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Abstract  

In this paper techniques for scheduling additional train services (SATS) are considered 

as is train scheduling involving general time window constraints, fixed operations, 

maintenance activities and periods of section unavailability. The SATS problem is important 

because additional services must often be given access to the railway and subsequently 

integrated into current timetables.  The SATS problem therefore considers the competition for 

railway infrastructure between new services and existing services belonging to the same or 

different operators. The SATS problem is characterised as a hybrid job shop scheduling 

problem with time window constraints. To solve this problem constructive algorithm and 

meta-heuristic scheduling techniques that operate upon a disjunctive graph model of train 

operations are utilised.  From numerical investigations the proposed framework and 

associated techniques are tested and shown to be effective.  

 

Keywords: Train scheduling, job shops, time windows, meta-heuristics. 

 

 

 

1. Introduction 

 

This paper considers how to alter an existing train timetable to include additional train 

services. This problem is of considerable difficulty and must be performed in practice. The 

abbreviation SATS has been coined to describe this problem and is used throughout this 

paper.  SATS is both a scheduling and rescheduling problem. For example the additional train 

services are not present in the original timetable and are scheduled for the first time while the 

existing services are either left untouched or are rescheduled. It should be noted that the 

original schedule in which the additional trains are to be inserted, is expected to be feasible, 

but this is not a necessity. The SATS problem is also viewed as a rescheduling problem 

because the determination of a satisfactory timetable is a process of iterative refinement. The 

construction of a timetable “in one go” is unlikely due to the negotiation process between the 

different customers who are requesting rail access. SATS however is not a “reactive” or 

“dynamic” scheduling problem in the traditional sense since the insertion of additional trains 

is planned well in advance of when the schedule must be commenced. 

The primary motivation for this research occurs as a result of the additional demands 

that are being placed upon railway operators in Australia and elsewhere to provide third party 

usage of infrastructure. An important aspect of this problem is therefore the competition 

amongst new services and or with existing services for railway infrastructure. The railway 

operator / planner must decide where competition is permitted and where it is restricted. Put 

in another way the scheduling of the additional train services must be performed so that 

disruptions to existing services are minimised or similarly kept within acceptable levels. If 

this distinction is not made then a new timetable that greatly differs from the original could be 

obtained. This is a valid though different problem again and has already been significantly 

addressed for example in our previous work. 
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What an acceptable level of disruption is however is fairly subjective. It should also be 

mentioned that in some circumstances some train services must be strictly fixed and can 

suffer no disruption. The level of acceptable disruption also widely differs according to the 

train service type. Passenger trains for example are usually subject to very strict timing. This 

timing is necessary because of the type of path these services take (i.e. through more heavily 

utilised city networks) and the regular frequency of the services (i.e. same service every day, 

or several times a day). Similarly passenger’s tolerance to delays and alterations is quite 

limited. Freight train services on the other hand do not usually have strict timings because 

they are infrequent services. Similarly the services travel longer distances on less utilised 

corridors at off peak times. These services are also inherently slower because the locomotives 

are older and less well maintained and the weight of the goods and the length of the trains are 

large. The journey time is therefore inherently more unpredictable. 

Another important consideration is the utilisation level of the original timetable and the 

time frame. The utilisation level of the existing timetable is fairly well known. For example 

by visualisation alone one can tell whether the system is lightly or heavily utilised. 

Analytically one can tell by counting the number of train paths and comparing this number 

with some measure of capacity (see Burdett and Kozan 2006). Similarly periods of idle time 

may be used to determine the extent of the utilisation. Adding a large number of trains to a 

timetable that heavily utilises the system will ultimately be unsuccessful if minimal 

disruptions are desired. A relaxation of certain conditions (and tolerances) will be necessary 

in practice thus promoting some type of iterative process. Furthermore adding a small number 

of trains to a timetable that heavily under utilises the system will be trivial. Adding trains at 

incorrect periods of time or having train paths overlap different periods is similarly 

undesirable. With these issues in mind the following process is proposed for solving the 

SATS problem: 

 

Phase 1 (FX strategy): Fix all previously scheduled services. Apply constructive algorithms 

to add new train services and then apply meta-heuristics to refine (improve) the solution 

further or to remove infeasibilities.  

 

Phase 2 (SFX strategy): Selectively fix and unfix some previously scheduled services and or 

operations.  Reapply meta-heuristics to refine the solution 

 

Phase 3 (UFX strategy): Unfix all previously scheduled services. Reapply meta-heuristics to 

refine the solution. 

 

The SATS process does not necessarily have to be applied in the order shown above nor 

is every phase required. For example when track infrastructure (capacity) is already heavily 

utilised, new trains can only be inserted by disrupting existing services. Phase 1 will be 

inappropriate and possibly even phase 2. When capacity utilisation is light then phase 1 

should be applied. Phase 2 may be applied multiple times with different operations being 

fixed and unfixed between applications. In the event that phase 1 and 2 are unsuccessful phase 

3 is the final resort where any existing service may be altered. In each phase additional train 

services may be added using a constructive algorithm however it is suggested that the 

constructive algorithm be applied in the first stage only. In later phases meta-heuristics should 

only be applied. 

The purpose of the remainder of is paper is to generalise several different train 

scheduling problems and to demonstrate (after suitable extensions) the effectiveness of the 

hybrid job shop scheduling framework, constructive algorithm and simulated annealing meta-

heuristic approach of Burdett and Kozan (2008) for solving SATS related problems. The 
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approaches developed in Burdett and Kozan (2008) have been shown to be very effective for 

creating a new train schedule from scratch so it is evident that they should be applied to solve 

the related SATS problem. It should be noted that the constructive algorithm is already able to 

insert additional train services. What it does not do (or has not been tested to do) until now is 

obtain a new schedule that minimises disruption to existing services and fixes current 

services.  

This paper is needed because no other paper has explicitly addressed this problem even 

though, as our review of the literature will show, some past approaches could be modified / 

adapted to solve it. In addition this paper utilises a job shop scheduling framework and 

disjunctive graph model of train operations for solving SATS problems and this is still a 

relatively new avenue for railway problems. The only other competing disjunctive graph 

model of train operations is that of D’Ariano et al (2007) and Mazzarello and Ottaviani 

(2007) which are both based upon the alternative graph representation of Mascis and 

Pacciarelli (2002). 

The format of the paper in the following sections is as follows. In section 2 the related 

research is reviewed. The main details of our scheduling approach are then described in 

section 3. This includes a disjunctive graph model of train operations, a constructive 

algorithm and a Simulated Annealing approach. Extensions involving time windows are then 

presented. Following this is an approach to fix operations and enforce periods of machine 

unavailability. In section 4 a numerical investigation is described and the results are 

summarised. The conclusion and future research directions are lastly presented in section 5. 

 

 

2. Related Research 

 

The SATS problem is related to a variety of topics in the literature. The first and 

foremost is railway transportation. Train scheduling, rescheduling and routing problems have 

had a great deal of attention in recent years. Burdett and Kozan (2008) may for example be 

consulted for a list of foremost papers published between 1990 and 2005. Since then we have 

observed the following papers: Dessouky et al (2006), Carey and Crawford (2007), D’Ariano 

et al (2007), Goverde (2007), Mazzarello and Ottaviani (2007), Rodriguez (2007) and 

D’Ariano et al (2008). Dessouky (2006) applied a branch and bound procedure to determine 

the optimal dispatching times for trains in complex rail networks. Though effective on a case 

study it is reported that effective heuristics are necessary for more realistic sized problems. 

