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Abstract

We summarize selected recent developments and promising directions for improving the quality

of models of human performance in synthetic environments.  The potential uses and goals for

behavioral models in synthetic environments are first summarized.  Within that context, we

examine relevant, current work related to modeling more complete performance, for example, on

cognitive modeling of emotion, advanced techniques for testing and building models of behavior,

new cognitive architectures, and agent and Belief, Desires and Intentions (BDI) technology.  The

report also considers the usability of these systems as an important but neglected aspect of their

performance.  A list of projects with high payoff for modeling human performance in synthetic

environments is noted.
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1.  Tasks and Objectives for Modeling Behavior in Synthetic

Environments (SEs)

There are now numerous models of human behavior in synthetic environments, and they serve a

multitude of uses.  It is worthwhile reconsidering where and how to improve these models to

provide more realistic human behavior.

This report provides a more recent review of work than Pew and Mavor (1998), and provides a

more detailed source of further ideas and suggestions.  We particularly draw the reader's attention

to the importance of integration of models and the usability of models.  We extend Pew and

Mavor's results by examining a few architectures (e.g., Cogent, Jack) that were not included or

available when Pew and Mavor compiled their report, and summarizing several promising areas

for further work that have arisen since their report went to press.

This report directly reflects the biases and specific expertise of the authors as they attempt to

identify a wide range of potential problems and provide possible solutions.  Some of the

proposed projects are high risk and not all of the authors agrees that these projects are doable.

We could all agree, however, that if possible they would be rewarding.  Given the diversity of

human behavior, there remain many issues not covered here.  For example, many aspects of

teamwork are important but not covered.  Most of the systems and architectures reported here are

continually evolving.  Because of the rapid pace of development in this area, our reviews may

underestimate the capabilities of these systems, and several of our suggestions may already be

incorporated in them.

1.1  The role of synthetic forces

The possible expected uses and potential goals for the synthetic forces programme is quite

diverse.  There are several commonly acknowledged uses of synthetic forces.  These uses have

included at least the range shown in Table 1.  This is a wide set.  Pew and Mavor (1998) focused

on the application of synthetic forces to training, partly because the major applications and

successes have been with respect to training.  Further uses have been outlined in other reviews

(Computer Science and Telecommunications Board, 1997; Lucas & Goss, 1999; Synthetic

Environments Management Board, 1998).
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Table 1.  The potential uses of models of behavior in synthetic force environments.

• Training leaders,

• Joint and combined training,

• Training other personnel (e.g., support and logistics),

• Testing existing doctrine,

• Testing possible future procurements,

• Testing new doctrine, and perhaps even

• Serving as a formal, runnable description of doctrine.

The user community for synthetic forces would be better served if all these uses were supported

by a single system or approach.  Currently, the models of behavior in these systems have often

been developed without a long-term plan, and are only usable within the simulation they were

developed for.  Historically, few single systems have supported more than one or two of the uses

noted in Table 1.  This is wasteful and can lead to different behaviors being taught or used in

different simulations when they should be exactly the same behavior.  The use of the DIS

(distributed interactive simulation) protocol for distributed simulation is a step towards

integration, but it does not apply to behavior itself.

While having a single system or approach is highly desirable, there are good reasons why multiple

systems are currently used (in addition to a multitude of bad reasons as well).  Perhaps the most

important reason why models of behavior currently vary is that existing approaches to modeling

cannot support all of the uses in Table 1 equally well.  Models that focus on aggregate, or large

unit behavior, do not support low-level simulations very well.  Models that predict average

behavior are much less useful for practicing tactics and procedures.  Models that are good for

training provide detailed data that have to be extensively summarized and aggregated to be of use

for planners.  Planners and evaluators, for example, may find useful data in large simulations such

as Purple Link, but such simulations cannot yet be convened within an afternoon or even a week

to examine how a new platform performs.  This report will attempt to make suggestions on all of

these levels, but does not intend to be comprehensive.

1.2  Definition of terms

There are several terms used in this report that have meanings specific to the domain of

behavioral modeling.  The term model, for example, will refer exclusively to cognitive models,

and the term simulation will refer exclusively to task simulations.  We review these terms here,

starting by introducing synthetic forces.  We briefly explain ModSAF to provide a common

system as a point of reference.  We then define the terms we will use with respect to models of

behavior.

1.2.1  Synthetic forces

Synthetic forces exist in military simulations, sometimes alongside real forces that have been

instrumented and placed in the simulation.  There are now synthetic force simulations covering all

of the armed services.  Synthetic forces can be separated into two components, the physical
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aspects and the behavioral aspects.  The physical aspects represents the movement and state of

platforms (objects) in the simulation, including such aspects as maximum speed and the set of

actions that can be performed in the world.  The physical aspects provide constraints on behavior.

Physical are fairly complete now for most purposes, although they remain important in their own

right (Computer Science and Telecommunications Board, 1997; Synthetic Environments

Management Board, 1998).

The behavioral aspects of a synthetic force platform determine where, when, and how it performs

the physical actions, that is, its behavior.  Many human and entity behaviors can be simulated,

such as movement and attack, but behavior has been less veridically modeled than physical

performance.  The next step to increase realism is not only to include further intelligent behavior

but also to match more closely the timing and sequence of human behavior when performing the

same tasks.

1.2.2  ModSAF

Modular Semi-Automated Forces (ModSAF) is a system for simulating entities (platforms) on a

simulated battlefield (Loral, 1995).  It is perhaps the most widely used behavioral simulator in

military synthetic environments.  The goal of ModSAF is to replicate the behavior of simulated

platforms in sufficient detail to provide useful training and simulation of tactics.

ModSAF includes the ability to simulate the most common types of physical platforms, such as a

tank, and external effects on those platforms like weather and smoke.  The terrain is defined in a

separate database, which is shared by other simulators in the same exercise using the DIS

simulation protocol.  Multiple platforms can be simulated by a single ModSAF system.

The local platforms interact with remote platforms by exchanging approximately twenty different

types of information packets.  Examples of packet types include:  announcing where the platform

is (the other platforms compute whether the originator can be seen), radar being emitted, and

shots being fired.  Thus, the features of the packets vary.  Each simulation is responsible for

updating its own position and computing what to do with the information in each packet.  So, for

example, a tank does not directly shoot another tank.  Attackers send out projectile packets, and

the target tank computes that it would be damaged by their projectiles.

Some semi-intelligent behaviors are included in ModSAF through a set of about twenty different

simple scripts.  These scripts support such activities as moving between two points, hiding, and

patrolling.

ModSAF is a large system.  It can be compiled into several major versions, include versions to test

networks, and specific versions for each service.  The terrain databases each include up to 1

gigabyte of data.  Simulating multiple entities required in 1999 a relatively fast workstation (100

MHz+) with a reasonable amount of memory (32 MB+).

A major problem is usability.  ModSAF is large and has a complicated syntax.  Users report

problems learning and using it.  A better way to provide its functionality needs to be found, or its

usability needs to be improved directly.
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1.2.3  Frameworks, theories, models, and cognitive architectures

It is common in cognitive science to differentiate between several levels of theorizing (e.g.,

Anderson, 1983; 1993, Ch. 1) and defining these levels now will help us in the remainder of this

report.  Framework refers to the specification of a few broad principles, with too many details left

unspecified to be able to make empirical predictions.  For example, the idea that human cognition

acts as a production system offers a framework for studying the human mind.

Theory adds more precision to frameworks, and describes data structures and mechanisms that at

least allow qualitative predictions to be made.  For example, the production system principles

presented in Newell and Simon (1972) together form a theory of human cognition.

Models are theories implemented as computer programs or represented mathematically to apply

to specific situations or types of situations.  While generally more limited in their domain of

application than theories, models typically also provide more accurate, quantitative predictions.

Cognitive architecture has two meanings: (a) specifications of the main modules and mechanisms

underlying human cognition; and (b) the computer program implementing these specifications.

These meanings are separate and distinct, but usually are used as equivalent.  Cognitive

architectures, as proposed by Newell (1990),, offer a platform for developing cognitive models

rapidly while keeping the theoretical coherence between these models intact.  These cognitive

architectures are often seen as equivalent to Unified Theories of Cognition, a way to pull all that is

known about cognition into a single theory.  In Appendix 3 we include brief descriptions of

ACT-R and Soar.

There exists no generally agreed definition of hybrid architectures.  Some use the term when a

cognitive architecture includes symbolic features (e.g., a production system) as well as non-

symbolic features (e.g., neural net spreading of activation among memory elements); others, such

as Pew and Mavor (1998), use the term when two or more architectures of any kind are combined

(e.g., Soar and EPIC).  We use the latter definition in this report.

When comparing theoretical proposals, it is essential to keep in mind the level at which the

proposals were formulated: typically, a framework will cover a large amount of empirical

regularities without specifying many details, while a model will cover a small amount of data with

great precision.   It is generally agreed that models are more useful scientifically than theories or

frameworks, because they make clear-cut predictions that can be tested with empirical data, and

hence are less amenable to ad hoc explanations (Popper, 1959).  Models are, however, harder to

create and use.

1.3  Structure of this report

Section 2 provides a summary review of Pew and Mavor (1998).  This provides the context for

much of the remainder of the report.  Section 3 on providing more complete performance

reviews amplifications, updates, and additions to Pew and Mavor's list of psychological regularities

that should be included in models of human behavior.  Section 4 notes problems integrating

models with simulations as well as integrating them with each other to make larger more complete

models.  Section 5 takes up the issues surrounding usability of behavioral models.  Usability of
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the models themselves was considered to be outside the scope of Pew and Mavor's report (1998, p.

10).  We will argue that usability of these models is not only desirable but necessary for the

success of modeling itself.  Section 6 considers techniques and cognitive architectures for

modeling human behavior in synthetic environments with respect to the aims of the previous two

sections.  Section 7 concludes with a list of projects to address problems identified in the previous

four sections.

2.  Summary of Pew and Mavor

While the reader of this report is likely to have seen Pew and Mavor's (1998) Modeling Human

and Organizational Behavior, we review it briefly here to provide background for readers not

familiar with it, and to provide some useful context.

2.1  Their brief

In their 1998 book Pew, Mavor, and their panel review the state of the art in human behavior

representation as applied to military simulations, with an emphasis on the areas of cognitive, team,

and organizational behavior.  Their book is based on a panel that met for 18 months, and drew

extensively on a wide range of researchers.  It is available as a hard cover book, as well as online

<pompeii.nap.edu/bo_book/0309057477/html/>.

In their book, Pew and Mavor looked not just at representing behavior, but also at methods for

generating it.  They provide a review of the uses of models of behavior in synthetic environments.

They include a review of the major synthetic environments in use by the US military.  These

environments by example describe the range of current and potential uses and levels of

simulation.

The book provides a useful summary of integrated (cognitive) architectures.  It is comprehensive

enough and clear enough that we have used it to teach undergraduate students.  The summary

includes a table comparing the architectures.  We will attempt to apply the same table to review

several additional architectures.

The book then reviews the important areas  to modeling human behavior in synthetic

environments.  This is a very wide range, encompassing nearly all of human behavior.  The book

reviews attention and multitasking, memory and learning, human decision making, situation

awareness, planning, behavior moderators (such as fatigue and emotions), organizational (small

group) behavior, and information warfare (e.g., how the order of information presentation

influences decision making).  The book concludes with a framework for developing models of

human behavior followed by a set of conclusions and recommendations.  Each of these reviews is

clearly written and limited only by the space they are allowed.  The reviews are quite positive,

suggesting that major aspects of behavior are either already being modeled, or can and will be

modeled within a few years.  This is in stark contrast to an earlier similar review, which could only

note open questions (Elkind, Card, Hochberg, & Huey, 1989).
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2.2  What Modeling Human and Organizational Behavior does well

Pew and Mavor's book is a useful and, we believe, seminal book for psychology and modeling.

The book is useful because the reviews it provides, while they could be extended, are unusually

clear and comprehensive, covering the full range of range of relevant behavior.  They would serve

as a useful textbook for professionals in other areas to teach them the current results and current

problems in these areas of psychology and in modeling.

The book is seminal because the authors lay out a complete review of cognition that is widely

usable.  While their review is similar to Newell's (1990) or Anderson's (1998) reviews, Pew and

Mavor's review is not situated within a single architecture; the result is a more global but only

slightly less directed view.

The reviews of the models and of the data to be modeled together, because of their scope and

potential impact constitute a call to arms for modelers of synthetic forces.  The juxtaposition of

the data and ways to model it is enticing and exciting.  This approach of modeling behavior will

significantly influence psychology in general if the modeling work continues to be successful.

