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Abstract
This paper argues that there is significant bene-
fit in providing multiple progressively stronger lay-
ers of security for hosts connecting to the Inter-
net. It claims that this multi-layered approach al-
lows early discard of packets associated with at-
tacks. This reduces server vulnerability to com-
putational denial-of-service attacks via heavyweight
cryptography calculations. To this end, it presents
three techniques that allow TCP/IP services to be
concealed from non-authorized users of said ser-
vices, while still allowing access to the services for
authorized users. These techniques can be entirely
implemented at the edges of the network and require
no changes to the interior of the network. They work
alongside, and augment, existing protocols making
deployment practical.

1 Introduction

The risks associated with connection to the Internet
are increasingly clear. Well-publicized incidents of
systems being targeted by malicious intruders, and
of large scale denial-of-service (DoS) attacks have
highlighted the risks of networked systems. The
use of automated attack tools [8], and vulnerability
to denial of service is a real problem for high pro-
file commercial sites, such as Amazon or Microsoft,
as well as for smaller businesses, educational in-
stitutions and government organizations. A survey
across a variety of industry sectors conducted by the
Computer Security Institute [19] reveals that 90% of
the respondents detected computer security breaches

within the last 12 months and 80% of those acknowl-
edge financial loss. Furthermore, analysis [18] has
shown that a significant fraction of attacks are di-
rected at home machines and against network infras-
tructure.

Established techniques to protect Internet-connected
machines tend to rely either on filtering packets, or
on application-level security. The first technique
is implemented by firewalls, Internet-connected de-
vices running software whose job is to filter or log
unwanted network traffic. However, there are com-
mon attacks against which a firewall cannot pro-
tect. For example, firewalls do not protect against
attempts to exploit bugs in application-level soft-
ware. Such vulnerabilities occur because the In-
ternet architecture assumes that services bound to a
port should be accessible by any machine using the
Internet protocols.

The second technique is to deploy high-strength
application-level security mechanisms. However,
authenticated services are built above the network
layer [13, 6, 16] and are often themselves subject to
attack once discovered on a host. Reliance solely
on application-level security exposes the problem of
the computational expense of such security mecha-
nisms. The high computational burden of commonly
deployed cryptographic schemes leaves the server
open to computational DoS attacks. Furthermore,
complex schemes are error prone, as exemplified by
the integer overflow bug in SSH [4] which has been
the target of recent attacks1.

1Ironically, this bug occurred in a section of code responsi-
ble for defending against attacks which themselves exploited an



Alternative techniques, such as those used by next-
generation Internet Protocols [1, 5, 11] incorporate
authentication headers at the network layer. How-
ever, these are still open to computational DoS, and
their key exchange mechanisms also reveal the exis-
tence of the machine and the services it is running.

Consequently, we argue that there is a need for com-
putationally cheap and simple defense mechanisms
that allow early rejection of the majority of attacks.
In particular, we argue that there is significant bene-
fit in having multiple, progressively stronger, layers
of security, rather than attempting to have a single
‘perfect’ security layer. In more detail, when pro-
tecting a particular service:

1. The service should be hidden. This allows
hosts to attempt to be invisible to other Internet-
connected machines while still providing ser-
vice to authorized parties.

2. Authorized source credentials should be easy
to validate, yet difficult to forge. At the most
basic level we can use identifiers from a sparse
address space, but more generally we use a one-
way authentication function based on some se-
cret key. For the service to remain hidden, this
stage should elicit no response if the credentials
are invalid.

3. Full-strength application-specific security
mechanisms are still used to provide true
end-to-end authentication.

Although extremely lightweight, service hiding does
deter attacks initiated by random port scanning,
making it harder to exploit application-level vul-
nerabilities. This is not ‘security by obscurity’ —
rather, it is akin to authenticated signaling [17, 23]
where application authentication information is in-
cluded in the signaling message.

Recent interest in defining the security require-
ments for Internet devices also includes the abil-
ity to ‘stealth devices’ [10]; we envisage using the
schemes presented in this paper to secure network
elements such as routers, firewalls and proxies. They
may also be useful for subscription-based services
accessed by large numbers of authorized users and

earlier vulnerability caused by CRC weaknesses.

for whom the cost of DoS attacks may be severe.