Carey and Crawford (2007) considered railway networks consisting of complex stations 

linked by multiple one way lines in each direction and developed heuristic algorithms to assist 

in the task of finding and resolving conflicts in draft train schedules. D’Ariano et al (2007) 

considered the creation of a conflict free timetable after train operations are perturbed. The 

scheduling problem is viewed as a job shop with no store constraints and modelled by an 

alternative graph formulation.  A truncated branch and bound approach is used to find a 

conflict free schedule. Goverde (2007) introduced a stability theory to analyse timetable 

sensitivity and robustness to delays. A linear system description of a railway timetable in 

max-plus algebra was used. Mazzarello and Ottaviani (2007) developed an advanced traffic 

management system for optimising traffic movement in large railway networks. The system 

consists of a train scheduling and routing module (CDR) and a speed regulation module 

(SPG). The CDR system is based upon an alternative graph representation of train movements 

and is used to generate a conflict free schedule. Rodriquez (2007) considered the routing and 

scheduling of trains through a junction and proposed a constraint programming model. 

D’Ariano et al (2008) considered the concept of flexible timetables as a policy to improve 

punctuality. A detailed model for conflict resolution based upon an alternative graph 
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formulation was proposed and solved by three greedy heuristics and a branch and bound 

algorithm. 

 To our knowledge the SATS problem has had very little “direct” attention in the above 

mentioned literature. The only paper to our knowledge is Cacchiani et al (2008). In that paper 

the insertion of freight trains into an existing timetable of passenger services was considered. 

A heuristic algorithm based on a lagrangian relaxation of an ILP model was proposed. 

 There are however indications that some of the previous models and techniques could 

be modified and adapted to solve the SATS problem. 

For example Carey (1994) formulated a general purpose MILP model for train 

scheduling. Costs or penalties associated with trains departing from or arriving at stations at 

times other than those which are desired can be added to the objective function provided that 

they are linear. This feature allows several different train scheduling problems to be 

characterised and solved; this includes the SATS problem. Since this model is too large and 

complex to be solved a strategy was proposed that paths the trains one at a time until all trains 

are pathed once, and if necessary to iteratively re-path trains until an acceptable solution is 

found. Each sub problem is solved using branch and bound and is constructed from the 

original model by holding fixed the sequence order (but not the timing) of all already pathed 

trains. The main drawback of this approach is that it is myopic and it does not explicitly 

differentiate between existing services and new services. In the SATS problem not all trains 

have to be added to the schedule, some are already there. It may however be necessary for 

existing services to be rescheduled in later passes of that approach as changes are forced upon 

them from the insertion of new services; this needs to be further investigated. In addition it 

may not be allowable for the timings of certain trains to be altered; this requires a 

modification to the sub problem model.  

Zhou and Zhong (2005) have also taken a similar approach. They considered the 

generation of a timetable for double track railway applications with multiple objectives. By 

applying two practical priority rules the integer programming model for the second objective 

criterion can be decomposed into a number of single train sub problems which are 

sequentially solved using branch and bound. The approach could in theory be adapted for the 

SATS problem too. The model would however need to be modified to include suitable time 

window constraints as they are not currently present. The priority rules used in that paper are 

rather simplistic and some new priority rules would need to be developed for SATS problems. 

The approach is also somewhat unsuitable because the departure time of trains from their 

origin are determined by a preliminary model whose goals are different to that of SATS 

problems.  

Carey and Carville (2003) focused upon the adjustment (revision) of a draft timetable 

that contains various types of conflict for a single multi platform station with multiple in and 

out lines typical of those found in Europe. This problem is equivalent to the dispatching 

problem that considers how to restore the feasibility of a schedule after a disturbance. 

Methods for finding and resolving conflicts, enforcing headway constraints and assigning 

platforms to trains were formalised. The advocated heuristic approach considers one train at a 

time. Provisional or final arrival, departure time and platform are assigned. The train is then 

fixed temporarily or permanently. The algorithm can cycle back to reconsider previously 

fixed trains and seek further improvements. Some trains may even be fixed before the 

algorithm starts. Minimising deviations from desired times may be taken into account by 

using appropriate cost functions like those defined in Carey (1994).  This approach could in 

theory be adapted for the SATS problem however it is customised for a single complex 

railway station and is more elaborate than is necessary for the SATS scenarios considered in 

this paper. For example the conflict resolution and platform assignment aspects are 

unnecessary. The approach is somewhat unsatisfactory because the draft timetable includes all 
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the trains; it does not consider the alternative times that the new train services can enter the 

railway. In other words the creation of a draft timetable is not considered and would need to 

be in order for it to be viable for the SATS problem. 

The SATS problem is also related to job shop and other scheduling problems, 

particularly those with due dates and earliness-tardiness criteria. Earliness and tardiness is of 

particular importance in this paper because existing train services should be scheduled to 

arrive and depart on time and new services should satisfy preferred time windows if they have 

been defined. The SATS problem however is more difficult since every operation may have 

due date conditions imposed as opposed to jobs. Due date / tardiness problems have been 

addressed greatly in the literature and on a regular basis. Recent examples included Zesheng 

et al (1996), Jain and Elmaraghy (1997), Valls et al (1998), Asano and Ohta (2002), Sourd 

(2005a,b), Viswanath et al (2006), Hendel and Sourd (2006). Zesheng et al (1996) considered 

a job shop environment and applied a simulated annealing heuristic integrated with an 

enhanced exchange heuristic. Jain and Elmaraghy (1997) applied genetic algorithms with a 

reduced surrogate crossover and adaptive mutation mechanism to schedule jobs in flexible 

manufacturing systems.  Valls et al (1998) applied tabu search to a generalised job shop 

scheduling problem with parallel machines, job batches, setup times, release dates and due 

dates.  The proposed tabu search algorithm uses a sophisticated set of moves aimed at 

aggressively resolving violated constraints. Asano and Ohta (2002) considered the 

minimisation of total weighted tardiness in job shop scheduling problem with job specific due 

dates and delay penalties. The problem was solved with a modified shifting bottleneck 

approach. Viswanath et al (2006) studied the problem of hierarchical minimisation of 

makespan and completion time variance (CTV) in static job shops.  This problem has 

applications in many industries where it is necessary to provide jobs the same treatment in 

minimum time or similarly to keep the system utilisation at high levels while achieving 

fairness to individual jobs. This paper is of particular relevance to solving the SATS problem 

in which the fair and impartial access of trains to railway infrastructure is a requirement. Two 

simulated annealing heuristics were presented and a lower bound for the CTV. Forward and 

backward scheduling strategies were compared on 82 benchmark problems. Sourd (2005a and 

b) considered a single machine scheduling problem with general completion time costs and 

idle period penalties and costs. A dynamic programming approach was developed to schedule 

sequenced jobs. Even though the sequence is given the problem is not trivial since the 

optimisation criterion is irregular. More specifically the earliness and tardiness costs are not 

linear on the whole time horizon. This occurs in practice for example when several “good” 

time periods exist but have “bad” time periods in between. Hendel and Sourd (2006) 

considered a one-machine scheduling problem where the objective is the minimisation of 

earliness-tardiness costs.  A local search approach was developed that must deal with job 

interchanges in the sequence and the timing of sequenced jobs. The paper shows that there are 

more efficient methods to find the best solution in these interchange based neighbourhood.  