Models of synthetic forces in the near future will subsume enough general psychology data that

they will simply represent the best models in psychology.

2.3  Where Modeling Human and Organizational Behavior can be

improved

There are surprisingly few problems with Pew and Mavor's review.  However, they do not review

all of the possible regularities of human behavior.  We will be able to add a few important aspects,

and provide further arguments to support many of their main conclusions.  They could have

referenced, for example, Boff and Lincoln (1986) for a wide ranging list of existing general

regularities in perception and performance.  In the area of human decision making, Dawes'

(1994) review is also valuable.  They do not appear to cite a quite relevant report on how this type

of modeling is also being developed as entertainment (Computer Science and

Telecommunications Board, 1997), and, not surprisingly, they are unaware of a concurrent similar

UK review (Synthetic Environments Management Board, 1998).

On a high level and early on, they explicitly note that they will not review the usability of

behavioral models.  We will argue that improved usability is necessary for these models to achieve

their potential.

They did not have the space to review all the integrative (cognitive) architectures.  While it would

be unfair to call this book dated at this point in time, there are already a few architectures worth

considering that were not available to them.

They do not dwell on the ability to describe human behavior, focusing instead on how to generate

it.  There remains some need to be able to describe the behavior before generating it, which we

will take up below.

Finally, they did not have the space to lay out very detailed projects to fulfill their short-,

medium-, and long-term goals.  We provide a more detailed but still incomplete set.
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3.  Current Objective: More Complete Performance

There are a wide range of behaviors that have yet to be incorporated into existing models.

Included in this list are numerous additional relevant regularities available about human behavior

(see Boff & Lincoln, 1986, for a subset).  The question that must be addressed is which behaviors

are the most important and most accessible to incorporate.  We note here several of the most

promising or necessary behaviors to be included next in models of human performance based on

our experiences and previous work.

The suggestions we make later tend to be based on the individual.  Much of the behavior being

modeled currently in synthetic environments is different because it is based on the platoon or

higher level and is aggregated across time or situations.  As smaller time scales and more intricate

and fine-grained simulations are developed and used, such as for modeling urban terrorism, the

behavioral issues noted here will become more important.

We start with learning.  While Pew and Mavor include learning as a useful aspect of performance,

we believe learning to be essential.  We also expand the case for including models of working

memory, perception, emotions, and erroneous behavior.  We then can examine higher-level

aspects of behavior to be considered, starting with integration of models and ending with

information overload.

3.1  Learning

Learning is mentioned as important in several ways by Pew and Mavor (1998).  Learning (i.e.,

training) is the largest role of the military in peace time (i.e., rehearsal, p. 30); it is essential for

multitasking behavior (pp. 114-115); in its own right it is an important aspect of human behavior

(Ch. 5); and it is important within groups (Ch. 10).  We cover learning again here.

Pew and Mavor mention several of the advantages of learning, but do not make a complete case

for its inclusion.  There are several additional advantages that they do not mention or that we can

emphasize.  Tactics are influenced by learning.  There is a home-field advantage.  Working within

your own territory, because you know it, makes additional tactics feasible and provides generally

improved performance.  (Working within your own territory would also provide some additional

motivation.)

Including learning in models would provide a mechanism for producing different levels of

behavior.  Experienced troops, for example, would not be different not in some numeric way in

that they react faster (although this is probably true), but in a more qualitative way in that they

know more and use different strategies.  Learning modifies, constrains, and supports the use of

computer interfaces (Rieman, Young, & Howes, 1996); similar effects may be found in exploring

terrain and implementing tactics in new geographic spaces.

Programming -- that is, creating the model directly -- may be too difficult.  It may be the case

that it is easier for models to learn behaviors than for these behaviors to be programmed directly.

This argument has been put forward by connectionist researchers for some time.
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Theoretical work in this area of learning has direct implications for training within the military

and within schools.  Models that learn can be used to understand and optimize learning (Ohlsson,

1992).  If we can program models to learn, the behavior and knowledge that result may be

different from the initial knowledge that the system started with, or from the expert performance

that we currently teach.  This final knowledge may be useful for teaching.  In the case of

photocopying (Agre & Shrager, 1990), for example, better strategies arise through practice, but

are not valuable enough to teach.  In military domains, it may be useful to teach improved

strategies that arise from grossly extended practice, that is, tactics that are better, but that no

person has had enough practice to learn them.

3.2  Expertise

Expertise, behavior where no more learning is needed, has an important role to play in models of

human performance (Shadbolt & O'Hara, 1997).  One of the Western powers' greatest strengths is

training in depth and breadth.  Practice influences speed of processing and error rates,

particularly under stress.  If synthetic forces are to be used to test doctrine, the effect of training

on expertise must be included.

Expert behavior has been studied extensively in recent years, and a great deal is known about it

(Chipman & Meyrowitz, 1993; Ericsson & Kintsch, 1995; Hoffman, Crandall, & Shadbolt, 1998).

Some essential characteristics of expertise are that it includes highly developed perception for the

domain material, selective search for solutions in that domain, and a good memory for domain-

related material.  In most domains,  problem solving behavior (search) differs as well: novices

tend to search backward from the situation to find solutions, and experts to search forward from

the situation to find solutions (Larkin, McDermott, Simon, & Simon, 1980).  Finally, transfer of

expertise to other domains is limited.

Klein and his colleagues (e.g., Klein, 1997) have studied real-time performance in real settings (as

opposed to laboratory settings) in detail, and have essentially found that the characteristics

mentioned above are also critical in these situations.  A number of rather extensive reviews have

been undertaken of Klein's approach, which is often referred to as Naturalistic Decision Making

(NDM) (see, for example, Hoffman & Shadbolt, 1995).  A method to elicit this type of

knowledge has been developed by Klein and his associates.  It is known as the Critical Decision

Method and is described in Hoffman et al. (1998). The specifically real-time challenges of

acquiring knowledge relating to perceptually cue-rich decision making are discussed in a second

DERA report by Hoffman and Shadbolt (1996).

Given the fact that it takes a long time to become an expert -- the rule of 10 years or 10,000

hours of practice and study is often mentioned by people such as Simon (Simon & Chase, 1973)

-- the size of the data set has made it difficult indeed to study real-time learning on the road to

expertise.  Real-time learning in simpler problem solving tasks has been studied, however, and

modeling accounts have been given (Anzai & Simon, 1979; John & Kieras, 1996; Nielsen &

Kirsner, 1994; Ritter & Bibby, 2001).  Some of these results may apply to expert learning in

more complex tasks as well.
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While experts vastly outperform non-experts in most domains, exceptions to this rule have been

found, in domains such as clinical diagnosing, clinical prediction, personnel selection, and

actuarial predictions (Dawes, 1988).  In these domains, experts perform only slightly better than

non-experts, and typically perform worse than simple statistical methods, such as regression

analysis.  One other aspect of behavior that distinguishes experts from novices is the ability to

recover from errors.  An important question is which category military diagnosing and prediction

belong to because of the uncertainties involved, and, based on this result, what can be done (either

by providing formal tools or by improving training) to remedy this situation and assist error

recovery.

The effect of learning local environments and strategies (own and opponent's) must also be

included.  Having learnt the local terrain probably explains much of the home-field advantage.

How does this learning occur?

Within the sub-field of knowledge-engineering there have been considerable efforts to produce

methodologies for the acquisition, modeling and implementation of knowledge-intensive tasks.  It

is a moot point how far some of the resulting decision support systems are cognitively plausible.

Nevertheless the methodologies do now represent powerful ways of constructing complex systems

that exhibit task oriented behavior.  To this end anyone engaged in engineering large scale

synthetic environments should look at the principles laid down in the most recent of this work.

The most accessible source is probably Schreiber et al. (in press).

3.3  Working memory

Central to all questions about human cognition and performance is the role of working memory.

Working memory is implicated in almost all aspects of cognitive performance (Newell & Simon,

1972; Just & Carpenter, 1992; Boff & Lincoln, 1986, Section 7; Wickens, 1992).  It is widely

agreed that limitations of working memory are a major determinant of limitations of cognitive

performance.  Definitions of working memory are varied, but for present purposes we can take it

to refer to the mechanisms that maintain and provide access to information created or retrieved

during the performance of a task.

Modern approaches to the psychological study of human working memory often take as their

starting point the famous paper by Miller (1956) and argue that people can retain only around "7

+/- 2" items in short-term memory.  Later work has tended to revise that estimate downwards,

towards 3 to 4 items of unrelated information (Crowder, 1976; Simon, 1974).

A more recent and influential line of work by Baddeley (1986; 1997) presents working memory

as a dual system for the rehearsal of information, consisting of (a) a phonological loop, that

contains around 2 seconds of verbalizations, for the rehearsal of phonological, acoustic, or

articulatory information (e.g., useful for repeating a phone number until you dial it), and (b) a

visuo-spatial scratchpad, of somewhat indeterminate capacity (e.g., useful when searching for an

object that you have just seen), to play an analogous role for the maintenance of pictorial and

spatial information.
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Other approaches within experimental psychology place more emphasis on the role of working

memory in both storing and manipulating temporary information (Daneman & Carpenter, 1980;

Just & Carpenter, 1992).  An important recent extension to the notion of working memory comes

from the study of expertise, where Ericsson and Kintsch (1995) argue that after extensive practice

in a particular domain people can, through specialized retrieval structures, use long-term memory

for the rapid storage of temporary information (long-term working memory).

A recent book (Miyake & Shah, 1999) reviews a range of current approaches to the modeling of

human working memory, although many of the models do not have the explicitness and

generality needed to support the simulation of human performance in complex tasks.  Of those

that do, their view of working memory varies widely.  Some, such as ACT-R (Anderson &

Lebiere, 1998) and CAPS (Just & Carpenter, 1992), consider working memory not as a separate

structural entity, but rather as an activated region of a larger, more general memory system, in

which the limitations of working memory derive from a limited total quantity of activation.  Just

and Carpenter (1992, and more recently Lovett, Reder & Lebiere, 1999) extend that view to the

modeling of individual differences, where different people are assumed to have different

maximum quantities of available activation.  A number of these ideas are put together by Byrne

and Bovair (1997), who model (in CAPS) the way that a class of performance errors, in which

people forget to complete subsidiary aspects of a task (such as removing the original from a

photocopier), is affected by working memory load.

In contrast to these resource-limited models, Soar (Newell, 1990) imposes no structural limitation

on working memory.  Using Soar, Young and Lewis (1999) explore the possibilities of working

memory being constrained not by physical resources, but by functional limitations and by

specific kinds of similarity-based interference.

In summary, the current position is that human performance is known to be highly dependent on

working memory and working memory load, and to be susceptible to factors such as individual

differences (Just & Carpenter,  1992), distractions (Byrne & Bovair, 1997), emotion and stress

(Boff & Lincoln, 1986), and expertise (Ericsson & Kintsch, 1995).  Many existing models of

human performance (e.g., as reviewed in Pew & Mavor, 1998) do not directly model the role of

working memory.  Models exist (Miyake & Shah, 1999), and some approaches to cognitive

modeling (ACT-R, CAPS, Soar) have potential for improving predictions of human performance

in realistic task situations by including more accurate theories of memory.  There remains a need

for the investigation and development of more explicit and complete models, with broader scope,

of the role of working memory in human performance.

3.4  Emotions

Emotion, affect, and motivation are increasingly being seen as factors that can and often do

influence cognition.  This view has receiving attention amongst a range of computer scientists and

psychologists.  Pew and Mavor (1998, Ch. 9) lay out an initial case for including emotion as an

internal moderator of behavior.  The British HCI Group sponsored a one-day meeting on

"Affective computing: The role of emotion in human computer interaction", which attracted 70

people to University College, London (Monk, Sasse, & Crerar, 1999).  Picard's (1997) recent

book provides a useful review of emotions and computation in general.  Sloman's (1999) review
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of the book and Picard's (1999) response are useful summaries.  A further case is also made here

in the section on the Sim_Agent Toolkit.

We present here an additional argument for including a model of emotions in models of synthetic

forces, note two potential problems with existing models, and sketch an initial theory.