In summary, we propose a lightweight authenticated
one-way signaling mechanism that allows a discard
decision to be made as early as possible. Such dis-
card decisions should ensure that, with high proba-
bility, unauthorized clients not only receive no ser-
vice, but no response at all. The following section
details our assumptions and outlines problems that
occur when current pieces of Internet infrastructure
interfere with these assumptions. We continue with
the development of three variations on the basic idea
presented in Section 3, and discuss the relative trade-
offs in Section 5.

2 Architectural Assumptions

Before detailing the assumptions underlying the
techniques presented later in this paper, it is impor-
tant to emphasize that we intend to augment, not to
replace, the function of the stronger authentication
mechanisms in IPsec, SSL and the like. We then
make the following assumptions:

• We assume that keys can be shared and dis-
tributed out-of-band. In particular, we deem
the problem of key exchange to be outside the
scope of this paper.

• We assume that modifications to the kernel on
server machines are possible. Existing client
applications may remain unmodified as authen-
tication packets that enable connections to the
server from existing client applications can be
generated by a separate application.

• We assume an attacker that has difficulty
snooping packets in the middle of the Internet,
but is able to forge or spoof packets from an
endpoint. An attack scenario comprises one or
more Internet end-nodes that probe and launch
attacks on hosts with visible services.

• We assume that a reasonable proportion of
packets introduced by a given source and ad-
dressed to a particular destination are delivered
to that destination without modification.
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Figure 1: A high-level depiction of the three techniques.

Perhaps the most contentious of the above assump-
tions is the latter. Client machines are often them-
selves behind a firewall, NAT, or proxy device, each
of which impacts the latter assumption. Note that
only the outbound behavior of such devices is an
issue since the passphrase mechanism is unidirec-
tional.

Where a router is used as a firewall, it is typically
configured as a simple filter, and passes or discards
outbound packets based on access control lists en-
forced using pattern matching. Allowing arbitrary
outbound packets is often not regarded as a signif-
icant security risk: it allows information leakage,
already possible for malicious programs using, for
example, outbound HTTP connections. Incoming
filters are typically tighter, often discarding ICMP
messages and packets containing IP options. These
devices are typically configured to block the major-
ity of TCP and UDP ports.

Network address translation devices pose more of a
problem for connection authentication mechanisms.
By definition they change the source IP address and
port number, making end-to-end authentication of
the source more difficult. Ideally the source ad-
dress of the connection should be validated as part
of the authentication mechanism to prevent replays
and spoofing attacks.

Finally, firewall or application-level proxies based
on variants of the SOCKS protocol [15] have the
greatest impact on our assumption that a reasonable
proportion of transmitted packets reach their desti-
nation unmodified. SOCKS uses a simple RPC-like
control protocol to open holes in the firewall dynam-
ically and terminates outbound TCP connections in-

ternally. A CONNECT(externalIP, destport)

call returns an internal firewall (IPaddress,

destport) and the client then makes a standard
TCP connection to the specified internal address.
The proxy server then initiates an external TCP con-
nection. Similar mechanisms exist for negotiating
externally visible (IPaddress, port) pairs for in-
coming TCP connections and incoming UDP data-
grams. The server is thus an application-level bidi-
rectional relay between two separate (internal and
external) TCP connections.

Since there is no 1-to-1 packet correspondence be-
tween the two TCP connections, any scheme relying
on out-of-band information encoded in packet head-
ers will not pass through such a proxy. Both SOCKS
and the Microsoft Proxy Protocol function in this
way and support only UDP and TCP. A SOCKS-
like proxy where the control protocol merely estab-
lishes an appropriate entry in a NAT forwarding ta-
ble is conceivable, but not presented here. Section 4
discusses how to work around the specific problems
posed by the presence of middle-boxes between the
connection principals. It should be noted that such
middle-boxes do not invalidate either the argument
for multi-layered security or that for service hiding.
Rather, they make robust implementation and de-
ployment of the particular techniques presented in
this paper more difficult.