The problem of explicitly scheduling additional jobs has had some attention in the 

scheduling literature. Hall and Potts (2004) is the most recent paper to our knowledge. This 

paper considered the rescheduling for new orders and was motivated by incidents occurring in 

manufacturing environments. The re-scheduling must take into account the effect of 

disruption on a previously obtained optimal schedule. The effect of disruption was modelled 

as either a constraint or as an additional component in the objective. This paper mainly 

provides an investigation of the theoretical aspects of the problem and is fairly limited from 

an application point of view. Furthermore only one machine problems are considered. More 

complex flow shop and job shop environments that are applicable to train scheduling are not 

addressed. Due dates are only given to job completion.  
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The SATS problem contains aspects of job shop scheduling with periods of machine 

non-availability. Three recent references associated with this topic are Schmidt (2000), 

Aggoune (2004) and Liao et al (2005). The first paper provided a review of results associated 

with deterministic scheduling problems where machines are not continuously available for 

processing. More specifically one machine, parallel machine and flow shop environments 

were discussed. The general conclusion of this paper was that problems with machine 

availability constraints are very important and will attract significant attention by researchers. 

Positive results occurred only for single machine and parallel machine problems. Flow shop, 

open shop and job shop systems are very challenging and will require enumerative and 

heuristic algorithms in order to be solved. The second paper specifically addressed flow shop 

scheduling with availability constraints (FSPAC). This paper stated that only a small number 

of methods exist in the literature for solving problems with at most two machines and few use 

a non pre-emption constraint. Therefore two variants of the non pre-emptive FSPAC were 

considered. In the first case maintenance tasks were strictly fixed and in the second time 

windows were imposed. An important condition that should be noted is that an operation is 

started only if its execution can be finished before the machine becomes unavailable. When 

scheduling trains however the non pre-emption constraint of that paper is invalid. A valid 

replacement condition is that an operation can only be started if its departure time occurs 

before the machine becomes unavailable. This requirement is due to the blocking conditions 

inherent in train scheduling problems that are not present in many manufacturing problems. A 

schedule generator that builds feasible solutions given a priority rule between jobs was 

developed. To optimise the input sequence of the schedule generator a heuristic algorithm 

based upon a genetic algorithm and tabu search was proposed to solve the makespan 

minimisation problem. The introduction of time windows (i.e. a relaxation of the fixed 

maintenance times) led to superior makespan solutions. The third paper considered a two 

parallel machine problem where one machine is not available during a time period. The period 

is fixed and known in advance. One machine however is always available. Both the pre-

emption and non pre-emption cases were investigated. The problem was partitioned into four 

sub problems, each of which is solved by an algorithm based upon a previous approach 

labelled TMO. TMO uses lexicographic search to derive an optimal schedule. TMO uses 

exhaustive search but eliminates lots of unnecessary situations based upon some powerful 

rules.  

 

 

3. The Scheduling Approach 

 

At each stage of the SATS solution process a scheduling instance that is 

computationally intractable (i.e. NP-hard) must be solved. This scheduling problem can be 

modelled and solved in a variety of ways. In this paper the hybrid job shop framework of 

Burdett and Kozan (2008) is extended for this purpose. 

 

3.1. The Disjunctive Graph Model 

 

A critical aspect of the sequencing approach is the representation of trains as jobs, 

sections as machines, and train movements across sections and other section occupancies as 

operations. Index i, j and k are used to signify train, section and stage respectively. The kth 

operation (i.e. stage) of train i  is denoted as ,i ko and has a planned sectional running time 

(occupancy time) of ,i kp  on section ,i km , a planned dwell of ,i k  at the section boundary and  

entry and exit times , , and i k i kentry exit .  Each train i has iK  operations. The length of a train 
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and section is denoted by il  and jl  . The time it takes train i to exit the kth section after the 

front has exited is denoted by ,i klag . The extent of this lag depends on the length of the train 

and the speed it is travelling at when it departs the section. The stage and position of the front 

when the rear is departing the kth section in the route is also denoted by 

, , and i k i kfstage fpos respectively and can be calculated from the railway topography. Passing 

loops that separate adjacent sections of rail and allow trains to pass each other are represented 

as capacitated buffers. The capacity of a buffer is typically two trains.   

On every section there is a sequence of train movements that must be identified (i.e. this 

is the solution). This is because only one train may be present on any section at any moment 

in time. A disjunctive graph model of train operations allows trains to be correctly scheduled 

from the given sequences and is an essential element of the hybrid job shop scheduling 

framework. The disjunctive graph has the following components: 
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In (1) each train operation has an associated node and node weight; V is the set of nodes and 

also includes a dummy source and sink node so and si respectively. The conjunctive (fixed) 

arc set A is constructed in (2); each three tuple represents an arc between two nodes with the 

given arc weight. The release time of train i and train operation ,i ko  is denoted by 

, and i i krlt rlt  respectively. Release times are incorporated for additional timing constraints 

that may be imposed by planners.  The set of disjunctive arcs is created by expression (3)-(5). 

Equation (3) states that there are disjunctive arcs associated with every section and for each 

pair of train operations that traverse this section. For example for each pair of train operations 

 , ,,i k i ko o    that use this section there is a pair of arcs as defined by 1e  and 2e , one for the 

precedence , ,i k i ko o    and one for the precedence , ,i k i ko o   respectively. As this problem is 

not a classical job shop the disjunctive arcs are not  , ,,i k i ko o    and  , ,,i k i ko o  . The length of 

trains is included and the arcs must start from other operation nodes namely *,i k
o  and *,i k

o


 

which are later operations of train i and i  respectively. The arc weights in essence project 

backwards from these later nodes and take into account the processing requirements that 

occur between  *, ,
,i k i k

o o and  *, ,
,i k i k

o o  
 respectively (where *k  is different in each). It 
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should be noted that 
, ,,i k i ko os

 
 and 

, ,,i k i ko os
 

are the headway (setup) times between two train 

operations. 

A valid sequence is manifested as a selection of disjunctive arcs from set E that do not 

cause a cycle in the disjunctive graph. To obtain a schedule of entry and exit times a non 

delay scheduling policy is assumed. That is, unforced idle time is not allowed and train 

operations must be scheduled as early as possible. In other words a train should immediately 

enter a section if that section is free.  The longest path algorithm is applied to the disjunctive 

graph to accomplish this. The result is longest path values ,i klpv  for each operation. The 

following equations must be evaluated afterwards or else applied during the longest path 

algorithm to explicitly obtain the schedule. 
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The alternative graph models of train operations mentioned in D’Ariano et al (2007, 2008), 

and Mazzarello and Ottaviani (2007) are similar to the above model in concept but have 

several important differences.  The first is that our model is an activity on node approach 

while theirs is an activity on arc. Consequently one additional node is needed per train in their 

approach. In addition our conjunctive arcs have a weight of zero and our disjunctive arc 

weights are non zero. In their approach the opposite occurs. The disjunctive arcs between 

pairs of operations always originate from the immediate successor operation in their model. In 

our approach the immediate successor operation may not be sufficient if the train length 

exceeds the length of the associated section. In that case our disjunctive arcs originate from a 

later successor operation.  

Our approach takes into account planned dwell time and its effect on other train 

operations in the form of additional time lag. Dwell time is stored as additional node weight 

and is also used to compute disjunctive arc weights. In their model planned dwell time is 

manifested on conjunctive arcs. In addition two nodes are needed for each location where 

dwell time occurs. This is a second source of additional nodes and results in roughly one extra 

node for each planned dwell. 

Our model has been designed as a fixed speed model but not a constant speed model. In 

other words train speeds may differ on each section. The alternative graph model however 

may treat the processing time as a variable, i.e. the train speed may be selected as long as it 

does not exceed some maximum amount. This is achieved by adding a fixed reverse arc and 

ensuring that a positive length cycle does not occur. 