3.6.1  Further uses of emotions

Models of emotions may be necessary for modeling non-doctrinal performance such as

insubordination, fatigue, errors, and mistakes.  Many authors have also noted the role of emotion

in fast, reactive systems (Picard, 1997, provides a useful overview).  Individual differences in

emotions may be related to personality and differences in problem solving.  That is, the range of

emotions may be best explained as an interaction that arises between task performance and

situation assessment and an agent's likes, desires, and personal cognitive style.  An argument is

starting to be put forward that changes in motivation based on temporally local measures of

success and failure may help problem solving (Belavkin & Ritter, 2000; Belavkin, Ritter, &

Elliman, 1999).

3.6.2  Working within a cognitive architecture

Emotions arise from structures related to cognition, and should be closely related to and based on

cognitive structures.  All of the arguments for creating a unified theory of cognition (Anderson,

Matessa, & Lebiere, 1998; Newell, 1990) also apply to creating a unified theory of emotion as

well.  Emotions are presumably not task specific, so their implementation belongs in the

architecture, not in the task knowledge.

Theories of emotions should thus be implemented within a cognitive architecture.  This will allow

them to realize all the advantages of being within a cognitive architecture, including being

reusable and being compared to and incorporated within other models.  Some models of

emotions have been built within a cognitive architecture (Bartl & Dörner, 1998; Belavkin, Ritter,

& Elliman, 1999; R. Jones, 1998; Rosenbloom, 1998).  Being created within an information

processing model has required them to be more specified than previous theories.  Being part of a

model that performs the task has also allowed them to make more predictions.

3.6.3  A sketch of a computational theory of emotions

An important aspect of cognition is to process sensory information, assign meaning to it, and then

decide upon a plan of actions in response.  This is a real-time process in which new sensory

information arrives continuously.  This view is similar to the view put forward by Agre and

Chapman about representationless thinking.  The plan must therefore be dynamically

reconfigurable and will often be abandoned in favor of a better plan mid-way through its

execution.  Elliman has a speculative view of the role of emotions in cognition, similar to

Rasmussen's (1998) stepladder framework of behavior, which makes the following assumptions:

1. The amount of sensory data available at any moment is too large for attention to be given

to a more than a small fraction of the data.



19 3 September 1999

2. The conscious consideration of the results of perception is an expensive process in terms

of the load on neural hardware and is also time consuming.

3. Most sensory processing is unconscious in its early stages in order that expensive

conscious processes need consider only the results of perception.  These results might

include labeled objects with a position in space, for example "a tank moving its turret in

that clump of trees".  Conscious processes might well add further detail such as the type

of tank and the range of its gun.

4. Attentional mechanisms are needed to direct the limited high-level processing to the most

interesting objects.  These may be novel, brightly colored, fast moving, or potentially

threatening.

5. Planning is an especially heavy computational process for the human mind, and one that

is difficult to carry out effectively under combat conditions. (Perhaps the best way to

explain why military doctrine is useful is that it distills the best generic practice and trains

the soldier to behave in a way that might well have been a chosen and planned behavior

if the individual had the time and skill to formulate the action himself.  The danger is

that no doctrine can envisage all scenarios in advance, and on occasion the use of

doctrine in a rigid manner may be harmful.)

6. From an evolutionary perspective this system of unconscious processing of sensory input,

attentional mechanisms, and cognitive planning (together with speech-based

communication) is a masterstroke of competence for survival.  However, it has one

crippling disadvantage -- it is too slow to react to immediate and sudden attack.

Rapid reaction to possible threat without the time for much in the way of cognitive processing is

clearly of huge value.  In this framework emotion can be seen as kind of labeling process for

sensory input.  Fear particularly fits this pattern and is a label that causes selected sensory input to

literally scream for attention.  In order for this process to work rapidly it needs to be hard-wired

differently than higher-level cognitive processes.  There is strong evidence that the amygdala is

intimately involved in the perception of threat, and is able to trigger the familiar sensation of fear

(e.g., Whalen, 1999).  If this organ of the brain is damaged, individuals may find everyday events

terrifying whilst not perceiving any need for alarm in life threatening situations.

This rapid, emotive response to sensory data is inevitably relatively crude and prone to false

alarms.  Reactive behavior is triggered that may be involuntary, for example, the startle reaction

and physiological changes due to the release of noradrenalin.  After the reaction response it takes

time for cognitive processes to catch up and make a more informed assessment of the situation

and actual threat.  If this emotive, reactive stimulation is excited in a chronic manner then

susceptible individuals may become less effective, with impaired ability to think and plan clearly.

Any kind of anxiety is a form of stress.  Because individuals have a finite capacity for absorbing

it, excessive stress results in fatigue.

3.5  Errors

Ideally, military behavior is functional and normative, that is, what should be done.  Human

behavior does not always match the normative ideal of military behaviors.  One of the most

important aspects of human performance, which has often been overlooked in models of behavior

and problem solving, is errors (although see, for example, Cacciabue, Decortis, Drozdowicz,
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Masson, & Nordvik, 1992; Freed & Remington, 2000; Freed, Shafto, & Remington, 1998).  There

is a consensus building about the definition of errors -- for most people an error is something

done that was not intended by the actor, that was not desired, and that placed the task/system

beyond acceptable limits (e.g., Senders & Moray, 1991).

Part of the reason for omitting errors from models of behavior is the fallacy that they are

produced by some special error-generating mechanism that can be bolted on to models once they

are producing correct behavior on the task at hand.  Often, however, the actions that precede

errors would have been judged to be correct if the circumstances had been slightly different.  In

other words, as Mach (1905) observed, knowledge and error both stem from the same source.

Evidence shows that novices and experienced personnel will often make the same errors when

exposed to the same circumstances.  The difference lies in the ability to notice and recover from

these errors.  Experienced personnel are more successful at mitigating errors before the full

consequences arise.  In other words, it is the management of errors that is important and needs to

be trained (Frese & Altmann, 1989), rather than vainly trying to teach people how to prevent the

inevitable.

3.7.1  Training about errors

In any complex, dynamic environment, such as a military battlefield, the consequences of

uncorrected errors are potentially disastrous.  While normally a string of mistakes is required to

create a disaster, the rapid pace of the battlefield and adversaries allow single mistakes to become

more catastrophic.

There is, therefore, a real need to learn how to manage these errors in an environment in which

the consequences are less severe.  An advantage of using synthetic environments is that

comparative novices can experiment in unfamiliar situations, with restrictions approximating the

real environment in time, space, enemy capabilities, and so on, but with the knowledge that the

consequences of any errors can be recovered.  In addition, multiple scenarios can be played out

over a compressed time period, thereby providing the novice with a variety of experiences that

would take many years to accumulate through exposure to situations in the real world.  This can

be a great training aid, literally giving years of experience in far less time.  When novices were

trained in aircraft electrical system troubleshooting using a simulated system, they were able to

acquire years of experience in months because the tutor let them practice their diagnostic skills

without practice their disassembly skills (Lesgold, Lajoie, Bunzon, & Eggan, 1992).

3.7.2  Models that make errors

There are several process models that are complete enough to make errors, depending to some

degree on the definition of error.  Models that include errorful behavior exist in EPAM

(Feigenbaum & Simon, 1984; Gobet & Simon, 2000), ACT-R (Anderson, Farrell, & Sauers, 1984;

Anderson & Lebiere, 1998; Lebière, Anderson, & Reder, 1994) and Soar (Bass et al., 1995;

Howes & Young, 1996; Miller & Laird, 1996), although each generates errors in quite different

ways and at quite different levels.  Fewer models exist that model error recovery, although this is

clearly the next aspect to model.
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A problem with models and humans is that the erroneous behavior is often task specific; given a

new task, both models and humans might not generate the same behavior.  In other words, the

erroneous behavior arises as a result of the combination of human, technological, and

organizational (environmental) factors.  Vicente (1998) delineates some of the problems in this

area.

There are various taxonomies of errors that could be incorporated into models of performance.

There are also other constraints that reduce the level of performance that are worth exploring,

including working memory (Young & Lewis, 1999), attention, and processing speed due to

expertise.

3.6  Adversarial problem solving

Adversarial problem solving is different from simple problem solving and makes additional

requirements for modeling behavior in synthetic environments.  Planning is not done within a

static environment, but done in an environment with active adversaries.

Research on adversarial problem solving (e.g., Chase & Simon, 1973; de Groot 1946/1978; Gobet

& Simon, in press; Newell & Simon, 1972) has identified several aspects of cognitive behavior

that have been shown to generalize to other domains, including the military domain (Charness,

1992).  A key result is that players do not follow an strategy such as minimax, but that they

satisfice (Simon, 1955), that is, they satisfy themselves with a good-enough solution, which can be

far from the optimal solution (de Groot & Gobet, 1996; Gobet & Simon, 1996b).  This satisficing

behavior can be explained by the processing and capacity limits of human cognition, such as time

to learn a new chunk or the capacity of short-term memory  (Newell & Simon, 1972).

A second, related aspect is that a player's search is highly selective: only a few branches of the

search tree are explored.  The choice of subspace to search seems to be constrained by pattern-

recognition mechanisms (Chase & Simon, 1973; Gobet, 1998; Gobet & Simon, 1996b).  A

consequence is that misleading perceptual cues may result in the exploration of an incorrect

subspace.  For example, Saariluoma (1990) reported that chess masters found a suboptimal

solution when the features of the position led them to look for a standard, although inferior

subspace.  The consequence for understanding combatant behavior is that pattern recognition

may influence the course of action chosen as much as the detail of the way the search is carried

out.  In fact, de Groot (1946/1978) did not find differences in the macrostructure of search of

chess players at different skill levels.

A third important result is that chess players reinvestigate the same sequence of actions several

times, interrupted or not by the analysis of other sets of actions.  De Groot (1946) has called this

phenomenon progressive deepening.  It is related to the selective search shown by experts in other

areas (Charness, 1991; Ericsson & Kintsch, 1995; Gobet & Simon, 1996b; Hoffman, 1992).  De

Groot and Gobet (1996) propose that progressive deepening is due both to the limits of human

cognition (limited capacity of short-term memory, slow encoding time in long-term memory) and

to the fact that with this searching behavior information gathered at various points of the search

may be propagated to other points, including previously visited points (this could not be done

with a search behavior such as minimax).
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These features of cognition, identified in adversarial problem solving, also occur in rapid decision

making, in domains such as fire fighting, combat, and chess players in time trouble.  Interestingly,

the model developed by Klein and his colleagues (see Klein, 1997 for a review) singles out the

same features as the model developed by Chase and Simon (1973) to explain expert chess

playing: pattern recognition, selective search, and satisficing behavior.

While some aspects of adversarial problem solving are well understood, others have yet to be

studied in any depth.  Such aspects include the way the function used to evaluate the goodness of

a state (the evaluation function) changes as a function of time, the link between the evaluation

function and pattern recognition, or the learning of domain-specific heuristics, which all have

direct implications for combat behavior.

Relatively little research has been done on how players take advantage of the thinking

particularities of their opponent, in particular by trying to outguess him.  Jansen (1992) offers

interesting results.  He has developed a computer program that takes advantage of some features

and heuristics of human cognition in simple chess endgames, such as the tendency, in human

players' search, to avoid moves that lead to positions with a high branching factor, and to prefer

moves that lead to forced replies.  Using these features and incorporating them in its evaluation

function, the program was able to win faster (in won positions) or to avoid defeat (in lost

positions) more often against human players than by using a standard alpha-beta search.  In

principle, such an approach could be extended to include both skill-related and individual

differences in synthetic environments.

In comparison to perception and memory in games, relatively little computer modeling of human

behavior has been done with adversarial problem solving (if one excludes pure AI research, in

which adversarial problem solving has been a favorite subject of research).  One may mention the

previous work of Simon and colleagues (Baylor & Simon, 1966; Newell, Shaw, & Simon, 1958),

and the programs of Pitrat (1977), Wilkins (1980), and Gobet and Jansen (1994).  All these

programs were created for chess and most cover only a subset of the game.

There are implications of adversarial search variation for performance (i.e., how well a planner

models an opponent).  This would be a natural place to model various levels of experience in

opponents.

3.7  Variance in behavior

Including more variety in how a model performs a task is one of the next steps for improving the

realism of synthetic forces.  Currently, many models will execute a task the same way every time

and for every equivalent agent.  In the real world, this is not the case.  The choice of strategies and

the ordering of substrategies will vary across agents and vary for a given agent across time.  This

lack of variance makes advisaries and allies too predictable in that they always do the same thing.

Including variance in behavior is also necessary when behavior is less predictable.  Novices, with

less knowledge, have greater variance in behavior (Rauterberg, 1993).  In the past, variance was

intentionally suppressed in simulations because it was thought that variance in real behavior was

suppressed through doctrine and training.  Including variety in behavior is of increasing



23 3 September 1999

importance when modeling less prepared and less trained forces, and now for improving model

accuracy as variance in real behavior is admitted.