Under these assumptions and interactions with vari-
ous intermediary network devices, we investigated a
number of alternative security mechanisms. These
are presented in the following section. Section 4
discusses the design trade-offs of the respective
schemes and Section 5 presents some experimental
evaluation of one of the schemes.



3 Implementation Alternatives

This section presents a selection of implementation
techniques that satisfy the goals outlined in Sec-
tion 1. All effectively implement the same basic
scheme: viz. require a client desiring access to a ser-
vice to authenticate themselves via presentation of
a secure hash in such a way that it is cheap to dis-
card invalid attempts. In all cases, the hash is time-
dependent to reduce the opportunity for replay at-
tacks. It is 128 bits in length and generated using
the SHA1 algorithm, a shared secret, and in some
cases, additional information.

A Silent Authentication Service (SAS) logically
residing within the destination firewall2 observes
incoming authentication attempts, discarding most
packets without response. When the correct hash is
presented, a ‘hole’ in the firewall is opened for a par-
ticular client (i.e. a particular source IP address and
source port) for a short period of time.

Note that only TCP SYNs are intercepted by the fire-
wall; TCP data segments are always allowed through
as these will be discarded cheaply by the server.
TCP RSTs and ICMP unreachables prompted by un-
wanted traffic are dropped by the firewall in order to
maintain the stealth goal.

Figure 1 depicts the 3 schemes we have devel-
oped: Spread-Spectrum TCP (SSTCP), Tailgate
TCP (TGTCP) and Option-Keyed TCP (OKTCP).
In essence, these span the spectrum between send-
ing several unmodified additional packets for con-
nection setup, and sending just the traditional num-
ber in a modified (although RFC-compliant) fashion.
We now describe each variant in more detail.

3.1 Spread-Spectrum TCP

In Spread-Spectrum TCP (SSTCP), the client
presents the key to the SAS module by modulating
a TCP header field in a sequence of SYN packets.
Once a correct sequence is observed, the firewall al-
lows the normal TCP three-way handshake to pro-

2In home environments, firewall functionality is often pro-
vided in software on the server machine, e.g. Windows XP In-
ternet Connection Firewalling.

ceed normally. The field chosen must not be modi-
fied end-to-end, giving two viable options: the des-
tination port number (DPN) and the initial sequence
number (ISN).

The DPN provides 16 bits that can be modulated
fairly arbitrarily, subject to constraints that may be
imposed by firewalls on the client side. The ISN
provides 32 bits and is less likely to interact badly
with middle-boxes, but is unlikely to be preserved
by proxies. The DPN was chosen for the implemen-
tation evaluated in Section 5 as it allowed the client
software to be implemented using standard library
calls.

The prototype SSTCP implementation calculates a
sequence of destination port values using a secret
key K shared between the server and all clients and
a monotonically increasing time value. It sends the
sequence of N SYN packets to the relevant ports on
the server and if at least M ≤ N of these are re-
ceived by the SAS module in the correct order, a
SYN from that client is allowed to pass through the
firewall to the appropriate ‘real’ port. Both N and
M are software configurable but N must be pre-
agreed by client and server along with the secret key.

Our prototype is implemented over Linux v2.4.18
and generates a logically infinite array A of port val-
ues using a one way function. Each generated ele-
ment corresponds to an interval of time, T : every T
a new element in this infinite sequence is generated
as A[t] = SHA(K.t)&0xFFFF (where ‘.’ denotes
concatenation and t is the current time divided by
T ). The amount of work calculating the sequence
and authenticating each packet is thus minimized
and independent of the network traffic directed at the
server, reducing vulnerability of the scheme itself to
DoS attack. In practice A is a circular buffer of 256
16-bit elements as depicted in Figure 2. Hence, the
space overhead is also small and constant.

A test client sends a sequence of setup attempts to
port numbers A[t], . . . ,A[t + N − 1] preceding the
real connection setup. When the SAS module sees
a SYN packet from a new client (identified by a
<source IP address, source port> pair), it checks the
presented destination port number d against A[t−1],
A[t] and A[t + 1]. If there is no match, the packet is
dropped. Otherwise the module records the follow-
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Figure 2: The SSTCP Authentication Table.

ing 3 bytes of information for this client: start := i
for which A[i] = d; end := start +N ; and match

:= 1.

