rcs is a vector indicating a point in Sd . Within each
conductor, and within each homogeneous block of dielectric,

∇
✆
Jc

✂
rc ☎ ✁ 0 (7)

∇
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✂
rd ☎ ✁ 0 (8)
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for all points rc and rd in the interior of Vc and Vd respectively. In
addition, the current normal to the conductor and dielectric surfaces
is responsible for the accumulation of surface charge,

n̂
✆
Jc

✂
rcs ☎ ✁ jωρc

✂
rcs ☎ (9)

n̂
✆
Jd

✂
rds ☎ ✁ jωρd

✂
rds ☎ (10)

where n̂ is the unit normal to Sc and Sd at the points rcs and rcs

respectively.
The main unknowns, Jc, Jd, ρc, and ρd can be approximated

by a weighted sum of a finite set of basis functions. One classi-
cal choice for the basis functions is to cover the surface of each
conductor and of each dielectric with panels, each of which hold
a constant charge density. To model current flow, the interiors of
all conductors and dielectrics are divided into a 3-D grid of fila-

ments. Fig. 3 shows an example of the 3D volume discretization
of a dielectric parallelepiped. Each filament carries a constant cur-
rent. Other basis functions choices are possible for the interior of
the conductors [18].

A Galerkin method [19] can be used to transform the Mixed Po-
tentials Integral Equations (1)-(4) into an algebraic form✘✙✙✚

R
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s
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φd

✛ ✜✢
(11)

where Ic, Id , qc and qd are vectors of basis function weights for
the conductor currents, dielectric polarization currents, conductor
charges and dielectric charges respectively. Vc, Vd , φC and φd are
the vectors generated by inner products of the basis functions with
the potential gradient and with the potential itself. The resistance
matrix R, the inductance matrix L and the coefficients of potential
matrix P are all derived directly from the Galerkin condition [19],

R ✁ ✑
Rc 0
0 0 ✕ ✞ (12)

L ✁ ✑
Lcc Lcd

Ldc Ldd
✕ ✞ (13)

P ✁ ✑
Pcc Pcd

Pdc Pdd
✕ ✍ (14)

L and P are frequency dependent when using a full-wave kernel as
in (5), and frequency independent when using a quasi-static ker-
nel as in (6). Matrix Pol in (11) is a diagonal matrix carrying the
polarization coefficients

Poli ✣ i ✁ li

Ai

✂
ε ✄ ε

0 ☎ (15)

where li and Ai are the length and the cross-sectional area of dielec-
tric filament i respectively.

3. THE MESH FORMULATION
Imposing charge conservation (9)-(10) and current conservation

(7)-(8) on surface and on interior of both conductors and dielectrics

makes it possible to use a mesh analysis approach. As a summary,
a complete mesh formulation for structures including both conduc-
tors and dielectrics, after the Galerkin transformation can be written
simply as:

M Zcd MT Im
✁ Vms

(16)

where Im are the unknown mesh currents, Vms
is the vector of known

mesh voltage sources, non zero only on the rows associated with the
external circuit terminals. Zcd is the Galerkin impedance matrix

Zcd
✁ ✘✚ R

✏
sL
✏ 1

s

✑
0 0
0 Pol ✕ 0

0 1
s
P

✛✢ (17)

M is a very sparse mesh analysis matrix,

M ✁✥✤M f cMdMpcMpd ✦ ✞ (18)

where submatrices M f c and Mpc are the KVL’s mesh matrices for
the conductors filaments and panels as described in [20]. In a very
similar way to [20], we can construct also M f d and Mpd , the KVL’s
mesh matrices for the dielectric filaments and panels. In fact, as for
the conductors, dielectric panel charges can be treated as displace-
ment currents flowing on circuit branches to the node at infinity. A
set of independent meshes for the three dimensional discretization
of the block of dielectric can be found using a minimum spanning
tree.

4. PASSIVE MODEL ORDER REDUCTION
In this Section, we will limit ourself to the usage of the quasi-

static kernel in (6) which produces frequency independent L and
P matrices in (13) and (14). The technique to handle dielectrics
in [21] uses a similar quasi-static assumption, and seems more ad-
vantageous requiring fewer unknowns. However, not only mag-
netic coupling between conductive and polarization currents are
neglected by that formulation, but also the matrices used in that
formulation are not in the form required for Krylov-subspace based
passive model-reduction schemes [10]. In this Section, we show in-
stead an easy way to cast our mesh analysis approach into a form
suitable for passive reduced order modeling.