Variance in behavior is also important when modeling non-combatant agents, such as white forces

and civilians.  These agents may be producing their behaviors deterministically, but the

determiners are often hidden from other agents, making them appear relatively unpredictable.

Finally, the ability to model a variety of behaviors is necessary for sensitivity analysis.

Variance will arise out of several factors.  It may arise from different levels of expertise, which is

covered above.  It may arise from different strategies, which will require including multiple

strategies and noting where orders do not have to be followed and when panic leads orders to be

ignored.  Variance may also arise as a type of error, of applying a right action in the wrong

circumstances.

In any case, variance in agent behavior in synthetic environments particularly needs to be

included in training materials.  Humans are very good pattern recognizers -- although they do not

always look for or know the right pattern -- and will take advantage of models that do not vary

their behavior.  The real opponents will not usually be so predictable.

3.8  Information overload

Problems with information overload have been noted numerous times (e.g., Woods, Patterson,

Roth, & Christoffersen, 1999).  Problems resolving clutter, workload bottlenecks, and problems

finding significance in incoming data, are not yet problems for many models of human

performance.  Currently, most cognitive and synthetic force models do not face information

overload.  The situation has more typically been of a model seeing only a limited set of

information and knowing how to perform only one or a few tasks.

In the near future, the models will have more complex eyes with which to see as well as more

knowledge to interpret the eyes' input.  This will lead to more incoming information with a more

difficult problem of deciding which objective to pursue next and how to choose the best strategy

based on a larger set of knowledge.  We will also find that models will start to have trouble with

information overload, clutter, and situation assessment.  Their tactics in this area will be

particularly important when there are time pressures, which are common in synthetic

environments and the worlds they model.

4.  Current Objective: Better Integration

There are theoretical and practical problems integrating models with simulations and with other

models.  The problems can appear to be simply software issues, but deeper theoretical issues often

go hand in hand with these problems.  We thus note a few of these problems of getting models to

interact with simulations as well the basic problem of aggregating models.
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4.1  Perception

At least since de Groot's early work (1946), perception has been deemed to play an essential role

in cognition.  Neisser (1976, p. 9) aptly summarizes it as "perception is where cognition and

reality meet".  This point of view has been buttressed in recent years with the emphasis given by

Nouvelle AI (e.g., Brooks, 1992), which is based on reactive architectures, perceptual mechanisms,

and on their coupling with motor behavior.  Neuroscience (e.g., Kosslyn & Koenig, 1992) teaches

us that, due to evolutionary pressure, a large part of the brain deals with perception (mainly

vision); hence, an understanding of perception is essential for understanding the behavior of

combatants.

Perception-based behavior offers a series of advantages: it is fast, attuned to the environment, and

optimized with respect to its coupling with motor behavior.  However, its disadvantages include its

tendencies to be stereotyped and to lack generalization.  In addition, from the point of view of the

modeller, it is a difficult behavior to simulate well.  This is in part due to the fact that low-level

perception is still poorly understood (Kosslyn & Koenig, 1992), although see recent progress in

robotics and agents behavior for examples of successful implementation of basic perceptual

mechanisms for use by cognition (e.g., Brooks, 1992, Zettlemoyer and St. Amant, 1999, and St.

Amant and Riedl, in press).

Perception may be seen as the common ground where various aspects of cognition meet,

including motor behavior, concept formation and categorization, problem solving, memory, and

emotions.  In several of these domains, computer simulations illustrating the role of perception

have been developed.  Brooks (1992) and others have investigated the role of perception in motor

behavior with simple insect-like robots.  The link between concept formation and (high-level)

perception has been studied using the EPAM architecture (Gobet, Richman, Staszewski, & Simon,

1997).  The role of perception in problem solving has been studied using CHREST, a variation of

EPAM (Gobet, 1997; Gobet & Jansen, 1994) that also accounts for multiple memory regularities.

Eye movements are simulated in detail in CHREST, but not the low-level aspect of perception.

(We will deal with the relation between problem solving and perception in Section 3.5.)  A more

detailed simulation of low-level aspects of perception such as feature extraction is an important

goal for the future of research on the relation of perception to other aspects of cognition.  In

addition, little work has been done on perception in dynamically changing environments, and on

the effects of stress, emotion, motivation, and group factors on perception.

It is useful to separate perception from cognition in modeling human performance.  The border

between the model of the person and that of his environment can (arguably) be drawn at the

boundary between cognition and perception, with perception belonging to a large extent in the

environment model.  This is true for psychological reasons (Pylyshyn, 1999).  It is also true to

support tying models to simulations and for use of the resulting knowledge by cognition in

problem solving (Ritter et al., 2000).  The typical acts performed by perception and motor action,

what objects are in view, what are their shapes and sizes, and manipulating them, are most easily

performed where the objects reside.  This forces the implementation of theories of interaction into

the simulation language instead of the modeling language.
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It would be useful to have realistic stochastic distributions of differences in perception amongst

individual agents, and also the ability to augment perception with instruments from field glasses to

night sights.  These devices could be modeled as plug-ins to the perception model.  Models of

perception in synthetic environments are typically simple, being a function of distance from

observer to object (if there is a clear line of sight and the absence of cover and smoke).  On the

other hand, human perception changes in important ways with the ambient level of light, and with

the part of the retina on which an image falls.  The edges of the retina are particularly sensitive to

the detection of a moving object, whilst the fovea has the best resolution for identifying distant

objects and is most sensitive to color.  The distance at which an object can be seen depends on its

brightness, its size, and its contrast to the background as well as the permeability of the air to light.

Thus a detonation will be visible from a much greater range than a moving tank, which in turn

will be much easier to spot than a motionless camouflaged soldier.

Situation awareness is a term that is still the subject of much debate in the human factors and

ergonomics communities (e.g., see the Special Issue of Human Factors, Volume 37, Issue 1).

Situation awareness is a term that is still the subject of much debate in the human factors and

ergonomics communities.  Pew and Mavor (1998) consider situation awareness to be a key

concept in the understanding of military behavior.  We agree, but also believe that situation

awareness should be modeled at a finer level of detail than is currently often done (see Pew &

Mavor, 1998, Ch. 7, for a current review).

4.2  Combining perception and problem solving

Pew and Mavor (1998) note that an important constraint on problem solving is perception, but

they do not explore this idea in detail.  As mentioned in our discussion on expertise, perception

plays an important role in skilled behavior:  experts sometimes literally see the solution to a

problem (De Groot, 1946/1978).

We may use Kosslyn and Koenig's (1992) definition: higher-level visual processing involves using

previously stored information; lower-level visual processing does not involve such stored

information, and is driven only by the information impinging on the retina.  We focus here on

higher-level perception and, thus, we will not consider mechanisms used for finding edges,

computing depth, and so on.

Neisser’s Cognition and Reality (1976) describes what is often referred to as the perceptual cycle.

This approach underpins a vast amount of the cognitive engineering literature and research.  At

its simplest, the perceptual cycle is a cycle between the exploration of reality and representing this

reality as schemas (in the general sense).  Schemas direct exploration (perceptual, haptic, etc.) that

involves sampling the object (looking at the real world), which may alter the object, which means

that the schemas have to be modified.  (See Neisser, 1976, p. 21 or p. 112 for the fuller picture.)

This work suggests that an important aspect of behavior has been missing from many theories and

models of problem solving that have not included perception.

It is natural that researchers have attempted in recent years to combine perception and problem

solving in artificial systems.  One can single out three main approaches: robotics, problem-solving
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architectures incorporating perception, and perceptual architectures being extended to problem

solving.

In robotics, Nouvelle AI has attempted to build robots able to carry simple problem-solving

behavior without explicit planning, but rather by linking sensor and motor abilities tightly (e.g.,

the behavior-based architecture of Brooks, 1992).  Robots based on this approach are excellent at

obstacle-avoiding behavior.  It is, however, unclear how far this approach can be extended to

more complex problem solving without incorporating some sort of planning.

Including perception in behavioral models is a useful way to add natural competencies and

limitations to behavior.  Pew and Mavor note that there are few models of how perception

influences problem solving.  Their summary can be extended and revised in this area, however.

We have seen in existing cognitive models (Byrne, in press; de Groot & Gobet, 1996; Gobet,

1997; Jones, Ritter, & Wood, 2000; Ritter & Bibby, 2001; Ritter & Bibby, 1997; Ritter & Young,

in press; Salvucci, in press) and in AI models (Elliman, 1989; Grimes, Picton, & Elliman, 1996; St.

Amant & Riedl, in press) that perception is linked to and can provide competencies.  While Pew

and Mavor note that they are unaware of any attempt in Soar to model the detailed visual

perceptual processes in instrument scanning (Pew & Mavor, 1998, p. 181), such models exist

(Aasman, 1995; Aasman & Michon, 1992; Bass et al., 1995), and some are even cited by Pew and

Mavor (1998, p. xx) for other reasons.

The Soar model reported by Bass et al. (1995), scans a simple air traffic control display to find

wind velocity.  The model learns (chunks) this information and uses it and the display to track

and land a plane through airport air traffic control.  The model then reflects on what it did to

consider a better course of action.  This model shows tentative steps towards using Soar's learning

mechanism for situation learning and assessment based on information acquired through active

perception (see Pew & Mavor, 1998, p. 197).  Work in this area, modeling visual cognition within

Soar, continues at ISI (Hill, 1999) and at Penn State.

The EPAM architecture (Feigenbaum & Simon, 1984), the initial goal of which was to model

memory and perception, has recently been extended into a running production system (Gobet &

Jansen, 1994; Lane, Cheng, & Gobet, 1999).  The chunks learned while interacting with the task

environment can later be used as conditions of productions.  The same chunks are also used for

the creation of schemas and for directing eye movements.

Recently, there have been several attempts to move the perception component from models into

the architectures, regularizing and generalizing the results in the process.  Prominent cognitive

architectures Soar and ACT-R have been extended to incorporate perceptual modules.  With Soar,

a perceptual module is available based on EPIC (Chong & Laird, 1997) and another based

loosely on a spotlight theory of attention (Ritter et al., 2000).  With ACT-R, two perceptual

modules have been developed independently: the Nottingham architecture (Ritter et al., 2000)

and ACT-R/PM (based on but also extending EPIC) (Byrne, in press; Byrne, 1997).  This

approach creates situated models of cognition, that is, models that interact with (simulations of)

the real world.
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None of these approaches has been tested with complex, natural, and dynamically changing

environments.  The robotics approach is the only one currently demonstrated to cope with

natural, albeit rather simple environments.  The two other approaches interact with computer

interfaces, which are complex and dynamic (e.g., Salvucci, in press).

4.3  Integration of psychology theories

A glance at almost any psychology textbook reveals that the study of human cognition is

conventionally divided into topics that are presented as if they have little to do with each other.

There will be separate chapters on attention, memory, problem solving, and so on.  However, the

range and variety of tasks undertaken by people at work, and also those tackled by synthetic

agents, typically require the application and interplay of many different aspects of cognition

simultaneously or in close succession.  Interacting with a piece of electronic equipment, for

example, can draw upon an agent's capacity for perception, for memory, for learning, for

problem solving, for motor control, for decision making, and many more.  The question of how

to integrate these different facets of cognition is therefore an important one for the simulation of

human behavior.

Integrating theories across different topics of cognition is an issue that has rarely been addressed

directly, and provides an important focus for future work.  Agents in synthetic environments (e.g.,

R. Jones, Laird, Nielsen, Coulter, Kenny, & Koss, 1999) implicitly integrate multiple aspects of

behavior.  What research exists has been carried out, appropriately enough, under the heading of

unified theories of cognition using architectures such as Soar and ACT-R.  Soar in particular

offers a promising basis for such integration.  Its impasse-driven organization enables it to access

different areas of cognitive skill as the need arises, and its learning mechanism (which depends on

cognitive processing in those impasses) enables relevant information from the different areas to

be integrated into directly applicable knowledge for future use.

4.4  Integration and reusability of models

Integration of theories can be also viewed as integration of models as software, sometimes called

reuse.  It has been true for years that reuse is important; this is true for two fundamental reasons.

First, reuse saves effort.  In the field of Object Oriented Software Development figures are often

quoted for the costs associated with developing with reuse in mind.  The extra time spent in initial

development is something like 20%.  When the code is reused, an application can be created in

40% of the development time for new code.  Second, and perhaps more importantly in these

domains, reuse ensures consistency across simulations and across time.