Passing facilities are modelled differently in our approach. We treat passing facilities as 

capacitated buffers in order to remove routing decisions from the problem. In so doing we 

need to compute buffer occupancy levels and ensure that they do not exceed the capacity of 

the passing loop infrastructure and cause buffer occupancy violations (BOV) in final 

solutions. Buffer occupancy is determined after the disjunctive graph has been evaluated and 

decoded. In particular the operation entry and exit times may be used as they provide an 
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interval of machine occupancy. The original overlapping intervals of machine occupancy are 

split into separate non-overlapping intervals, each with its own integer parameter signifying 

the number of occupants. If the number of occupants of any non-overlapping interval exceeds 

the capacity of the buffer, then a buffer occupancy violation (BOV) has been found. Buffer 

occupancy violations may be temporarily permitted and are penalised in the objective 

function. 

 

3.2. Schedule Construction and Refinement  

  

In order to obtain an optimal schedule for a given objective criteria, a constructive 

algorithm (CA) and a simulated annealing (SA) approach from Burdett and Kozan (2008) are 

utilised. 

 The purpose of the constructive algorithm is to provide a robust and substantial search 

capability as apposed to the alternative of obtaining any solution as quick as possible using 

dispatching rules. The constructive algorithm builds the sequences and hence the schedule 

train by train and train operation by train operation using insertion and backtracking 

mechanisms. The order that trains are inserted is typically from largest to smallest total transit 

time (processing time). At each step an operation is trialled in various positions of a partial 

sequence and evaluated for merit. The best position is chosen and the insertion is made 

permanent. If each position is infeasible and results in a cycle then backtracking of a previous 

move(s) is performed. Moves that cause cycles are recorded and not made again. 

An existing schedule is improved using a simulated annealing approach. Our simulated 

annealing approach is quite conventional in structure; a more complex variant was 

unnecessary but could be investigated as a source of future research. For example there is an 

outer temperature loop which is terminated when the number of temperature steps reaches a 

predefined limit and an inner loop which is terminated after a given number of state changes 

at the given temperature. A state change is accepted using the standard metropolis function. 

Lastly the temperature is altered at the end of the inner loop. The basic geometric cooling 

schedule was used and the initial temperature was chosen using past experience and 

experimentation.  

The solution which is a collection of operation sequences (i.e. one for each non buffer 

machine) may only be realistically and efficiently perturbed in a small number of ways. For 

example operations may be individually shifted, pairs of operations may be interchanged 

(exchanged), or a sub sequence of operations may be reversed. Entire trains may also be 

removed and re-inserted using the constructive algorithm as an alternative perturbation 

strategy. From numerical investigations it was found that shifting an operation one position to 

the left or right within a sequence is sufficient as a means of perturbing (refining) an existing 

train schedule and allows relatively good solutions to be obtained with reasonable 

computational expense. Due to a number of limitations of this unitary perturbation method 

several innovative compound interchange strategies were developed. In each strategy a 

number of train operations are shifted in one go. One compound move undoes a current 

overtaking or passing situation. Another compound move does the opposite (i.e. makes trains 

pass or overtake each other). The focus of the proposed compound moves is to perform 

interchanges without causing multiple overtaking conflicts and secondly to move whole trains 

past each other easily within an existing schedule. In our approach simple interchanges and 

exchanges are used as the basis of the compound moves. An interchange swaps the position of 

two adjacent operations while exchanges swap the relative position of two operations that are 

not necessarily adjacent. The compound moves require several of these “single” moves to be 

performed “simultaneously 
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In both the CA and SA approach solution feasibility may be strictly enforced or 

infeasible moves may be permitted and penalised in the objective function. Solution 

infeasibility refers to the situation where buffer occupancy violations are permitted to occur. 

The number of BOV is penalised. The penalty value may be fixed or else increased 

proportionally as the temperature decreases. Infeasibilities caused from cycles in the 

disjunctive graph are strictly prohibited. 

 

3.2. Time Windows 

 

Time windows are the primary mechanism by which the SATS scheduling problem is 

most efficiently characterised. Time windows are given to both existing services and to new 

services. Typically the time windows given to new services would be soft constraints, (i.e. 

preferences) whereas time windows for existing services would be strict inviolable conditions. 

Exceptions to these assumptions are permissible and may be necessary in some applications. 

Time windows 
entry exit

, ,and i k i ktw tw  are introduced for each operation ,i ko  for the entry and 

exit time on each section that is traversed during a train’s journey and provide a complete 

profile of each train’s allowable movements. These parameters represent the pair 

 entry entry

, ,,i k i kearliest latest  and  exit exit

, ,,i k i kearliest latest . They are introduced to impose the 

following: 

 
entry entry

, , , ,i k i k i kearliest entry latest i k               (9) 

exit exit

, , , ,i k i k i kearliest exit latest i k                                     (10) 

 

The valid interval of occupancy for operation ,i ko  is therefore given by  entry exit

, ,,i k i kearliest latest  

and denoted as ,i ktw . There are three types of time window: unrestricted, loose and tight. For 

example a time window of  0,  signifies that there is no limitation on entry or exit. A time 

window  ,   signifies a restricted but loose time window if   . If     then the time 

window is tight and fixed entry and or exit is “desired”. The difference between the time 

window range and the planned occupancy time signifies the level of flexibility. In other 

words, a larger time window provides a greater level of flexibility.  

Time window values are defined so that the following relationships hold between 

adjacent operations of the same train: 

 
entry exit

, , 1 , 1 , 2,..,i k i k i k iearliest earliest lag i k K              (11) 

entry exit

, , 1 , 1 , 2,..,i k i k i k ilatest latest lag i k K                (12) 

 

The lag parameter is required because trains may be present on multiple sections at once 

because of their length. Two of the time window parameters, namely latest entry and earliest 

exit are dependent values and should be computed in the following way: 

 
entry exit

, , , , ,i k i k i k i klatest latest p lag i k               (13) 

exit entry

, , , , ,i k i k i k i kearliest earliest p lag i k              (14) 
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It should be noted that the time windows for the first and last operation (i.e. k=1 and k= iK ) 

signify a general time window for a train. Parameters signifying the time window violations 

for an operation are denoted by 
entry exit

, , ,,  and i k i k i ktwv twv twv . They are computed in the following 

way: 

 

 
entry entry entry

, , , ,i k i k i ktwv earliness tardiness i k            (15) 

exit exit exit

, , , ,i k i k i ktwv earliness tardiness i k                     (16) 

entry exit

, , , ,i k i k i ktwv twv twv i k                         (17) 

 

The parameters  entry exit

,i kearliness  and  entry exit

,i ktardiness  represent the earliness and tardiness of 

operation entry and exit with respect to the given time windows. An operation however may 

not be early and tardy at the same time. Removal of the entry (exit) superscript denotes the 

total earliness and tardiness of the operation. Earliness and tardiness are computed in the 

standard way: 

 

   entry entry

, , ,max ,0 ,i k i k i kearliness earliest entry i k           (18) 

 entry entry

, , ,max ,0 ,i k i k i ktardiness entry latest i k             (19) 

     exit exit

, , ,max ,0 ,i k i k i kearliness earliest exit i k           (20) 

 exit exit

, , ,max ,0 ,i k i k i ktardiness exit latest i k               (21) 

 

The expression for the time window violation includes both earliness and tardiness. If one and 

not both is important then earliness and tardiness criteria must be defined for each operation. 