Let us choose as state vector for a linear system representation:

x ✁★✧ Im Qcs Qds Qdv ✩ T (20)

In view of this choice, we can rewrite (16) as shown in (19) on next
page, where ✤Qcs Qds Qdv ✦ T ✁✥✤Mpc Mpd M f d ✦ T Im

s
✍ (21)



✤M f c M f d ✦ ✤R ✏ sL ✦ ✤M f c M f d ✦ T Im
✏ ✤Mpc Mpd ✦ P ✤Qcs Qds ✦ T ✏

M f d
✤Pol ✦ Qdv

✁ Vms
(19)

Or finally in linear system terms:

L̂
dx

dt
✁ ✄ R̂x

✂
t ☎ ✏ Bu

✂
t ☎ (22)

y
✂
t ☎ ✁ Cx

✂
t ☎ (23)

where matrices L̂ and R̂ are defined as

L̂ ✪ ✫✬✮✭M f c M f d ✯ L ✭M f c M f d ✯ T 0 0

0 PT 0

0 0 ✭Pol ✯ T ✰✱ (24)

R̂ ✪ ✫✬ ✭M f cM f d ✯ R ✭M f c M f d ✯ T ✭MpcMpd ✯ P M f d ✭Pol ✯✲ PT ✭Mpc Mpd ✯ T 0 0✲ ✭Pol ✯ T MT
f d 0 0 ✰✱ (25)

Vector u
✂
t ☎ contains the excitation voltage sources, Bu

✂
t ☎ ✁ Vms.

Vector y
✂
t ☎ contains the observed output currents, derived through

matrix C from the mesh currents Im in the state vector x
✂
t ☎ .

THEOREM 1. Matrices L̂ and R̂ in (24) and (25) are positive

semidefinite.

PROOF. The polarization matrix ✤Pol ✦ is diagonal with positive
coefficients, hence it is positive semidefinite. When using a Galerkin
technique [19], the coefficient of potential matrix P in (14) and the
inductance matrix L in (13), are both positive semidefinite. The
matrix ✤M f c M f d ✦ L ✤M f c M f d ✦ T is then also positive semidefinite.

Since all the three blocks of the block-diagonal matrix L̂ in (24) are
positive semidefinite, L̂ is positive semidefinite. This concludes the
first part of the proof.

To prove that R̂ in (25) is positive semidefinite let us calculate:

R̂
✏

R̂T ✁ ✘✚
2 ✤M f c M f d ✦ R ✤M f c M f d ✦ T 0 0

0 0 0
0 0 0

✛✢ (26)

The resistance matrix R is positive semidefinite, hence the sub-
matrix 2 ✤M f c M f d ✦ R ✤M f c M f d ✦ T is positive semidefinite and so is

R̂
✏

R̂T . Since xT
✂
R̂
✏

R̂T ☎ x ✁ 2xT R̂x, we can then finally conclude
that R̂ is positive semidefinite.

OBSERVATION 1. When modeling the input impedances and

the transfer functions of a 3D structure, we apply input voltages

at some ports, and we measure the resulting currents on the same

set of ports, hence we are choosing C ✁ BT in eq (22) and (23).

OBSERVATION 2. From Theorem 1 and from Observation 1,

one can conclude that the formulation in (22)-(25) satisfies to the

conditions for guaranteed passive Krylov subspace based model

reduction in [10].

5. SUMMARY OF OUR PROCEDURE
We summarize here briefly for the convenience of the reader our

entire proposed procedure in its final form:

1. First, we discretize both the volumes and the surfaces of the
conductors and dielectrics. An example is shown in Fig. 3.

2. We use a standard Galerkin technique [19] to construct ma-
trices R

✞
L
✞
P
✞
Pol in eq.(12) to (15).

3. A mesh analysis approach is used to construct the sparse
KVL’s matrices M f c

✞
M f d

✞
Mpc

✞
and Mpd in (18). More de-

tails on how to handle conductors are in [20]. For the di-
electrics, we use a minimum spanning tree to find a set of
independent meshes.

4. A Krylov subspace based model reduction algorithm such
as [10] is then used to produce reduced order linear sys-
tem models. At each step of the algorithm the quantity ✤ R̂ ✏
s0L̂ ✦ ☞ 1L̂ v, could be computed using fast matrix vector prod-
ucts and Krylov subspace iterative methods.

5. The reduced order model is then used to obtain a plot of the
frequency response as in Fig. 1, and Fig. 4 or to produce an
equivalent SPICE circuit for a time domain simulation in-
cluding the non-linear circuitry.

The overall complexity of this procedure is O
✂
Nm Nlog

✂
N ☎✠☎ , where

Nm is the total number of moments matched by the model reduction
algorithm at all frequency expansion points. N is the size of the
original full linear system model in (22)-(23), or about the number
of basis functions used in the volume and surface discretization.

6. A TRANSMISSION LINE EXAMPLE
Two PCB traces are considered in this example in a transmission

line configuration. Traces are located on opposite sides of a dielec-
tric substrate, and shorted at one end. Fig 1 shows the frequency
response of such transmission line structure. In Fig 1 we also show
the response of the calculated reduced order model.
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Figure 1: Reduce order modeling of a shorted PCB transmis-

sion line. Traces’ dimensions are 250µm x 35µm x 30cm. A

100µm thick dielectric layer (εr ✳ 4) is present between the two

traces. The continuous line is the admittance vs. frequency of

the calculated reduced model. The circles are the response of

the original system.