There are also serious problems restricting the reuse of cognitive models.  Cognitive models are

not generally reused, even when they have been created in a cognitive architecture designed to

facilitate their reuse.  There are exceptions.  Pearson's Version 2 of his Symbolic Concept

Acquisition model and its explanatory displays is an exception that helped inspire this work

(available at ai.eecs.umich.edu/soar/soar-group.html).  Other exceptions include PDP toolkits such

as O'Reilly's PDP++ (http://www.cs.cmu.edu/Web/Groups/CNBC/PDP++/PDP++.html).  But overall

cognitive modeling does not have the level of system reuse and visual displays that the AI and

expert systems communities now take for granted.
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There are some examples of reuse that should be emulated and expanded.  ACT-R now maintains

a library of existing models (<act.psy.cmu.edu>).  We have found that the mere existence of a

library of student models (www.nottingham.ac.uk/pub/soar/nottingham/) has led to increasingly

better student projects.  Work by Young (1999) on building a zoo of runnable cognitive models

is another example of such use done broadly.  There is little reason to believe that these results

would not scale up.  These improvements to the modeling environment have moved learning Soar

(Ritter & Young, 1999) and ACT-R (Anderson & Lebiere, 1998) from being a lengthy

apprenticeship to being something that can be taught in courses.

Such integration is illustrated most clearly in a model of natural language sentence processing

(Lewis, 1993), in which lexical, syntactic, semantic, pragmatic, and domain-specific knowledge are

brought together in learned rules to guide language comprehension.  Probably the model that has

gone furthest in demonstrating this kind of integration is the cognitive model of the NASA Test

Director, the person responsible for co-ordinating the preparation and launch of the space shuttle.

Nelson, Lehman, and John (1994) describe a Soar model of a fragment of the Test Director's

performance, which incorporates problem solving, listening to audio communications,

understanding language, speaking, visual scanning (through a procedure manual), page turning,

and more.  Such models are also being created in ACT-R (Anderson & Lebiere, 1998).

Integration of a slightly different flavor -- across capabilities rather than across textbook-like

topics of cognition -- is illustrated in another Soar model, this one being of exploratory learning

of an interactive device (Rieman et al., 1996).  At first glance, it might seem that exploratory

learning is not especially relevant to the human behavior that is, apart from questions of training,

the main focus of this report.  Fighter pilots and tank commanders are highly trained and expert

individuals, and presumably do not learn significantly from single experiences.  However,

component skills such as comprehending a novel situation, looking around to discover relevant

options, and assessing a course of action -- which are fundamental components of expert skill --

are also precisely what are required for exploratory learning and reactive planning in uncertain

environments.

Hoffman and Shadbolt (1996) provide a review of work on information overload in real-time,

high work-load military contexts.  They also discuss challenges that information overload raises

for knowledge acquisition in the context of synthetic forces environments.

Rieman et al. (1996) describe the IDXL model, which models an experienced computer user

employing exploratory learning to discover how to perform specified tasks with an unfamiliar

software application. IDXL searches both the external space provided by the software and the

internal space of potentially relevant knowledge.  It seeks to comprehend what it finds, and

approximates the rationally optimal strategy (Anderson, 1990) for exploratory search.  A typical

sequence of interrelated capabilities would be for the model first to learn how to start a

spreadsheet program from external instruction; then to use that new knowledge as a basis for

analogy in order to discover how to start a graph-drawing package; and then to build on its

knowledge by learning through exploration how to draw a graph.  The model works with a

limited working memory, employs recognition-based problem solving (Howes, 1993), and

acquires display-based skill (Payne, 1991) in an interactive, situated task.
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These problems of reusability are even more acute when creating models for synthetic

environments because of the size and type of models.  This is true for several reasons:  The

knowledge is more extensive and exact than many laboratory domains previously studied.  The

models must interact with complex, interactive simulations.  The work may be classified, which

will add an additional constraint in hiring someone with multiple skills.  Scenarios may simulate

hours of behavior rather than the minutes of typically modeled tasks.  This represents a lot of

knowledge, and can make troubleshooting more difficult.  Finally, there are many cases where an

explanation facility is required to explain the model's behavior for other observers.

4. 5  Summary

A framework to assist with integration and reuse will have to be developed.  It would be common

in the sense that the appropriate simulation entities and analysis tools would be available, and for a

given application or analysis developers would plug them together.  The DIS protocol and

ModSAF are being used in this way to some extent, but there are not many tools, they are hard to

use, and they do not support the desired level of ease of use nor the level of cognitive realism.

5.  Current Objective: Improved usability

In addition to improving the match of synthetic forces to human behavior itself, there are several

aspects of these models that must be improved so they can be developed, tested, and used by

modelers and analysts.  A large amount of time is often required to build models and understand

their behavior, more than we believe it should be.  The difficulties of simply creating and

manipulating models of behavior can preclude us from spending more time on using these

models in training or for performing what-if analyses.

While Pew and Mavor (1998, p. 10) initially note that they will not address usability, they later (p.

282) note the need to have quickly reconfigurable models.  They also discuss (p. 292) ease of

use.  This inconsistency is completely appropriate because usability is important.  Models that are

too difficult to be used are not used.  This issue is also being taken up in the next generation of

simulation models in the US (Ceranowicz, 1998).  There are several aspects to usability that we

will take up next.

5.1  Usability of the behavioral models

As we have noted before (Ritter, Jones, & Baxter, 1998b; Ritter & Larkin, 1994), cognitive models

suffer from usability problems.  Few lessons from the field of human-computer interaction (HCI)

have been reapplied to increase the understanding of the models themselves, even though many

results and techniques in HCI have been discovered using cognitive modeling.

Modelers have to interact with the model several times and in several ways over the lifetime of the

model.  As a first step, the models must be easy to create.  As part of the creation and validation

process, the models must be debugged on the syntactic level (will it run?), on the knowledge level

(does it perform the task?), and on a behavioral level (does it perform the task like a human?).

All of these levels are important if the costs of acquiring behaviors are to be reduced.  While we

can point to some recent advances in usability (e.g., Anderson & Lebiere, 1998; Kalus & Hirst,
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1999; Ritter et al., 1998b), further work will be required.  It is also probably fair to say that

cognitive models can often be difficult to explain and understand.

5.2  Desired accuracy of the behavior models

Another problem is knowing when to stop improving the model.  In science for science's sake,

there is no limit -- the model is continually improved.  In the case of engineering-like

applications, such as behavioral models in synthetic environments, knowing when to stop is a valid

question.  In many cases we do not know how accurate these models have to be in order to be

useful, and at what point additional accuracy is no longer worthwhile.

The purpose and goals of each modeling project will help determine when to stop development,

so they need to be carefully laid out when developing a model of behavior.  The stopping rule

also applies to the synthetic environment as well as the model -- there is no point in developing a

simulation that is too detailed.  This question is becoming more important as the models become

more accurate and more modifiable.

5.3  Aggregation and disaggregation of behaviors

A clear requirement for simulations in synthetic environments is the ability to aggregate or

summarize subunits and in other situations the ability to disaggregate and place the subunits from

a larger grouping.  When the tanks in a platoon are each simulated in a platform-level simulation,

they must be aggregated to display them as a platoon on a more abstract or larger-scale map.

Similarly, higher-level units may have to be placed into a simulation when moving a larger unit

into a platform-level simulation.  This aggregation (or disaggregation) may need to occur

multiple times when crossing levels of resolution in order to provide the right level for a report.

This area has received a limited amount of study, yet it is a common need across multiple types of

simulations.  None of the cognitive architectures examined in Pew and Mavor (1998, Table 3.1)

or here offer any insight.  The only related actions are that several of the architectures (e.g.,

COGNET, Soar) are designed to support multiple agents.

5.4  Summary

Environments for interacting with existing modeling architectures are generally poorer than those

now provided for most programming languages.  The requirements for modeling are greater than

general programming, including the need for adjustable accuracy, different levels of analyses, and

multiple measurements from running programs.  These factors contribute to making modeling

difficult.  We need new models, and new techniques for building and using models.

6.  Recent developments for modeling behavior

In addition to the architectures and approaches identified by Pew and Mavor (1998), there are a

few other architectures that are worth examining.  In this section we note them, including the

lessons they provide.  Our reviews also explicitly consider ease of use (i.e., model populating).
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We focus our comments on cognitive architectures because they have been created for modeling

the strengths and limitations of human behavior.  Any system built for other reasons that was

adapted in this way -- for example, other AI systems -- would start to approach these systems in

capabilities and limitations.  It is quite likely that the cognitive architecture that best matches

human behavior will vary by the type of behavior and level of aggregation.  For example,

different architectures will be preferred for modeling a soldier performing simple physical tasks

and for modeling a deliberate and reflective commander.

There will continue to be a range of architectures created.  We agree completely with Pew and

Mavor that further work is necessary before settling on an architecture.  That is not to say that

architectures will not continue to converge.  We start, however, by examining ways to summarize

data, and some advanced AI techniques to help create models.  We then examine several

architectures.

6.1  Data gathering and analysis techniques

Scattered throughout Pew and Mavor (e.g., pp. 323-325) are comments about the need for data to

develop and test models.  This requirement should be highlighted because there are different

kinds of data, and each kind is important.  Also, there is a need for analysis techniques because

data alone are meaningless.

Data to develop models can come from a wide variety of sources.  Data can come from speaking

to experts and having them do tasks off-line, so-called knowledge acquisition (Shadbolt &

Burton, 1995).  Data can also come from having experts talk aloud while performing the task

(Ericsson & Simon, 1993).  Talking aloud is a more accurate way to acquire the knowledge

because it is based on actual behavior rather then someone's impression and memory of behavior.

It is, however, a more costly approach because the modeller must infer the behavior generators.

Data for developing models can also come from non-verbal measurements of experts while they

perform the task.  Non-verbal measurements are probably the least useful data (but still useful in

some circumstances) for developing models.  These data are useful, however, in testing models

that make timing predictions.  Data can also come from previously run studies, reviews, and

compendia of such studies (e.g., Boff & Lincoln, 1986).  A useful review of data types and

analysis methods in this area is provided by Hoffman (1987).

A major requirement will be a balance between the experimental control of the lab and the

richness of the real world.  This can be achieved by gathering data in the same micro-world

simulations in which the models will be deployed, such as synthetic environments.  These

environments can be used to model all the salient aspects of the real world, whilst still providing

some level of experimental control.

Once the data are in hand, they will often have to be aggregated or summarized.  Expert

summaries from knowledge acquisition already represent summarized data, but protocol analysis

has developed a wide range of techniques for summarizing such data.

Reviews and suggestions in this area are available (Ericsson & Simon, 1993; Sanderson & Fisher,

1994), but there exists a very wide range of techniques that vary based on how advanced the
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theory is, the purposes of the research, and the domain.  One example of an advanced technique

to examine protocol data for temporal patterns for later inclusion and comparison against model

behavior (Kuk, Arnold, & Ritter, 1999).

With data in hand, the next step is either to develop a model or to test an existing model.  There is

little formal methodology about how to create models.  Some textbooks attempt to teach this

creative task either directly (vanSomeren, Barnard, & Sandberg, 1994) or by example

(McClelland & Rumelhart, 1988; Newell & Simon, 1972).  There are summaries of the testing

process (Ritter & Larkin, 1994) and of some possible tests (Ritter, 1993a), but repairing a model

based on the results of the tests can be a task requiring a lot of creativity.

6.2  Advanced AI approaches

There are some existing tools that could be used to create, augment, or optimize models of

performance.  We note here three that we are particularly familiar with.  These include approaches

for creating behaviors, such as genetic algorithms (Burke, Elliman, & Weare, 1995) and traditional

AI programs (Bai, Burke, Elliman, & Ford, 1993).

6.2.1  Genetic algorithms

Genetic algorithms (GAs) are search methods that can be used in domains in which no heuristic

knowledge is available and in which an objective function exhibits high levels of incoherence.

That is to say, a small change to the solution state may often result in large changes to the

objective function or fitness measure.  These algorithms are expensive in machine resources and

exhibit slow (but often steady) convergence to a solution.  They might be used as a search

strategy of last resort for plan formation.

Heuristics can be used with GAs to seed the initial population in a non-random way or to guide

the crossover process in a way that changes the distribution of offspring.  Doing this results in a

memetic algorithm (one that manipulates basic blocks of information or memes).  As has been

common experience throughout the history of AI, this introduction of domain knowledge can

drastically transform the performance of the GA.  Such algorithms have been found to exceed the

performance of previous approaches in a number of domains (Burke et al., 1995).  There may be

scope for using this as a search strategy in planning.