When the module sees a SYN packet from client
in progress, it checks the presented destination port
number d against A[start+1], . . . ,A[end]. If there
is no match, it destroys the client state. If there is
a match then start := i for which A[i] = d, and
match is incremented. Only if ≥ M ports match

(in order) is the ‘real’ SYN is allowed through.

3.2 Tailgate TCP

In Tailgate TCP (TGTCP), the key is presented to
the SAS module in a single packet, followed closely
by the SYN to the server. If the key is correct, then
the SAS module opens a window in the firewall for a
short period of time, allowing the ‘tail-gating’ SYN
through to reach the server. Note that the window
in the firewall need only be opened for a short pe-
riod of time as the firewall is assumed to pass TCP
data segments by default, as they can be cheaply and
silently discarded at the server.

In more detail, the client sends the key as a packet
containing: (T, C, S, D, H), where: T is the current
time; C is a client identifier, taken from a sparse
name space; S is the source (client) IP address; D
is the destination address and port number; Kc is a
shared secret key between client C and the firewall;
and H is SHA1(T, S, D, Kc)).

The SAS module performs an initial check of T
against the current time, allowing rapid discard of
clumsy replay attacks. C is simply checked against

a short list of known client IDs, allowing rapid dis-
card of the majority of ‘random’ attacks having no
snooping ability.

If these first two tests are passed, implying an at-
tacker has snooped or guessed C from a 64 bit ad-
dress space, the module computes H and compares
it to the value in the packet. Should these val-
ues match, then a hole is opened in the firewall for
SYNs from S destined for D by adding an entry
(T, S, D, H) to a list ordered by T . Entries are re-
moved from the list at time T + Tc, where Tc is,
e.g., 2 seconds3.

When a SYN arrives at the firewall, the list of open
ports is scanned for a matching entry and the current
time compared with T + Tc. The SYN is forwarded
if there is a match, and dropped if not. Under normal
operation, client-side software will intercept calls to
the connect() socket API and send a key packet
to the SAS module of the destination firewall. The
subsequent SYN will then tailgate the key packet
through the firewall.

The timing of the transmission of the tailgating SYN
is a potential issue: if the SYN tailgates too closely,
then packet re-ordering may mean that it arrives be-
fore the key and will thus be discarded; if it tailgates
too late, then the firewall hole may close before the
SYN arrives. With the firewall hole open for 2 sec-
onds, a value for inter-packet transmission of 500 ms
seems appropriate.

Choice of encapsulation for the key packet is influ-
enced by presence and type of client-side firewalls.

3This value is configurable by the server and does not need
to be known by the client.



The simplest choice is a UDP datagram sent to the
firewall IP address at a well-known port. However,
such a packet may well be blocked on the outbound
path by any firewall between the client and the In-
ternet. Other options include the generation of a
TCP SYN with a non-zero data portion carrying the
passphrase. Since the passphrase is intended only
for the SAS, the SAS module could even strip out
this ‘bogus’ data portion before allowing the (now
valid) SYN to continue to the server.

Finally, although replay of the above packet is an
idempotent operation, replay attacks may be de-
tected by comparing the hashes of incoming packets
against the stored hashes in the open port list.

3.3 Option-Keyed TCP

In Option-Keyed TCP (OKTCP), the key is encoded
in a suitable IP or TCP option field in the SYN
from the client to the server. Suitable options in-
clude the IP Timestamp option and the TCP Echo
option, though both are effectively limited in size
to 36 bytes. If the SAS module in the firewall de-
tects a correct key, it immediately allows the SYN to
proceed obviating the need for any state allocation.
It may also choose to remove the option to prevent
confusion of the destination IP stack.

The prototype implementation uses the IP Times-
tamp option, which may contain multiple 32-bit
timestamp values. The key is inserted as an ap-
propriate number of timestamps, and the timestamp
buffer flagged as being ‘full’ so that routers en-route
do not try to add any further timestamps. On Linux,
this ‘bogus’ option can be added explicitly from
user-space. Windows XP only allows ‘empty’ times-
tamp options to be added, requiring the option to be
inserted using an IP Firewall Hook device driver.