The time windows however can be altered so that this is unnecessary. For example if early 

entry or exit is not important then a  0,  window can be defined. The equation for early 

entry and early exit will always result in a zero value. Similarly if late entry or late exit is not 

important then a  ,   window can be defined. 

Due to the possibility of infeasible schedules being created when all time windows are 

strictly enforced, the penalisation of time window violations via the objective function is 

necessary. In other words time window constraints are not directly enforced. It should be 

noted that numerous schedules may have the same level of disruption but completely different 

makespans. The minimisation of disruptions is not necessarily sufficient as a single objective 

criterion for this problem. The SATS problem therefore has two objectives. The primary 

objective is to schedule trains so that all time windows are satisfied. This is equivalent to 

minimising the total weighted time window violations or similarly the total cost of all 

violations. The secondary objective is to optimise some generic measure of schedule quality 

such as makespan or total train delays. The objective function has two weighted terms and the 

relative importance of each objective dictates the values of the associated weights. The 

objective function for this approach is as follows: 

 

       Minimise    
 

1 , 2 , ,

,

max
ii K i k i k

i
i k

z exit twv  


 
        

           (22) 
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The time window violation penalty value or weight for operation ,i ko is given by ,i k  and has 

a default value of one. In reality this value will be train type dependent and may even be zero.  

 

3.3.  Fixing Existing Trains 

 

The penalisation of time window violations provides a simple and straightforward method to 

persuade operations to be scheduled at desired times in our sequencing approach. However 

satisfying time windows becomes much more difficult when the intervals are narrow and 

competition for resources at a particular time is great. Operations with “tight” time windows 

such as those belonging to existing train services are even harder to explicitly fix using the 

usual time windows mechanism. Furthermore even if they can be fixed, the time window 

mechanism is not always particularly efficient at doing so. Lastly the scheduling of sequenced 

tasks is not necessarily trivial as reported in Sourd (2005).  

Because of these factors an alternative approach to keep operation entry and or exit 

times explicitly fixed is introduced.  After all the primary purpose of the SATS problem is 

very often the identification of feasible insertion positions for new jobs without the 

requirement to shift or otherwise disrupt existing jobs. Our main approach to keep an 

operation’s entry (and exit) time fixed is quite simple. We introduce the condition that it is not 

permissible to violate the time window of a fixed operation. In other words any move that 

does not cause fixed operations to have time window violations is deemed feasible. 

Algebraically  
,

,

, |

0
i k

i k

i k fixed true

twv
 

  implies feasibility of the move. The objective is 

modified so that only unfixed operations contribute to the time window violations term as 

follows: 

   
  ,

1 , 2 , ,

, |

max
i

i k

i K i k i k
i

i k fixed false

z exit twv  
 

 
    
    

                                  (23) 

 

The elegance of the fixed operation strategy is that entire trains do not need to be fixed. For 

example isolated operations of a job can be selected as fixed. Similarly operation entry may 

be fixed or unfixed independent of fixing or unfixing operation exit. It should be noted that 

the position of fixed operations in the associated machine sequence may change however the 

entry and exit times do not. 

In order to solve the SATS problem the jobs and associated operations that should be 

fixed must be identified. One way is through time window attributes. For example an 

operation may be classified as fixed in some sense if one or both of its time windows (i.e. for 

entry and exit) are tight. If both time windows are tight then the operation is completely fixed 

otherwise it is partially fixed. A more robust approach is to introduce parameters 
entry exit

, ,,i k i kfixed fixed  and ,i kfixed  to denote what level of fixing if any is to occur. Consequently 

an operation with a tight entry and or exit time window does not necessarily have to be set as 

fixed. Similarly it is also important to note that a fixed operation does not necessarily have to 

have a tight time window. That is, an operation may be fixed within a loose time window. In 

our approach however an operation with a tight time window is automatically fixed. Similarly 

an operation that does not have a tight time window is not automatically fixed. If it must be 

fixed then the operation must be manually selected and designated as fixed through some type 

of interface.  

 If these flags are not true then the train is free to move and the time windows may be 

violated. In essence these flags signify whether the time window is a hard or soft constraint. It 

should also be mentioned that fixing the entry time of an operation forces the exit time of the 
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predecessor operation to be also fixed. Similarly fixing the exit time of an operation also fixes 

the entry time of the successor operation: 

 
entry exit

, , 1 , | 1i k i kfixed fixed i k k              (24) 

exit entry

, , 1 , |i k i k ifixed fixed i k k K                        (25) 

 

The introduction of fixed entry and exit conditions for operations means that the latest entry 

and earliest exit values are now computed in the following way: 

 
entry entry

, ,entry

, exit entry

, , , ,

 i k i k

i k

i k i k i k i k

earliest fixed true
latest

latest p lag fixed false

 
 

  
                                           (26) 

exit exit

, ,exit

, entry exit

, , , ,

i k i k

i k

i k i k i k i k

latest fixed true
earliest

earliest p lag fixed false

 
 

  
                                         (27) 

 

Once a schedule has been generated, non fixed operations may be selected as fixed at 

any time and vice versa. It should be noted that unfixing (releasing) a fixed operation leaves 

the original time window unaltered. If time window violations associated with this operation 

are no longer allowed then an unrestricted time window must be set manually (i.e. in some 

interface). It should also be noted that unscheduled (un-inserted) operations can not be set as 

fixed. Fixing an unfixed (scheduled) operation requires a redefinition of the operations time 

window to its current entry and exit time. Fixed operations must be also assigned release 

times in the following way in order to be scheduled correctly.  

 

 
entry entry

, , ,, |i k i k i krlt earliest i k fixed true                     (28) 

 
entry exit

, 1 , ,, | ,i k i k i i krlt earliest i k k K fixed true                                                           (29) 

 

The first equation is for when an operations entry time is to be fixed. Similarly the second is 

for when the exit time is to be fixed. If release times are not defined then unfixing a fixed 

operation and then moving it may cause another fixed operation to be shifted resulting in a 

time window violation. Consequently the operation can not be moved even though it is 

unfixed. This is because the longest path algorithm schedules operations are early as possible.  

The act of fixing an operation “in place” makes a machine “off limits” to other jobs. 

Consequently a period of machine unavailability / non availability (PNA) is created. In a 

more general sense a period of machine non availability may be viewed (classified) as an idle 

operation, maintenance operation or previously scheduled operation. In our approach a single 

“isolated” PNA operation should be defined as a separate job while “PNA” operations 

belonging to the same previously scheduled job should be grouped as one job. 

In our sequencing approach all PNA are represented by fixed operations. More 

specifically no PNA can exist independently and without an accompanying operation. This is 

because an operation provides a sequencing object whereas an interval does not. Maintaining 

fixed operations in the schedule has several advantages. Non fixed operations may be 

scheduled at correct “distances” (i.e. in time) from fixed operations without the need to add 

artificial release times. Feasible (and or infeasible) intervals of machine occupancy need not 

be calculated for every operation of every non fixed job. This approach does not need 

complex and irregular cost functions like those used in Sourd (2005a), Sourd (2005b) and 

Hendel and Sourd (2006). 
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4. Numerical Investigations 

 

 This section provides details of comprehensive numerical investigations. The primary 

aim of the numerical investigations is to identify whether good solutions can be obtained 

using the methodology and techniques proposed in this paper and our previous paper. For 

example we would like to know what effect the introduction of time window constraints has 

and whether CA and SA approaches still provide good quality solutions. We would also like 

to know how to use CA and SA most appropriately; for example what settings should be used 

and so forth. 