6.2.2  Tabu search

Tabu search, as developed by Glover (Glover & Laguna, 1998), is a general purpose approach

that is remarkably effective for difficult problems where the objective function has some local

coherence.  It is surprising how often hill-climbing approaches such as the A* algorithm are used

in current plan building algorithms, despite the domains being prone to local maxima.  Tabu

search uses the novel concept of recency memory to prevent moves in a solution space from

being tried when some component of that state has recently been changed in a previous move.

This surprisingly simple idea forces the search away from a local maximum.  Long-term memory

is used to hold the best solution state found so far, and this may be used to re-start the search far

away from any previous exploration of the state space.
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The tabu search approach would almost certainly lead to improved solutions with reasonable

computational complexity.  It would be worth using this approach to search for strategies and

plans at various levels in a synthetic environment from the individual combatant to the highest

level source of command and control.

Soar is impressive in its ability to reuse parts of problems that have been solved in the past, and to

plan in a goal-directed way that can seem ingenious.  Real human problem solving can be less

structured, however, and can leap from one approach to another in a manner that is difficult to

model.  Tabu search has this characteristic, however, as part of its diversification strategy.

Including tabu search in a cognitive architecture would be interesting.  There may be some

advantages to be gained by grafting on other similar systems that modify the beliefs of a

cognitive architecture so as to maintain various types of logical consistency in the set of facts

held.

6.2.3  Sparse Distributed Memory

Subtle issues such as the tip-of-the-tongue phenomena (Koriat & Lieblich, 1974) and the fact that

we know if we know something (feeling of knowing) before becoming aware of the answer are

not often modeled (although, see Schunn, Reder, Nhouyvanisvong, Richards, & Stroffolino, 1997

for a counter example).  These effects may be captured using memory models such as Kanerva’s

(1988) sparse distributed memory (SDM), and Albus’s (1971) CMACCerebellar Model

Arithmetic Computer).  The way in which a combatant's experience of the world is stored and

modeled is important.  An SDM seems to offer powerful human-like ways of recalling nearest

matches to present experience in a best-first manner.  This can even be seen as a kind of thinking

by analogy that has a uniquely human-like ability to find a close match rapidly without

exhaustive or even significant time spent in search.

6.3  Multiple criteria heuristic search1

Heuristic search, one of the classic techniques in AI, has been applied to a wide range of problem-

solving tasks including puzzles, two-player games, and path finding problems.  A key assumption

of all problem-solving approaches based on utility theory, including heuristic search, is that we

can assign a single utility or cost to each state.  This in turn requires that all criteria of interest can

be reduced to a common ratio scale.

The route planning problem has conventionally been formulated as one of finding a minimum-

cost (or low-cost) route between two locations in a digitized map, where the cost of a route is an

indication of its quality (e.g., Campbell, Hull, Root, & Jackson, 1995).  In this approach, planning

is regarded as a search problem in a space of partial plans, allowing many of the classic search

algorithms such as A* (Hart, Nilsson, & Raphael, 1968) or variants such as A*epsilon (Pearl,

1982) to be applied.  However, while such planners are complete and optimal (or optimal to some

1 This section was drafted by Brian Logan, and was revised by the authors.
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bound ε), formulating the route planning task in terms of minimizing a single criterion is

difficult.

For example, consider the problem of planning a route in a complex terrain consisting of hills,

valleys, impassable areas, and so on.  A number of factors will be important in evaluating the

quality of a plan: the length of the route; the maximum negotiable gradient; the degree of

visibility; and so on.  In any particular problem, some of these criteria will affect the feasibility of

the route, while others are simply preferences.  Route planning is an example of a wide class of

multi-criteria problem-solving tasks, where different criteria must be traded off to obtain an

acceptable solution.

One way of incorporating multiple criteria into the problem-solving process is to define a cost

function for each criterion and use, for example, a weighted sum of these functions as the

function to be minimized.  We can, for example, define a visibility cost for being exposed and

combine this with cost functions for the time and energy required to execute the plan, to form a

composite function that can be used to evaluate alternative plans.  However, the relationship

between the weights and the solutions produced is complex in reality, and it is often unclear how

the different cost functions should be combined linearly as a weighted sum to give the desired

behavior across all magnitude ranges for the costs.  This makes it hard to specify what kinds of

solutions a problem-solver should produce and hard to predict what a problem solver will do in

any given situation; small changes in the weight of one criterion can result in large changes in the

resulting solutions.  Changing the cost function on a single criterion to improve the behavior

related to that criterion often leads to changing all the weights for all the other costs as well

because the costs are not independent.  Moreover, if different criteria are more or less important

in different situations, we need to find sets of weights for each situation.

The desirability of trade-offs between criteria is context dependent.  In general, the properties that

determine the quality of a solution are incommensurable.  For example, the criteria may only be

ordered on an ordinal scale, with those criteria that determine the feasibility of a solution being

preferred to those properties that are merely desirable.  It is difficult to see how to convert such

problems into a multi-criterion optimization problem without making ad hoc assumptions.  It is

also far from clear that human behavior solely optimizes on a single criterion.

Rather than attempt to design a weighted sum cost function, it is often more natural to formulate

such problems in terms of a set of constraints that a solution should satisfy.  We allow constraints

to be prioritized, that is, it is more important to satisfy some constraints than others, and soft, that

is, constraints are not absolute and can be satisfied to a greater or lesser degree.  Such a

framework is more general in admitting both optimization problems (e.g., minimization

constraints) and satisficing problems (e.g., upper bound constraints), which cannot be modeled by

simply minimizing weighted-sum cost functions.  Vicente (1998) suggests ways in which such

constraints can be analyzed as part of a work domain analysis.

This approach provides a way for more clearly specifying problem-solving tasks and more

precisely evaluating the resulting solutions.  There is a straightforward correspondence between

the real problem and the constraints passed to the problem-solver.  A solution can be
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characterized as satisfying some constraints (to a greater or lesser degree) and only partially

satisfying or not satisfying others.  By annotating solutions with the constraints they satisfy, the

implications of adopting or executing the current best solution are immediately apparent.  The

annotations also facilitate the integration of the problem-solver into the architecture of an agent

or a decision support system (see for example, Logan & Sloman, 1998).  If a satisfactory solution

cannot be found, the degree to which the various constraints are satisfied or violated by the best

solution found so far can be used to decide whether to change the order of the constraints, relax

one or more constraints or even to redefine the goal, before making another attempt to solve the

problem.

The ordering of constraints blurs the conventional distinction between absolute constraints and

preference constraints.  All constraints are preferences that the problem-solver will try to satisfy,

trading off slack on a more important constraint to satisfy another, less important constraint.

The A* search algorithm is ill suited to dealing with problems formulated in terms of constraints.

Researchers at Birmingham have therefore developed a generalization of A* called A* with

bounded costs (ABC) (Alechina & Logan, 1998; Logan & Alechina, 1998),  which searches for a

solution that best satisfies a set of prioritized soft constraints.

The utility of this approach and the feasibility of the ABC algorithm have been illustrated by an

implemented route planner that is capable of planning routes in complex terrain satisfying a

variety of constraints.  This work was originally motivated by difficulties in applying classical

search techniques to agent route planning problems.  However, the problems they identified with

utility based approaches, and the solutions they propose, are equally applicable to other search

problems.

6.4  Psychologically inspired architectures

We review here several psychologically inspired architectures that were not covered by Pew and

Mavor (1998).  These architectures are interesting because (a) they are psychologically plausible,

(b) some of them provide examples of how emotions and behavioral moderators can be included,

and (c) several illustrate that better interfaces for creating cognitive models are possible.

6.4.1  EPAM

EPAM (Elementary Perceiver and Memoriser) is a well-known computer model of a wide and

growing range of memory tasks.  The basic ideas behind EPAM include mechanisms for

encoding chunks of information into long-term memory by constructing a discrimination

network.  The EPAM model has been used to simulate a variety of psychological regularities,

including the learning of verbal material (Feigenbaum & Simon, 1962; Feigenbaum & Simon,

1984) and expert digit-span memory (Richman, Staszewski, & Simon, 1995).  EPAM has been

expanded to use visuo-spatial information, as in MAPP (Simon & Gilmartin, 1973).

EPAM organizes memory into a collection of chunks, where each chunk is a meaningful group

of basic elements.  For example, in chess, the basic elements are the pieces and their locations; the

chunks are collections of pieces, such as a king-side pawn formation.  These chunks are
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developed through the processes of discrimination and familiarization.  Essentially, each node of

the network holds a chunk of information about an object in the world.  The nodes are

interconnected by links into a network, with each link representing the result of applying a test to

the object.  When trying to recognize an object, the tests are applied beginning from the root

node, and the links are followed until no further test can be applied.  At the node reached, if the

stored chunk matches that of the object then familiarization occurs, in which the chunk's

resolution is increased by adding more details of the features in that object.  If the current object

and the chunk at the node reached differ in some feature, then discrimination occurs, which adds

a new node and a new link based on the mis-matched feature.  Therefore, with discrimination, new

nodes are added to the discrimination network; with familiarization, the resolution of chunks at

those nodes is increased.

The EPAM template theory, and its computer implementation CHREST (Gobet & Simon, 1996a),

uses the same framework as the EPAM theory (Feigenbaum & Simon, 1984; Richman et al.,

1995), with which it is compatible.  As in the earlier chunking theory of Chase and Simon (1973),

the EPAM template theory assumes that chess experts develop a large EPAM-like net of chunks

during their practice and study of the game.  In addition, EPAM assumes that some chunks, which

recur often during learning, develop into more complex retrieval structures (templates) having

slots for variables that allow a rapid encoding of chunks or pieces.

CHREST (de Groot & Gobet, 1996; Gobet & Simon, 1996a) is one of most current theories of

memory developed from the ideas in EPAM.  Gobet and Simon (2000) present a detailed

description of the present version of CHREST and report simulations on the role of presentation

time in the recall of game and random chess positions.

EPAM and its implementations are important to consider because they fit a subset of regularities

in memory very well.  This at least serves as an example for other theories and architectures to

emulate.  It may also be possible to include the essentials of EPAM in another system, such as

Soar or ACT-R, extending the scope of both approaches.

6.4.2  Neural networks

Pew and Mavor (1998, Ch. 3) review neural networks.  Here, therefore, we only provide some

further commentary, introduce some more advanced concepts, and note a few further

applications.

SDMs are Sparse Distributed Memories, which are a plausible model of brain architecture,

particularly the cerebellum.  They have the interesting property of storing memories such that

recall works by finding the best match to imperfect data.  They are also a natural way of storing

sequences.  They exploit interesting mathematical properties of binary metric spaces with a large

number of dimensions.  It is intriguing that SDMs have the human-like properties that they "know

if they know" something before the retrieval process is complete.  They also exhibit the tip-of-

the-tongue phenomenon, and replicate the human ability to recall a sequence or tune given the

first few items or notes.  They can also learn actuator sequences that might be used in muscle

control or reflex patterns of behavior.
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Connectionist systems have demonstrated the ability to learn arbitrary mappings.  Architectures

such as the multi-layer perceptron (MLP) are capable of being used as a black box that can learn

to recognize a pattern of inputs as a particular situation.  This requires supervised training, and

may involve heavy computational resources to arrive at a successful solution using the back-

propagation algorithm.  Training can be continued during performance as a background task,

and thus an entity could have an ability to learn during action based on this approach.

Recognition performance is relatively rapid and thus a multilayer perceptron might be used to

model a reaction mechanism in which a combatant responds to coming under fire, or spotting the

presence of the enemy, for example.  It might also be used to activate particular aspect of military

doctrine depending on the current circumstances.

More specialized connectionist systems have been used for modeling low-level vision, the learning

of grammar rules, the pronunciation of words, character recognition, and so on.  These models do

not seem to have immediate application in military simulation.

Recurrent nets such as the Elman (1991) net have the ability to generate sequences of tokens as

output.  These seem to offer some promise of detecting an input situation and producing a series

of behavioral actions as a response.  This may be useful for modeling the reactive behavior of an

entity over a short time period, whilst a symbolic cognitive model is used for the higher-level

cognitive processes that occur over a longer time span.