The SAS module simply parses an option in a TCP
SYN packet to extract the client’s notion of time and
a 256-bit hash of a shared key concatenated with
other information as in TGTCP4. The time sent, t,
is verified to be within an acceptable window, the
hash function then applied to the client’s notion of

4Note that the 36 byte option limit requires a more compact
encoding than with TGTCP.

time and the result compared with that sent. If there
is a match then the SYN is accepted.

We can allow client differentiation and lightweight
early discard by including a per-client or per-group
identifier C in the option. This also makes it easier
to revoke keys. If the space limitation in the TCP
header was too stringent, then the same technique of
appending a data portion to the SYN as in TGTCP
could be used.

4 Design Trade-Offs

The three schemes presented above are intended to
illustrate certain design trade-offs. The schemes are
discussed in general terms below, while the succeed-
ing section presents some performance figures from
one of the schemes (SSTCP). It should be noted that
simple prototypes of the other two schemes have
also been constructed.

In SSTCP the client sends a particular sequence of
packets culminating with a TCP SYN packet. If
enough of the correct sequence is received by the
host, the 3-way handshake proceeds as normal. If
not, the port appears dark. The sequence repre-
sents a ‘passphrase’ which is lightweight (to mini-
mize DoS vulnerability) key-dependent (to prevent
correct port generation by unauthorized hosts) and
time-dependent (to minimize the opportunity for re-
play attacks).

The server implementation requires only a small
fixed overhead (memory and time) in the idle case.
For ‘bad’ SYN packets the cost is a table lookup and
3 comparisons and even for ‘good’ packets the space
and time overhead is not large. The scheme is also
resilient to packet loss of up to (M − N) packets,
handles clock skew of at least T between client and
server, and operates even when the client is behind a
NAT box.

However it does have certain problems including:

• it may not pass firewalls because of its use of
random destination ports;

• its inability to dynamically choose M, N based
on client preference, network loss probability,



etc.;

• there is a small probability (3/216) that the cor-
rect initial port value is guessed by an attacker,
thus generating state which requires space and
management;

• the possibility of many source port allocations
when using PNAT;

• vulnerability to a trivial replay attack within
time (N − M + 0.5) ∗ T ).

Some of these issues are mitigated by modulating
the ISN instead of destination port, but the last is
not. To address the last issue, we could use nonces
to “remember” recent connection set ups, but this
adds more complexity and more state. Another ap-
proach is to use a nonce (a well chosen ISN) in
the first matching packet of the sequence to perturb
later sequence values. Again, this is at a cost of in-
creased computational complexity after the inexpen-
sive early recognition mechanism.

SSTCP sacrifices some robustness by requiring that
all passphrase data be conveyed in existing and small
fields in the TCP header for “stealth” purposes.
TGTCP takes an alternative approach by concate-
nating all of the information carried in these fields
into the data payload of a conventional IP packet,
which when received and verified by the firewall al-
lows a following SYN packet to pass through. Al-
though this scheme is more resilient to packet loss
than the SSTCP mechanism and is much more effi-
cient in terms of packets transmitted, it is sensitive to
the timing of the transmission of the tailgating SYN.

A further concern for TGTCP is that the passphrase
packet is potentially blocked by aggressive firewalls
at the client end. This problem can be avoided by
choosing an encapsulation which is very likely to be
‘allowed out’ – for example an ICMP echo packet,
or a TCP data segment destined for port 80. How-
ever, the use of TCP encapsulation introduces two
problems when the client is behind a NAT device:

a) It requires the passphrase to be encapsulated in
(or be preceded by) a SYN packet and will there-
fore create an entry in the NAT table.

b) The passphrase packet is tied to a source IP ad-
dress to prevent a snooping attacker from replay-

ing the passphrase from his own machine. This
IP address would need to be the public address of
the NAT device.