At the frequencies where the frequency independent kernel in (6)
yields accurate results, it may also be reasonable to neglect mag-
netic coupling between conductors and dielectric polarization cur-
rents. However there are cases where even with a non-fullwave



kernel one might observe some effects of the magnetic coupling
between✴ dielectric polarization currents and conductors. One of
such cases is illustrated in Fig. 2. A via is located in proximity of
the shorted PCB transmission line. The line is then excited at a fre-
quency close to the first quarter-wavelength resonance. In this situ-
ation most of the current closes its path through the dielectric layer
in the form of polarization currents. If a nearby via corresponds
to a quiet victim line, some coupling can be observed between the
vertical polarization currents and the via.

Figure 2: Via located near a PCB transmission line. In this

picture we do not show the dielectric layer which is located be-

tween the two dark PCB transmission line traces. Shadings

correspond to current density amplitudes. On top we show

the current densities corresponding to the case where magnetic

coupling between polarization currents and conductors is ac-

counted for. On the bottom we show the same example but

setting Lcd
✁ 0, Ldc

✁ 0 and Ldd
✁ 0 in (13) which corresponds

to neglecting magnetic coupling between polarization currents

and conductors.

7. MCM INTERCONNECT EXAMPLE
In a second example, we have applied our technique to analyzing

two wires of an interconnect bus on an Multi-Chip Module (MCM),
as shown in Fig. 3. A dielectric layer (εr

✁ 4) is present underneath
the traces and the chips. In Fig. 4 we show the frequency response
of the two interconnects when shorted on one side and driven on
the other. We show the frequency response with and without the
dielectric substrate. A significant difference in the resonance posi-
tion can be observed. Fig. 3 shows the polarization volume currents
at the first resonance f ✁ 3 GHz. In Fig. 4 we compare the reduced

Figure 3: Two traces part of an MCM interconnect system (fig-

ure above). A dielectric layer εr
✁ 4 is present underneath the

traces and the chips. The figure below shows the volume po-

larization currents inside the dielectric layer at the 3 GHz res-

onance. For visualization purposes, the axes in this picture are

not “to-scale”. Traces are 2cm long, 4mm far apart, 250µm

wide and 40µm thick.

order model to the full model for the case when the dielectric sub-
strate is present. The reduced order model has been built match-
ing four moments around each of the following expansion points:
s1

✁ j2π
✆
100 KHz, s2

✁ j2π
✆
3 GHz, and s3

✁ j2π
✆
6 GHz. In

order to include also the point s0
✁ 0 among the other expansion

points, a non-singular R̂ in (25) would be necessary. It can been
shown [22] that a matrix of the form such as in (25) is non-singular
under the condition that there are no cut-sets of only capacitors.
Unfortunately, each node in our dielectric discretization is such a
cut-set when dielectric losses are negligible. Therefore, for lossless
dielectrics the point s0

✁ 0 cannot be included in the multipoint ex-
pansion algorithm, and a non-zero low frequency expansion point
is used instead. From our experiments, we have observed that this
expansion point restriction is not interfering with accuracy. For in-
stance in this particular example, the zero frequency behavior of the
structure has been accurately captured as shown in Fig. 5, which is
a magnified view of the low frequency part of the plot in Fig. 4,

8. CONCLUSIONS
In this paper we described applying the mesh analysis approach

to solving for the discretized currents and charges in a VIE formu-
lation. We showed that the approach leads to a system with prov-
ably positive semidefinite matrices, making for easy application of
Krylov-subspace based model-reduction schemes to generate ac-
curate guaranteed passive reduced-order models. Several printed
circuit board examples demonstrated the effectiveness of the strat-
egy.

Arguably, it is tempting to assume that the VIE approach is a
step backward, as it involves discretizing volumes instead of sur-
faces. However, volume integral equation methods are used for
magnetic analysis of conductor problems, because conductors oc-
cupy a vanishingly small region of the problem domain. The same
vanishingly small occupancy argument can be made for dielectrics
as well. In addition, since polarization currents are not “outputs”, it
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Figure 4: Admittance vs. frequency for the two traces in Fig. 3.
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Figure 5: Magnified view of the low frequency part of the plot

in Fig. 4, to verify that the reduced model (continuous line) cap-

tures correctly the DC behavior of the original system (circles).

might be possible to align them with a regular grid. Such an align-
ment might improve the performance of fast solvers, such as the
Conjugate Gradient FFT (CGFFT) [23] or Precorrected-FFT [24]
methods. This is an important consideration since such solvers are
required when using any integral formulation on models with com-
plicated geometries.
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