Of the different settings that may be used the CA was applied with the greedy insertion 

option. That is, train operations are inserted in the position that gives the best objective 

function value. Both the BOV permit and BOV penalise options were tested as each option 

has previously demonstrated merit. 

The application of Simulated Annealing with different perturbation strategies and 

different control parameters was also investigated. The strategy for perturbing a solution was 

the shifting of individual operations. The more advanced compound interchange move was 

also tested but too many time window violations were created. This strategy has therefore 

been abandoned at this stage. 

Four different ways of selecting an operation are reasonable for this problem. The first 

three have been used in previous numerical investigations. They are labelled: random, most 

delayed, critical. The fourth is a new alternative specifically for this problem. It involves the 

random selection of an operation from only those that have time window violations. As the 

search progresses the number of operations with time window violations should be reduced. 

 

4.1. Test Problems 

 

In order to properly test the solution techniques a variety of test problems must be 

generated. Choosing a set of unbiased test problems however is not simple. For example the 

number of current trains must be decided as should the number of new trains. The utilisation 

level of the existing schedule may be constant or variable in which case there may be periods 

of heavy and light traffic. For new trains, time windows may be set or not set. For current 

trains, operations may be fixed or time windows may be set, or no time windows may be set. 

Furthermore the size of the time windows can be set in many different ways. It should also be 

mentioned that the SATS process can not be followed exactly as the preferences of different 

parties is not known. 

With these issues in mind we have decided to apply the techniques to some of the more 

important parts of the SATS process. Firstly the construction of an existing timetable from 

“scratch” using time window constraints only is tested (Part 1a). For example in practice it is 

quite conceivable that a large number of services will have time window constraints. This 

scenario is labelled “REBUILD” for obvious reasons.  Secondly (Part 1b) an existing 

schedule is taken and additional train services with no time window conditions are inserted so 

that the disruption to existing services is minimised. Existing services are given tight time 

windows but may be shifted if improvements to the makepsan can be realised. This scenario 

is labelled “EXTEND” and is a shortcut to the “REBUILD” option. Thirdly (Part 2) the 

insertion of additional services subject to the fixing of the existing services in the “EXTEND” 

scenario is tested. This scenario is labelled “FIXED” and is a shortcut to the EXTEND option. 

The test problems that were selected have been taken from Burdett and Kozan (2008) 

and are indicative of real life applications. They are primarily serial and non serial lines with 

alternating sections and sidings. The specifications of these problems are shown in Table 1. It 
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should be noted that N is the number of trains, M is the number of sequenced sections, B is the 

number of un-sequenced capacitated buffer machines, and O is the total number of operations.  

These problems increase in size and complexity and contain a mixture of 60, 80, 100, 

120 and 160 km/h trains in order to make the problems more challenging. The variation in 

train speeds ensures that fast trains will run into slower trains quite easily and careful 

planning of passing and overtaking is necessary in order to maximise throughput. The track 

topographies are mostly single line bi–directional typical of railways in Australia and North 

America. Railways containing many parallel lines and more complex stations typical of 

European countries are not considered and are a source of future research.  The problem sizes 

are also quite typical of job shop scheduling instances found in recent papers and some small 

to medium sized railway applications. Solving larger railway problems is a source of future 

research. It should be noted that the added complexities of this problem (such as blocking, 

capacitated buffers, etc) make it more difficult to solve than classical job shop scheduling 

problems. This has been observed for example by Mascis and Pacciarelli (2002).  

Multiple occurrences of some trains are incorporated. The new occurrences are the 

simulated third parties. In particular the addition of one to five additional trains is required for 

the each of the nine problems. The existing schedules are the best found from previous 

numerical investigations. They are relatively close to optimal for the makespan objective as 

has been shown from a comparison with lower bounds. Their level of optimality however is 

of no consequence in this paper because they are simulating an existing schedule which is to 

be altered.  

 

Table 1.  Test problem specifications (45 instances) 

Case 

Study 

Track 

Topography 

Input-

Output 

Points 

Dimensions 

N / M / B / O 

Makespan 

(minutes) 

# of 

added  

trains 

# of  

test 

problems 

1 Serial (24 km) 2 6/3/2/30 48.44 1-5 5 

2 Serial (164 km) 2 6/5/4/54 279.7 1-5 5 

3 Serial (58.2 km) 2 10/10/9/190 88.82 1-5 5 

4 Serial (56.2  km) 4 24/10/7/408 127.99 1-5 5 

5 Circular (39 km) 1 15/5/3/120 196.5 1-5 5 

6 Network (188.6 km) 5 54/30/11/2214 494.95 1-5 5 

7 Serial (121.67 km) 2 20/20/19/780 202.92 1-5 5 

8 Serial (88.96 km) 2 20/12/12/480 220.22 1-5 5 

9 Serial (260.25km) 2 20/24/23/940 403.41 1-5 5 

      45 

 

Two objectives were investigated. The first (OBJF1) attempts to minimise the 

makespan plus total time window violations, while the second (OBJF2) solely attempts to 

minimise total time window violations. 

 

4.2 Results 

 

Due to the extent of the numerical investigations, the results have been condensed greatly and 

a summary of the most important results only are shown.  

 

4.2.1. Part 1  

 

In this part of the numerical investigations existing trains are unfixed.  

 

4.2.1.1. Constructive Algorithm 

 

The constructive algorithm was applied with both the BOV permitted (labelled P) and 

BOV forbidden (labelled F) options and for both objective functions. Furthermore the 
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solution was constructed in two different ways using the “REBUILD” and “EXTEND” 

options. The constructive algorithm was therefore applied 8 times for each of the 45 test 

problem and 360 instances were solved in total. The main results for comparison are: the 

objective function value, the makespan, the time total window violations and the CPU times. 

Because there are so many raw results and it is difficult to make any firm conclusions from 

these values, three column charts were constructed for each of the nine examples. A number 

of conclusions can be reached from these 27 charts. 

Significantly better solutions are obtained in all cases when the EXTEND option is 

taken. This was partially expected because less work must be done in order to obtain a new 

schedule. Rebuilding the current schedule when it is not required is unnecessary and takes 

more CPU time. However the REBUILD option is still valuable and in fact critical on the 

related general time windows problem. The REBUILD option though inferior to the 

EXTEND option still gives reasonable starting solutions. 

 With respect to buffer occupancy handling, the BOV permit option resulted in superior 

solutions than the BOV forbid option. The occurrence of too many BOV in some of the final 

solutions however is a drawback. 

The difference in solution quality between the two objective criteria is not particularly 

great when BOV are permitted, although the first objective is generally superior in terms of 

minimal makespan and time window violations. When BOV are not permitted the first 

objective is significantly better than the second objective function. 

As the number of inserted trains was increased the makespan of the schedule also 

increases. The relative difference between the makespan and a lower bound approximation to 

the makespan remained fairly constant or increased slightly. In other words the solution 

quality did not deteriorate as more trains were added to the problem. The chart in Figure 1 

demonstrates the average effect. These values were obtained by averaging the results over the 

nine examples. 
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Figure 1. A comparison of the makespan results 

 

The solution quality in terms of makespan was fairly good overall. However the 

solution quality in terms of time window violations was not particularly good considering that 

a total time window violation of zero minutes is sought. The level of violations that were 

generally achieved is a value of several thousand or tens of thousands of minutes. The results 

for example 9 are shown in Figure 2 and are indicative of the results for the other examples.  