6.4.3  PSI and architectures that include emotions

PSI is a relatively new cognitive architecture designed to integrate cognitive processes, emotion,

and motivation (Bartl & Dörner, 1998).  The architecture includes six motives (needs for energy,

water, pain avoidance, affiliation, certainty, and competence).  Cognition is modulated by these

motive/emotional states and their processes.  In general, PSI organizes its activities similar to

Rasmussen's (1983) hierarchy: first, it tries highly automatic skills if possible, then it skips to

knowledge-based behavior, and as its ultima ratio approach it uses trial-and-error procedures.  It

is one of the only cognitive architectures that we know about that takes modeling emotion and

motivation as one of its core tasks.

The PSI architecture is currently incomplete, which raises interesting questions about how to

judge a nascent architecture.  PSI does not have a large enough user community and has not been

developed long enough to have a body of regularities is has been compared with let alone

adjusted to fit.  How can PSI be compared with the older architectures with existing tutorials, user

manuals, libraries of models and example applications?

A model in the PSI architecture has been tested against a set of data taken from a dynamic control

task.  The model's number of control actions was within the range of human behavior and its

predictions of summary scores were outside the range of human behavior -- the model was less

competent (Detje, 2000).  This model needs to be improved before it matches human emotional

data as well as other cognitive models match non-emotional data.  It is, however, one of the few

models of emotion compared with data.



38 3 September 1999

Several other models of emotions and architectures that use emotions have been created.  Reviews

of emotional models (Hudlicka & Fellous, 1996; Picard, 1997) typically present models and

architectures that have not been compared and validated against human data.  There appears to be

one other exception, an unpublished PhD thesis by Araujo at Sussex (cited in Picard, 1997).

Some of use are attempting to add several simple emotions to ACT-R (Belavkin et al., 1999) and

validate the model by comparing the revised model with an existing model and comparable data

(G. Jones, Ritter, & Wood, 2000).

6.4.4  Cogent

Cogent is a design environment for creating cognitive models and architectures (Cooper & Fox,

1998).  It allows the user to draw box and arrow diagrams to structure and illustrate the high-level

organization of the model, and to fill in the details of each box using one or a series of dialogue

sheets.  The boxes include inputs, outputs, memory buffers, processing steps, and even production

systems as components.

Cogent's strengths are that it is easy to teach; the displays provide useful summaries of the model

that helps with explanation and development; and the environment is fairly complete.  It appears

possible to reuse components on the level of boxes.  Cogent's weaknesses are that it is fairly

unconstrained; for large systems it may be unwieldy; and it might not interface well to external

simulations.

Cogent also shows that cognitive modeling environments can at least appear more friendly.  The

results of its graphic interface routinely appear in talks as model summaries.  The interface is also

quite encouraging, allowing users to feel that they can start working immediately.

6.4.5  Hybrid architectures

Hybrid architectures are architectures that typically include symbolic and non-symbolic elements.

A more general definition would be architectures that include major components from multiple

architectures.

Hybrid architectures are mentioned briefly by Pew and Mavor (1998, pp. 108-110).  Work has

continued in this area past the amount they were able to review, with some interesting results.

LICAI (Kitajima & Polson, 1996; Kitajima, Soto, & Polson, 1998), for example, models how

people explore and use interfaces based on a theory of how Kintsch's (1999) schemas receive

activation.  The US Office of Navy Research (ONR) has sponsored a research program on hybrid

architectures (Gigley & Chipman, 1999).  This has given rise to some interesting hybrid

architectures (e.g., Sun, Merrill, & Peterson, 1998; Wang, Johnson, & Zhang, 1998).

Perhaps the most promising hybrids are melding perception components across cognitive

architectures.  The Epic (Kieras & Meyer, 1997) architecture's perception and action component

has been merged with ACT-R (Byrne & Anderson, 1998).  This has lead to direct reuse and

unification.  Similar results have been found with the Nottingham functional interaction

architecture being used by Soar and ACT-R models (Bass et al., 1995; Baxter & Ritter, 1996;

Ritter et al. 2000; G. Jones et al., 2000).
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6.5  Knowledge-based systems and agent architectures

The field of agency has enjoyed a recent surge of interest as a potential solution to some of the

problems posed by global information networks.  Most principled agent architectures have

historical roots in distributed artificial intelligence (DAI).  For several decades, DAI has been

tackling essentially the same problem as knowledge-based systems (KBS) research, namely how to

produce efficient problem-solving behavior in software.  The main concept that brings agency

and KBS together is the idea of operation at the knowledge level as described by Newell (1982).

The behavioral law used by an observer to understand the agent at the knowledge level is the

principle of maximum rationality (Newell, 1982), which states: "If an agent has knowledge that

one of its actions will lead to one of its goals, then the agent will select that action".  The modeling

of intelligent artificial systems at the knowledge level, that is, with no reference to details of

implementation, is a key principle in KBS construction.  It is also at the heart of many

assumptions in the tradition of explaining human behavior.

Nwana (1996) claims that an important difference between agent-based applications and other

distributed computing applications is that agent-based applications operate typically at the

knowledge level, whereas distributed computing applications operate at the symbol level.  At the

symbol level, the entity is seen simply as a mechanism acting over symbols, and its behavior is

described in these terms.

The theoretical links between the motivations behind KBS and agent research can be seen in the

main approaches taken to the definition of software agency.  Ascriptional agency attempts to

create convincing human-like behaviors in software in the belief that this will produce programs

that are easy to interact with.  This can be seen as paralleling the expert behavioral modeling

approach that is currently widely espoused in the KBS community.  BDI (Belief-Desire-Intention)

agents focus on the concept of intentionality -- the mental attitudes of the agent.  BDI models

have been successfully implemented in systems such as the DESIRE framework (Brazier, Dunin-

Keplicz, Treur, & Verbrugge, 1999) and the JACK component system (Busetta, Howden,

Rönnquist, & Hodgson, 1999a; Busetta, Rönnquist, Hodgson, & Lucas, 1999b) .

Jack is an extension to JAVA.  It includes a JAVA library and a compiler that takes a JAVA

program with embedded Jack statements.  A JAVA compiler expands/incorporates the Jack

statements to create a runnable JAVA program.  These statements implement a BDI architecture,

while allowing JAVA statements to extend and implement them.  The statements include

commands like @achieve(condition, event), which subgoal on event if condition is not found to

be true.

The resulting program instantiates a BDI agent.  Its BDI architecture is made up of beliefs

represented with a database; desires that are represented as events that can trigger plans; and

intentions that are represented through these plans.  For example, a fact may come in from

perception and match a desire, that of putting new facts into the database.  This may result in

further desires being matched and intentions (plans) leading to behaviors.  Further information is

available at the Jack developer's web site (www.agent-software.com.au).
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Reviews of the agent literature (Etzioni & Weld, 1995; Franklin & Graesser, 1997; Wooldridge &

Jennings, 1995)2 reveal that, when attempting to define agency as dependent on the possession of

a set of cardinal attributes, many of the attributes suggested could also be seen as characteristic of

behavior that is best explained at the knowledge level.  These include abstraction and delegation,

flexibility and opportunism, task orientation, adaptivity, reactivity, autonomy, goal-directedness,

flexibility, collaborative and self-starting behavior, temporal continuity, knowledge-level

communication ability, social ability, and co-operation.

Both agent systems and KBSs are moving in the direction of modular components of expertise as

a response to the problems of knowledge use and reuse to promote intelligent behavior in

software.  Domain ontologies form a significant subset of these KBS components.  Increasingly,

multi-agent systems are being produced that use such domain ontologies to facilitate agent

communication at the knowledge level, for example, the agent network created as part of the

Infosleuth architecture (Jacobs & Shea, 1996).  Some agent systems also draw explicitly on

models of problem-solving expert behavior developed in KBS research.  The IMPS (Internet-

based Multi-agent Problem Solving) architecture (Crow & Shadbolt, 1998) uses software agency

as a medium for applying model-driven knowledge engineering techniques to the Web.  It

involves software agents that can conduct structured online knowledge acquisition using

distributed knowledge sources.  Agent-generated domain ontologies are used to guide a flexible

system of autonomous agents driven by problem-solving models.

Even in pure KBS applications the notion of agency is being used as a design principle to

facilitate the construction of the KBS itself.  Thus in the DERA Future Organic Airborne Early

Warning demonstrator (DERA final FOAEW report) the KBS is implemented as sets of

computational agents each of which implements a task of an AEW operator.  Using agents as task

components in a KBS is a very natural design approach.

Agent architectures will be important within synthetic environments for modeling autonomous

vehicles, and for exploring the doctrine of autonomous vehicles.

6.6  Architectural ideas behind the Sim_Agent Toolkit3

Since the early 1970s Sloman and his colleagues have been attempting to develop requirements

and designs for an architecture capable of explaining a wide variety of facts about human beings.

Sloman's ideas about cognitive architectures and the agent architecture toolkit (Sim_Agent)

provide useful lessons about architectural toolkits and about process models of emotions.  Further

information is available at the CogAff web site <www.cs.bham.ac.uk/~axs/cogaff.html>.

2 For online information about related US programs, see <www.darpa.mil/tto/mav.html>,

<www.darpa.mil/haeuav/>, and <www.nosc.mil/robots/air/amgss/mssmp.html>.

3 This section was drafted by Aaron Sloman and was revised by the authors.
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6.6.1  Cognition and Affect

A human-like information processing architecture includes many components performing

different functions all of which operate in parallel, asynchronously.  This is not the kind of low-

level parallelism found in neural nets (although such neural mechanisms are part of the

infrastructure).  Rather there seem to be many functionally distinct modules performing different

sorts of tasks concurrently, a significant proportion of them are concerned with the monitoring

and control of bodily mechanisms, for example, posture, saccades, grasping, temperature control,

daily rhythms, and so on.

The very oldest mechanisms in the human architecture are probably all reactive in the sense

described in various recent papers (e.g., Sloman, 2000).  The key feature of reactivity is the lack

of "what-if" reasoning capabilities, with all that entails, including the lack of temporary

workspaces for representations of hypothesized futures (or past episodes), the lack of mechanisms

for stored factual knowledge (generalizations and facts about individuals) to support generation

of possible futures, possible actions, and likely consequences of possible actions, and the lack of

mechanisms for manipulating explicit representations.

Both reactive and deliberative mechanisms require perceptual input and can generate motor

signals.  However, in order to function effectively both perceptual and action subsystems may

have evolved new layers of abstraction to support the newer deliberative processes, for example,

by categorizing both observed objects and events at a higher level of abstraction, and allowing

higher-level action instructions to generate behavior in a hierarchically organized manner.  More

generally, different subsystems use information for different purposes so that a number of

different processes of analysis and interpretation of sensory input occur in parallel, extracting

different affordances from raw data extracted from the optic array.  Recent work by brain

scientists on ventral and dorsal visual pathways are but one manifestation of this phenomenon.

The interactions between reactive and deliberative layers are complex and subtle, especially as

neither is in charge of the other, though at times either can dominate.  Moreover, the division is

not absolute: information in the deliberative system can sometimes be transferred to the reactive

system (e.g., via drill and practice learning), and information in the reactive system can sometimes

be decompiled and made available to deliberative mechanisms (though this is often highly error-

prone).

For reasons explained in various papers available in the CogAff FTP site it is possible to

conjecture that at a much later evolutionary stage a third class of mechanism developed, again

using and redeploying mechanisms that had existed previously.  The new type of mechanism,

which has been provisionally labeled "meta-management", provides the ability to do for internal

processes what the previous mechanisms did for external processes: namely it supports

monitoring, evaluation, and control of other internal processes, including, for instance, thinking

about how to plan, or planning better ways of thinking.  For example, a deliberative system partly

driven by an independent reactive system and sensory mechanisms can unexpectedly acquire

inconsistent goals.  A system with meta-management can notice and categorize such a situation,
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evaluate it, and perhaps through deliberation or observation over an extended period develop a

strategy for dealing with such conflicts.

Similarly, meta-management can be used to detect features of thinking strategies, and perhaps in

some cases notice flaws or opportunities for improvement.  Such a mechanism (especially in

conjunction with an external language) also provides a route for absorption of new internal

processes from a culture, thereby allowing transmission between generations of newly acquired

information without having to wait for new genetic encodings of that information to evolve.

Through internal monitoring of sensory buffers the extra layer adds a kind of self-awareness that

has been the focus of discussions of consciousness, subjective experience, qualia, etc.  As with

external processes, the monitoring, evaluation, and redirection of internal processes is neither

perfect nor total, and as a result mistakes can be made about what is going on, inappropriate

evaluations of internal states can occur, and attempts to control processing may fail, for example,

when there are lapses of attention despite firm intentions.