OKTCP is an extension to the existing TCP connec-
tion state machine to include an IP or a TCP option
on SYNs which contains the result of a hash function
applied to a time varying and keyed quantity, similar
to that used in SSTCP. The major advantage of this
scheme over SSTCP and TGTCP is the atomicity
with which one gains access to the service. That is,
there is no added window of vulnerability between
the authentication and the acceptance of a connec-
tion. Of course, replay attacks within time X , or
thereabouts, are still possible (although can be by-
passed with a nonce scheme). In addition the race
conditions and potential NAT issues with TGTCP
are avoided.

It is not clear whether is it preferable to use an IP or
TCP option to implement OKTCP. Whilst it is trivial
to invent a new TCP option number with an opaque
payload, the data offset field in the TCP header ef-
fectively limits the maximum option size to 40 bytes,
of which a large number may already be consumed
by MSS and SACK negotiation options. None of the
valid TCP options have the ability to carry a large
opaque payload. The closest is the TCP Echo option
described in [9] which allows only a 4 byte payload.

Perhaps the biggest problem with this scheme is that
many firewalls discard incoming packets with IP op-
tions by default, since they potentially include dan-
gerous IP source routing options. It is also unclear
how an opaque TCP option will be treated by the
network. If the packet successfully makes it through
the Internet to the destination firewall then it may be
stripped out before forwarding the packet onto the
internal network. More experiments are necessary
to determine how well this may work.

Notwithstanding these issues, each of the three al-
ternative schemes does achieve the principle goal of
supporting progressively stronger layers of security
for end systems, thus reducing the costs experienced
under a DoS attack. However the widespread vio-
lation of the ’end-to-end’ principle in the Internet
does mean that the robust implementation and de-
ployment of any such scheme involves careful con-
sideration of the relevant network configuration and



the performance and security trade-offs involved.

5 Experimental Evaluation

This section evaluates the trade-offs made by the dif-
ferent schemes in terms of three properties of note:

• stealthiness: how easily may an attacker dis-
cover the existence of a service hidden by the
SAS;

• robustness: we identify two types of robust-
ness, namely how robust is the scheme to the
interposing of middle-boxes of various types,
and how robust the scheme is to attacks of var-
ious types; and

• effectiveness at DoS mitigation: how
lightweight is the scheme, and thus how
does it improve the security of the service with
respect to server DoS attack.

5.1 Stealthiness

Stealthiness is reckoned by the ease by which an at-
tacker may discover the existence of a service hid-
den by the firewall. In all the schemes no response
is elicited from the firewall or server until a valid
key has been presented. However, if an attacker can
eavesdrop on legitimate clients (i.e. a man-in-the-
middle attack), they can deduce the service port after
the scheme succeeds. Use of hashing in all schemes
ensures that an attacker should still find it difficult
to actually gain access to a service whose existence
is inferred. We claim that this can dramatically re-
duce the rate of attack attempts against a given ser-
vice instance. In consequence, all three varieties are
deemed to have good stealth properties.

5.2 Robustness

Robustness is a general term used here to cover a
variety of potential issues, such as interaction with
NATs, firewalls, and proxies, and the effects of
packet loss and variation in network latency. Both
SSTCP and TGTCP are vulnerable to packet loss

and reordering due to variation in path and latency:
in SSTCP this can slow down the speed of authen-
tication, and in TGTCP it requires retransmission of
both key and SYN packets. OKTCP does not require
any extra mechanisms to deal with packet loss over
existing TCP retransmission behavior.

SSTCP may have poor interactions with NAT boxes
as the many SYNs carrying the key are likely to
cause allocation of many entries in the forwarding
tables of the NAT.

5.3 Effectiveness at DoS Mitigation

Resource usage during a DoS attack is dominated
by the cost of rejecting a bad connection setup. To
illustrate the relative resource utilization, we instru-
mented the linux kernel on a 450Mhz Pentium II
processor with calls placed to record the cycle timer
in the code responsible for checking destination port
numbers against the calculated secure hash values
kept in the kernel. A user-space openSSH SSHD
server was also instrumented to record timings for
both RSA and DSA cryptographic authentication.
In particular, cycle values were extraced around
the calls to RSA verify and DSA do verify in
libcrypto.so.