Only in example 1 were solutions obtained with a total time window violation of zero 

minutes. The over-penalisation of time window violations is correct but tends to “muddy” the 

results. In particular the results may seem worse than they actually are because the time 

window violations appear to be very large.  This leads to the conclusion that a better measure 
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is perhaps required. For example a relative or average measure is maybe more indicative of 

solution quality. 
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Figure 2. A comparison of the total time window violation results 

 

The CPU times required by the CA typically increased with the number of trains to be 

inserted or remained the same. On examples 1-5 the CPU times were negligible, i.e. no more 

than several seconds. On examples 6-9 the CPU times were greater; these are shown in Table 

2.  

Table 2. CPU times (in seconds) for example 6-9 
Case 
Study 

# 
added 

F/1/ 
REBUILD 

P/1/ 
REBUILD 

F/2 / 
REBUILD 

P/2/ 
REBUILD 

F/1/ 
EXTEND 

P/1/ 
EXTEND 

F/2/ 
EXTEND 

P/2/ 
EXTEND 

6 

 

 
 

 

1 38 25 39 25 11 1 11 1 

2 37 27 37 27 12 2 12 2 

3 39 29 39 29 13 3 13 3 

4 47 31 47 31 17 5 17 5 

5 42 33 42 32 20 7 21 8 

7 
 

 

 
 

1 5 3 54 19 5 3 5 3 

2 12 7 61 21 12 7 13 7 

3 24 10 44 25 24 10 25 11 

4 105 13 59 28 108 14 113 14 

5 66 33 67 33 140 17 147 18 

8 

 
 

 

 

1 2 0 67 4 3 0 3 0 

2 21 1 241 4 22 1 23 1 

3 22 2 356 5 23 2 24 2 

4 22 3 833 6 24 3 26 3 

5 820 7 851 7 26 4 27 5 

9 

 
 

 

 

1 15 5 62 26 15 5 16 5 

2 28 10 48 30 29 11 30 11 

3 50 15 136 35 51 15 53 16 

4 54 19 80 41 56 19 58 20 

5 424 46 394 47 80 26 79 27 
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The longest time was just short of 15 minutes but the usual time was less than a minute. 

The BOV forbid option took the longest and there was a dramatic increase in CPU time when 

five trains were to be added to an existing timetable. This construction option finds it more 

difficult to thread trains through the existing timetable and obtain a feasible schedule. The CA 

is also forced to perform more backtracking which takes more CPU time. 

 

4.2.1.2. Simulated Annealing 

 

Simulated Annealing was applied in order to improve the best constructive algorithm 

solution. Based upon the results obtained by the constructive algorithm in 3.2.1.1 SA was 

applied with objective 1 and not objective 2. Since the “EXTEND” solutions are superior to 

the “REBUILD” solutions they are used as the starting point for the application of SA. 

Three cooling strategies were used and they are as follows: (1/0.01/0.99/100), 

(10/0.01/0.99/100) and (100/0.01/0.99/100). The format of the parameters is starting 

temperature, final temperature, temperature reduction factor and evaluations at each 

temperature.  These parameters were chosen based upon past experience and testing. Only the 

starting temperature was altered in this numerical investigation. The reason for this is that the 

starting temperature primarily dictates the amount of work that must be done by the 

algorithm.  

The main results are summarised in Figures 3, 4 and 5 below. It should be noted that in 

the charts, label “F” stands for forbid BOV and “P” for permit BOV. The numerical value 

after the “/” stands for the operation selection strategy. To obtain Figure 3 the minimum 

makespan values obtained for the different test problems was used to define relative 

difference (error) values. In Figure 5 similar calculations were used to compare the time 

window violations. The average time window value was used to define relative difference 

values because of data range issues over the different problem sizes and divisions by zero. 

There are 27 values on the x axis due to the 9 examples and three SA parameter sets. In 

Figure 5 the total relative differences associated with the makespan are compared so that the 

effect of different SA parameters can be seen. 
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Figure 3. Comparison of relative makespan values 
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Figure 4. Comparison of average relative time window violations 
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Figure 5. SA parameter comparisons  

 

There is quite a difference in solution quality between the BOV forbid and BOV permit 

options. Furthermore when BOV are forbidden the random selection of operations for shifting 

was found to be best. The difference in solution quality for different SA control parameters 

was not that significant. In other words a faster cooling schedule should be used because it 

takes less CPU time.  When BOV are permitted the results are a little different. In particular 

the selection of operations from the critical path becomes the best strategy. The difference 

between these results and those obtained from the next best strategy, i.e. the random selection 

strategy, however is not great. The new strategy for selecting operations is adequate but does 

not outperform the previously proposed and tested operation selection strategies. 
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On some of the problems a higher starting temperature was more advantageous. Since 

the search space is so restrictive for the SATS problem a higher starting temperature can 

allow more of the search space to be evaluated and more solutions of lesser quality to be 

tested in the early stages of the search. This is not unexpected. For example, when the 

majority of operations have time window constraints then a random operation selection 

mechanism is quite adequate. Similarly a selection mechanism that chooses operations 

according to their level of deviation from a preferred time window is a more “pro-active” 

approach to reducing total time window violations. SA reapplication also seems to be 

desirable on this type of problem. Superior solutions are not always obtained on the first run 

of SA. 

An indication of the CPU times required by SA is shown in Table 3 below. These 

values are for SA with the first perturbation operator, i.e. the random operation selection. The 

CPU times for the other option are comparable and are omitted as there are too many to 

display. 

 

Table 3. A snapshot of SA CPU times (seconds) 

SA 
Param 

Added 
trains 

Example 

1 2 3 4 5 6 7 8 9 

1 

1 7 13 112 145 45 440 570 499 2109 

2 9 20 133 167 49 994 1415 589 2339 

3 11 24 150 183 50 1212 1802 643 2490 

4 11 26 176 189 51 1320 2009 704 2731 

5 14 31 200 196 62 1269 2010 688 2870 

2 

1 12 28 172 239 73 661 864 760 3035 

2 15 34 222 258 83 1524 2320 937 3492 

3 16 40 257 275 86 1720 2778 997 3847 

4 19 49 304 298 90 1946 3116 1124 4181 

5 24 58 344 301 98 714 2809 1071 4600 

3 

1 17 39 247 326 109 907 3030 948 4295 

2 20 46 317 368 122 2448 3644 1206 4789 

3 23 58 353 368 115 2465 1356 1364 5166 

4 27 66 421 394 113 2471 3684 1517 4830 

5 33 79 480 408 120 2363 4231 1481 5238 

 

4.2.2. Part 2  

 

In this part of the numerical investigations existing trains are fixed.  

 

4.2.2.1. Constructive Algorithm 

 

The constructive algorithm was applied with the BOV forbid and BOV permit options 

to the previous examples. The existing timetable was however fixed and no alterations were 

allowed. Therefore no time window violations could occur and the objective criterion was 

simply makespan minimisation. The raw results are summarised in Table 4 by adding the 

results of each sub problem. 

Table 4 shows that the BOV permit option gives superior makespan values. The 

improvement is roughly 5-10% on closer inspection of the data but as much as 33% on one 

example. The number of BOV’s that were incurred on each sub problem was not too great. 
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These numbers increase proportionally with the number of added trains. In summary, the 

BOV permit solutions were not greatly superior and the application of this option may not be 

warranted because of the additional effort required to remove the BOV. The BOV forbid 

solutions are feasible and “ready to go” at no extra effort. 

 

Table 4. Summarised constructive algorithm results for the FIX strategy 

Case 

Study 

BOV 

Forbid 
BOV Permit 

cmax cmax #BOV impr RE(impr) 

1 488.16 452.16 48 36.00 0.07 

2 3357.04 2639.54 68 717.50 0.21 

3 829.08 744.74 53 84.34 0.10 

4 1012.02 970.21 58 41.82 0.04 

5 1892.16 1892.16 0 0.00 0.00 

6 2627.72 2500.90 60 126.82 0.05 

7 1415.31 1377.91 39 37.39 0.03 

8 1551.29 1476.82 186 74.47 0.05 

9 3068.59 2937.14 26 131.45 0.04 

 

We now compare the solutions with those obtained in Part 1. The raw results are again 

omitted. The values though are plotted graphically in Figure 6 below to show the underlying 

differences more clearly.  
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Figure 6. Comparison of relative difference values for the makespan 

 

The raw results are further condensed in Table 5 and Figure 7 by adding the results of 

each sub problem. These values show that the makespan values obtained (i.e. by the FIXED 

option) are only slightly inferior to the previous REBUILD and EXTEND solutions. This is a 

very good result. In contrast the solutions in the first part of the numerical investigation are 

vastly different to the existing timetables and this is shown by the large time window 

violations. Time windows can easily be violated if an improvement to the makespan is 

possible using the two strategies in Part 1. If the existing timetable is fixed then fewer 

opportunities exist to reduce the makespan. 
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Table 5. Condensed relative error values for the makespan  

Case 

Study 

REBUILD EXTEND FIXED 

BOV forbid BOV Permit BOV forbid BOV Permit BOV forbid BOV Permit 

1 1.84 0.41 1.17 0.41 0.97 0.47 

2 1.46 0.48 1.18 0.07 1.87 0.29 

3 1.75 0.13 1.75 0.13 2.56 1.81 

4 4.59 1.03 1.63 0.39 2.10 1.82 

5 2.52 1.70 1.58 0.95 2.92 2.92 

6 11.69 9.40 3.92 3.11 1.65 1.35 

7 6.33 2.54 5.05 2.12 3.63 3.41 

8 2.46 0.92 1.47 0.47 1.63 1.32 

9 5.03 2.44 3.56 2.00 4.16 3.78 
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Figure 7.  Condensed relative error values for the nine examples 

 

The CPU times are comparable with those previously shown in Table 2. 

 

4.2.2.2. Simulated Annealing 

 

The SA results are summarised in this section. In order to obtain the summarised results 

the relative error values were firstly computed for each example and for each sub problem. 

For each example the five resulting values were added together to give an overall impression 

of what is going on. These values are shown in Table 6. In summary very little separates the 

results. The BOV permitted solutions are slightly better and the random selection strategy was 

generally best for SA. The SA algorithm was able to improve the CA solutions in most 

situations and quite well as indicated by the negative signs. 

It should be noted that the “shift one position only” perturbation strategy may be overly 

restrictive on some problems involving fixed operations. For example an operation may need 

to be shifted past two or more “fixed” operations. The initial schedules that have been used in 

this paper highly utilise the railway and hence the insertion of additional trains can only occur 

toward the end of the original schedule. Consequently the shifting of operations by more than 

one position to the left or right in the machine sequences is not necessary here. 
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Table 6. Summarised SA results (relative errors) for the FIX strategy 

Case 

Study 

BOV not permitted BOV permitted 

SA1 SA3 SA1 SA3 

RE(LB) RE(CA) RE(LB) RE(CA) RE(LB) RE(CA) RE(LB) RE(CA) 

1 0.49 -0.41 0.51 -0.40 0.44 -0.03 0.48 0.01 

2 0.44 -1.04 0.44 -1.04 0.16 -0.13 0.16 -0.12 

3 1.11 -0.83 1.23 -0.77 0.56 -1.18 0.56 -0.81 

4 0.73 -0.93 1.14 -0.65 0.72 -0.98 0.68 -0.81 

5 1.70 -0.77 1.75 -0.74 1.74 -1.00 1.71 -0.76 

6 3.27 0.00 3.39 0.08 2.87 0.00 2.87 0.00 

7 3.01 -0.35 3.16 -0.27 2.90 -0.34 2.92 -0.29 

8 1.27 -0.27 1.22 -0.31 1.25 -0.06 1.11 -0.17 

9 2.79 -0.72 2.83 -0.70 2.53 -0.83 2.53 -0.69 

 

The CPU times are comparable with those previously shown in Table 3. 

 

 

5. Conclusions 

 

The problem of scheduling additional train services was considered in this paper. In 

order to solve this problem a process of iterative refinement was first proposed. More 

specifically it is a process of fine-tuning in which the demands of various customers / 

operators is negotiated through the alteration of time windows and fixing statuses. At each 

stage of this process a scheduling instance that is computationally intractable must be solved. 

This scheduling problem can be solved in a variety of ways and constructive heuristics and 

meta-heuristic algorithms were used in this paper. 

The SATS scheduling problem is different from the usual timetable construction 

problem due to additional timing constraints. These timing constraints may be optionally 

viewed as “soft” or “hard”. In this paper both settings were provided for in our techniques and 

investigated in our numerical investigations. In the former case, the timing constraints of 

trains are primarily enforced by penalising the total time window violations in the objective. 

This approach does not guarantee that timing conditions are met however and allows any 

operation to be disrupted. In the second case, timing conditions may be strictly enforced by 

defining an operation as fixed and then disallowing any time window violation associated 

with fixed operations to occur. This mechanism of fixing an operation is very powerful yet is 

very simple. This mechanism addresses the SATS problem more directly than the general 

penalisation of time windows mechanism; it also encompasses periods of machine 

unavailability such as maintenance activities and enforced idle periods. 

The numerical investigation consisted of two parts. In part 1 only time window 

constraints were used to enforce adherence to the existing schedule. In part 2 the existing 

schedule was strictly enforced by fixing particular operations. From numerical investigations 

it was observed that building the existing schedule from scratch using time windows is not 

effective. There are too many violations particularly after any perturbation is made. There is 

very little concrete information as to how to improve the solution.  

In summary the approaches were shown to be quite effective and reasonably robust 

though it is clear from the numerical investigations that further improvements and fine tuning 

are possible. Simulated Annealing was shown to improve upon good quality starting solutions 
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but not so well otherwise. Judging the quality of solutions when time window violations exist 

is difficult. Good solutions can be reached on larger problems only with a lot of extra effort, 

i.e. effort above and beyond what is required in most other scheduling problems. The 

literature in recent years also shows this. For example extra effort is required to run the meta-

heuristic algorithms again and again until a good quality solution results. Very high level 

computing requirements are needed for problems such as this. We observed that the 

complexity of the SATS problem is reduced as more of the existing operations are fixed and 

fewer operations have time window constraints. 

In our approach operations were scheduled using a non delay scheduling process. This 

approach however schedules operations as early or as late as possible depending on whether 

forwards or backwards scheduling is performed. An operation with a time window 

requirement that falls between the earliest entry and the latest entry or similarly the earliest 

exit and latest exit however can not be satisfied and will result in a time window violation. A 

secondary procedure to shift an operation for example by adding “artificial” release times is 

necessary in order to reduce time window violations. What improvement is possible is a 

source of future research as is the development of suitable procedures. 

Multi-criteria scheduling was touched upon in this paper but more work could be done 

in the future. The complexity of the SATS problem ensured that a more conventional single 

objective criterion was used. A purely cost based objective could be more beneficial for the 

SATS problem. This topic also provides a topic for future research. Another avenue for future 

research is the incorporation of a cancellation mechanism in the SATS problem. For example 

if a service can not be scheduled at desired times then it may need to be cancelled and or 

replaced with another service. 
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