CPU cycles Std. dev.
SSTCP Packet Check 212 36
SSTCP Port Calculation 6,676 1,470
RSA Verification 757,590 30,546
DSA Verification 11,932,745 174,243

Table 1: Time for cryptographic operations.

Table 1 shows the relative number of average proces-
sor cycles necessary to perform authentication steps.
For SSTCP, this is the time to perform three 16 bit
lookups in a table of pre-calculated hash values. In
contrast, we show the time taken in the Secure Shell
Daemon (SSHD) RSA and DSA encryption steps af-
ter key exchange has occurred. For illustrative pur-
poses, we show how long it takes to calculate one
16 bit table hash value and a 128 bit key (this is per-
formed once every 10 seconds to keep the lookup
table up-to-date). We include the standard deviation
for the results to show variation that may occur from



operating system scheduling and processor context
switches.

We see between three to four orders of magnitude
difference in the amount of CPU resource necessary
to discard an unwanted connection.

To look at resource usage during an emulated TCP
SYN flood, the target machine was attacked using a
single machine generating TCP traffic to port 22 as
fast as possible. This traffic was then rate limited
to 1.5Mbps using a router between the assailant and
victim.

The receiver must service the network interrupts,
process the packets and make appropriate responses.
In particular, under normal circumstances, TCP state
is allocated on the receipt of a valid TCP SYN,
timers are allocated, and a SYN/ACK is sent to the
originator of the connection. If an ACK is then
received, the kernel returns from an accept() call
and allows the application the send and receive data
where user level authentication may take place.

Using SSTCP, TGTCP and OKTCP, we, with
high probability, reject unauthenticated clients early
without the need to allocate a Transmission Control
Block or a packet buffer to send a SYN or an ACK.
Instead a good hash function is used to generate the
port value to check against.

KB Memory Used
SSTCP Enabled 32968
SSTCP Disabled 39068

Table 2: Memory usage under TCP/SYN attack.

Table 2 shows the memory usage of a server under
a sustained TCP SYN attack at 1.5 Mb/s. The num-
bers reported are an average over a 10 minute inter-
val with the SSTCP mechanism enabled and with the
mechanism disabled. The measurements were taken
with the systat package recording values every 10
seconds at relatively low CPU utilization ( 20% in
both cases). The results show approximately a 20%
savings in allocated memory at the same CPU uti-
lization.

Under load, we observed that CPU utilization is
dominated by interrupt service overhead when we
allow either the TCP stack or the SSTCP module to

discard bogus SYNs. However, from Table 1 we can
see that a DoS attack at the application level would
quickly overwhelm the CPU.

Both TGTCP and OKTCP require no additional
state in the kernel. SSTCP, however, allocates 18
bytes of state for a successful match until the se-
quence is complete. The probability of a guessing
the correct initial port value is 3/216 and if any sub-
sequent packet in the sequence fails to match, the
space is reclaimed immediately. We believe this is
an acceptable cost for the additional benefits.

6 Related work

The use of one-way functions for message authenti-
cation is well suited to this application and has been
presented previously in [7, 22, 2].

Connection-oriented networks with out-of-band sig-
naling can hide the existence of a service access
point, but do so by interposing a trusted entity [20]
between the client and server: the signaling sys-
tem itself (controlled by the network provider). The
problems addressed above are thus simply shifted
onto the service provider, who must ensure both that
the signaling system is secure and that it implements
the security policies desired by the customers.

Networks and protocols lacking a central signaling
entity (such as TCP/IP) must handle authentication
in end systems. Some work in this area is men-
tioned in Section 1. Unfortunately, this functionality
is currently placed in the network stack above the
layer responsible for establishing a transport-layer
connection (TCP). IPSec [11] includes authentica-
tion mechanisms, but does not address multi-layered
security, the early discard of attack packets, or the
ability to stealth services.

Thus, since authenticity can only be established af-
ter the connection has been set up and well-known
port numbers are used for most Internet services, the
host leaks information as to the services it offers,
and must commit significant system resource (a TCP
control block) before it can decide if it wishes to talk
to the peer host.

As mentioned earlier, the SOCKS protocol [15] pro-



vides authenticated firewall traversal by means of an
RPC-like control protocol over TCP. Our approach
requires no signalling from the server (or an inter-
vening network) back to the client, and eliminates
the visibility of the SOCKS control port, itself a po-
tential vulnerability particular when strong authenti-
cation is used for SOCKS connection setup.

The Firewall Control Protocol [14] (FCP) has been
proposed by the IETF IP telephony work to allow
applications (the SIP signaling system) to open pin-
holes in a firewall. This is useful for allowing dy-
namic IP telephone calls through a firewall – a dif-
ferent objective from stealth authentication. The
IETF Middle Box Communication working group is
also evolving a similar framework [21] to generalize
the approach to many applications.

TCP SYN cookies [3] are a well-known and effective
technique for mitigating the effects of SYN-flood at-
tacks on servers. The creation of the TCP Control
Block is delayed until the 3-way handshake is com-
plete; instead, the server returns an ACK with an ini-
tial sequence number which is a cryptographic hash
of the incoming information in the SYN packet, plus
a secret and a counter that changes every minute.
SYN cookies were devised for the case of public
servers where a shared secret between clients and
server is neither feasible nor desirable, and con-
cealment of the service’s existence is explicitly not
a goal. SYN cookies also provide no protection
against more sophisticated attacks where the attack-
ing machines set up TCP connections rather then
simply ending SYNs.

In contrast to SYN cookies, the techniques in this
paper are intended for cases where clients of the ser-
vice are authorized in advance. Our techniques not
only defend against arbitrarily sophisticated Denial-
of-Service attacks by low-cost filtering most unau-
thorized traffic before it reaches the service itself,
but also help conceal the existence of the service to
port scanners and the like.

Recently, Secure Overlay Services [12] or SOS have
been proposed as a method of securing IP commu-
nication against Denial of Service attacks. The as-
sumptions of SOS are strikingly similar to ours: a
pre-determined (and pre-authorized) set of clients
who should be allowed to access a service, and

attackers with considerable resources but without
prior knowledge of the location of the service. The
SOS technique works by having the service only ac-
cept connections from a small number of authorized
nodes, which participate in a much larger (several
thousand node) overlay network. A client makes a
connection to some overlay node, which then routes
the connection to one of the authorized nodes over
log(N) unpredictable hops in the overlay, where N
is the total number of nodes. Much of the SOS work
is concerned with how the system performs in the
presence of some fraction of compromised overlay
nodes.

We observe that SSTCP, OKTCP and TGTCP all
solve the same problem without the need to deploy a
thousand-node overlay network, and without incur-
ring the overhead of multi-hop overlay routing. One
conceivable advantage of SOS over our techniques
is that since SOS is filter-based, the filters can be
pushed out from the server to an unmodified router
at the other end of the access link, making it less
practical to attack the system by simply saturating
the link with traffic.

7 Conclusions

We have presented Spread-Spectrum TCP, Option-
Keyed TCP, and TailGate TCP as design alternatives
for silent authentication of clients of an Internet ser-
vice. Under these schemes, the service is invisible
to port scans, and highly resistant to Denial of Ser-
vice attacks which attempt to exhaust server CPU
resources in connection setups (particular in end-to-
end authentication checks). Experimental evaluation
of SSTCP has demonstrated its feasibility and effec-
tiveness.

The lightweight authentication provided by these
schemes is intended to complement the full end-to-
end security check provided by protocols like SSL
and SSH to provide a measure of “defense in depth”
for Internet services. The benefits brought be these
schemes are:

1. reduced opportunity for attack attempts since
exploits are less likely to be attempted on ma-
chines that do not appear to exist, or which do



not appear to be running any services;

2. reduced vulnerability to attacks since an at-
tacker must circumvent our scheme before pro-
ceeding with the attack; and

3. reduced cost of rejecting attackers since some
large fraction of packets may be discarded after
ultra lightweight checks.

These benefits have been achieved by modifying
only end-points, requiring changes to neither routers
nor middle boxes. Although the presented schemes
apply only to TCP, it is straightforward to extend
these approaches to UDP-based protocols which use
other signalling protocols to setup connections, such
as RTP signalling using RTSP. We believe that this
approach has wider applicability in evolving Internet
protocols.
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