Another feature of meta-management is its ability to be driven by different collections of beliefs,

attitudes, strategies, and preferences, in different contexts, explaining how in humans a personality

may look different at home, driving a car, in the office, etc.  Besides the three main concurrent

processing layers (reactive, deliberative, and meta-management) identified above that others have

found evidence for, a number of additional specialized mechanisms are needed, including:

mechanisms for managing short- and long-term goals, a variety of long- and short-term memory

stores, and one or more global alarm systems capable of detecting a need for rapid global

reorganization of activity (freezing, fleeing, attacking, becoming highly attentive, etc.), and also

producing that reorganization.

For instance, whereas many people have distinguished primary and secondary emotions (e.g.,

Damasio, 1994) Sloman and his colleagues have proposed a third type, tertiary emotions, also

sometimes referred to as perturbances (Sloman, 1998a; Sloman & Logan, 1999).  Primary

emotions rely only on the reactive levels in the architecture.  Secondary emotions require

deliberative mechanisms.  Tertiary emotions are grounded in the activities of meta-management,

including unsuccessful meta-management.  There are other affective states concerned with global

control, such as moods, which also have different relationships to the different layers of

processing.  Many specific states that are often discussed but very unclearly defined, such as

arousal, can be given much clearer definitions within the framework of an architecture that

supports them.

It looks as if various subsets of the capabilities described here arising out of the three layers and

their interactions can be modeled in the architectures developed so far, for example, in Soar,

ACT-R/PM, the Moffatt and Frijda architecture, and the various logic-based models that dominate

the ATAL series of workshops and books like Wooldridge and Rao (1999).

However, only small subsets of these capabilities can be modeled at present.  That is fine as far as

ongoing scientific research is concerned: it is not fine when such models are offered as solutions

to hard practical problems requiring modeling of complete human beings rather than some

restricted human cognitive capability.  Any realistic model of human processing needs to be able
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to cope with contexts including rich bombardment with multi-modal sensory and linguistic

information, where complex goals and standards of evaluation are constantly interacting, where

things often happen too fast for fully rational deliberation to be used, where everything that

occurs falls does not always fall into a previously learnt category for which a standard appropriate

response is already known, where decisions have to be taken on the basis of incomplete or

uncertain information, and where the activity of solving one problem or carrying out one intricate

task can be subverted by the arrival of new factual information, new orders, or new goals

generated internally as a side effect of other processes.

Where the individual is also driving a fast moving vehicle or is under fire then it is very likely that

a huge amount of the processing going on will involve the older reactive mechanisms, including

many concerned with bodily control and visual attention.  It may be some time before we fully

understand the implications of such total physical immersion in stressful situations, including the

effects on deliberative and meta-management processes. (For example, fixing attention on a hard

planning problem can be difficult if bombs are exploding all around you.  Can our models

explain why?)

6.6.2  Sim_Agent and CogAff

Sloman and his colleagues general architectural toolkit Sim_Agent allows them to explore a

variety of new ideas about complex architectures.  It is not an architecture but a steadily

developing toolkit for exploring architectures.

At present Sloman does not propose a specific overarching architecture as a rival to systems like

Soar or ACT-R.  He feels that not enough is yet known about how human minds work, and

consequently any theory proposing the architecture is premature.  Instead, he and his group have

been exploring and continually refining a collection of ideas about possibly relevant architectures

and mechanisms.  Although the ideas have been steadily developing they do not believe that they

are near the end of this process.  So although one could use a label like CogAff to refer to the

general sort of architecture they are currently talk about, it is not a label for a fixed design.

Rather CogAff should be taken to refer to a high-level overview of a class of architectures in

which many details still remain unclear.  The CogAff ideas are likely to change in dramatic ways

as more is learned about how brains work, about ways in which they can go wrong (e.g., as a

result of disease, aging, brain damage, addictions, stress, abuse in childhood, etc.), and how brains

differ from one species to another, or one person to another, or even within one person over a

lifetime.

Sloman and his colleagues also wanted a toolkit that supports exploration of a number of

interacting agents (and physical objects, etc.) where within each agent a variety of very different

mechanisms might be running concurrently and asynchronously yet influencing one another.

They also wanted to be able to very easily change the architecture within an agent, change the

degree and kind of interaction between components of an agent, could speed up or slow down the

processing of one or more submechanisms relative to others (Sloman, 1998b).  In particular they

wanted to be able to combine fairly easily different types of symbolic mechanisms and also

subsymbolic mechanisms within one agent.  The toolkit was also required to support rapid
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prototyping and interactive development with close connections between internal processes and

graphical displays.

Because other toolkits did not appear to have the required flexibility, as the other toolkits tended

to be committed to a particular type of architecture, Sloman and his colleagues built their own,

which has been used for some time at Birmingham and DERA Malvern.  Their toolkit is described

briefly in Sloman and Logan (1999) and in more detail in the online documentation at the

Birmingham Poplog FTP site (<ftp.cs.bham.ac.uk/pub/dist/poplog/>).  The code and

documentation are freely available online.  It runs in Pop-11 in the Poplog system (which is

inherently a multi-language AI system, so that code in Prolog, Lisp, or ML can also be included

in the same process).  Poplog has become freely available

(<http://www.cs.bham.ac.uk/research/poplog/freepoplog.html>).

The toolkit is still being enhanced.  In the short term they expect to make it easier to explore

architectures including meta-management.  Later work will include better support for

subsymbolic spreading activation mechanisms, and the development of more reusable libraries,

preferably in a language-independent form.

6.6.3  Summary

The Sim_Agent toolkit and the goals its developers have for it have some commonalties with

other approaches.  The need for a library of components is acknowledged.  They emphasize that

reactive behaviors are necessary and desirable, and that the emotional aspects arise out of the

reactive mechanisms.  It provides a broad range of support for testing and creating architectures.

The toolkit provides support for reflection as a type of meta-learning.  Other architectures will

need to support this as well, particularly where the world is too fast paced for learning to occur

during the task (John, Vera, & Newell, 1994; Nielsen & Kirsner, 1994).

The features that the toolkit supports helps define a description of architectural types.  The

capabilities that can be provided, from perception through to action and from knowledge to

emotions, provide a way of describing architectures.

The major drawback is that none of the models or libraries created in Sim_Agent have been

compared with human data directly.  In defence of this, Sloman claims that, the more complex

and realistic an architecture becomes, the less sense it makes to test it directly.  Instead he claims

that the architecture has to be tested by the depth and variety of the phenomena it can explain,

like advanced theories in physics, which also cannot be tested directly.

6.7  Engineering-based architectures and models

There is a history of studying process control in and near industrial engineering that includes

studying human operators.  This approach is not (yet) part of mainstream psychology, and Pew

and Mavor (1998) on the whole do not make many references to work in this field.

If tank operators and ship captains can be viewed as running a process, and we believe they can,

there are a lot of behavioral regularities referenced and modeled in engineering psychology that

can be generalized and applied to other domains.  Major contributions in this area include
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Reason's (1990) book on errors, Rasmussen's skill hierarchy (1983), the CREAM methodology

for analyzing human performance (Hollnagel, 1998), and numerous studies characterizing the

strengths and weaknesses of human operator behavior (de Keyser & Woods, 1990; Sanderson,

McNeese, & Zaff, 1994).

Engineers have also created intelligent architectures.  These architectures have almost exclusively

been used to create models of users of complex machinery, ranging from nuclear power plants to

airplanes.  The models are often but not always tied to simulations of those domains.  Their

approach is generally more practical and interested in approximate timing and the overt behavior

than in detailed mechanisms.  These developers appear to be less interested in the internal

mechanisms giving rise to behavior as long as the model is usable and approximately correct.

These models of operators include models of nuclear power plant operators, the Cognitive

Simulation Model (COSIMO: Cacciabue et al., 1992), and the Cognitive Environment Simulation

(CES: Woods, Roth, & Pople, 1987).  AIDE (Amalberti & Deblon, 1992) is a model of fighter

pilot behavior; the Step Ladder Model or Skill-based, Rule-based, Knowledge-based model is a

generally applicable framework, which was originally formulated in electronics troubleshooting

(e.g., Rasmussen, 1983).

We will look at a few operator models in more detail.

6.7.1  APEX

Apex (Freed & Remington, 2000; Freed et al., 1998) is a model of an air traffic controller.  It has

been based on psychology and perceptual regularities, such as provided by Boff and Lincoln

(1986) and Sekuler and Blake (1994).  It is probably best described as an engineering model

because it has not been tested directly against human data.  APEX is interesting because it models

the whole operator, from perception to action, and the model interacts with a fairly complete

simulation.

6.7.2  SMoC and CoCoM

The Simplified Model of Cognition (SMoC) (Hollnagel & Cacciabue, 1991) is an extension of

Neisser's (1976) perceptual cycle, and describes cognition in terms of four essential elements:

(a) observation/identification, (b) interpretation, (c) planning/selection, and (d) action/execution.

Although these are normally linked in a serial path, there are other links possible between the

various elements.  The small number of cognitive functions in SMoC reflects the general

consensus of opinion on the characteristics of human cognition as they have been developed

since the 1950s.  The fundamental features of SMoC are the distinction between observation and

inference (overt vs. covert behavior), and the cyclical nature of cognition (cf. Neisser, 1976).

SMoC was formulated as part of the System Response Generator (SRG) project (Hollnagel &

Cacciabue, 1991).  SRG was a software tool developed to study the effect of human cognition

(specifically actions and decision making) on the evolution of incidents in complex systems.
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The Contextual Control Model (CoCoM: Hollnagel, 1993) is an extension of the SMoC, and

addresses the issues of modeling both competence and control.  In most models the issue of

competence is supported by a set of procedures of routines that can be employed to perform a

particular task when a particular set of predefined conditions obtains.  CoCoM further proposes

that there are four overlapping modes of control -- influenced by knowledge and skill levels --

that also influence behavior:

1. Scrambled control: where the selection of the next action is unpredictable.  This is the

lowest level of control.

2. Opportunistic control: where the selection of the next action is based on the current

context without reference to the current goal of the task being performed.

3. Tactical control: where performance is based on some form of planning.

4. Strategic control: where performance takes full account of higher-level goals.  This is the

highest level of control.

The transition between control modes depends on a number of factors, particularly the amount of

subjectively available time, and the outcome of the previous action.  These two factors are

interdependent, however, and also depend on aspects such as the task complexity and the current

control mode.

CoCoM has been used in the development of the Cognitive Reliability and Error Analysis Method

(CREAM: Hollnagel, 1998) within the field of Human Reliability Analysis.  CREAM is a method

for analyzing human performance when working with complex systems.  It can be used in both

the retrospective analysis of accidents and events, and in predicting performance for human

reliability assessment.  Extending CREAM is presented below as a useful project.

6.7.3  Summary

These architectures suggest that engineering models can provide useful behavior even when the

internal mechanisms are not fully tested or perhaps even plausible.  These architectures show that

some of the difficulty in creating the architectures is due to the implicit and explicit knowledge

that psychologists bring with them regarding plausibility.  We believe this leads to more accurate

models but slower development.

6.8  Summary of recent developments for modeling behavior

This section has reviewed several architectures.  They show that it is becoming increasingly

possible to create plausible and useful architectures, based on a variety of approaches.

An agreed, formal scheme for classifying architectures would be useful.  This ideal system

classification would note the sorts of tasks that each architecture is best at, supporting users to

choose an architecture for a particular task.  The best that we have found is Table 3.1 in Pew and

Mavor (1998, pp. 98-105).  Our Table 2 provides a summary of the architectures presented here

in that format as a supplement to their table.  In most cases the developers of the architectures

have helped complete this table.  We have included all relevant information of which we are aware

for each architecture.  Another approach is available from Logan (1998).
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Developments in AI continue to be useful.  The general AI methods discussed are not included in

this table because they are not broad enough to be considered a cognitive architecture, but they

are likely to be useful additions to architectures, either directly or indirectly.  For example,

genetic algorithms have been included in a proposed architecture (Holland, Holyoak, Nisbett, &

Thagard, 1986), and planning algorithms have been included as adjuncts to Soar (Gratch, 1998).

These developments will help extend architectures, providing algorithms for inclusion within

architectures, particularly hybrid architectures.

There are several interesting trends to note.  One is that the diversity of architectures is not

decreasing.  New, fundamental ideas on which to base architectures has widened from simply

problem solving.  For example, EPAM is based on pattern recognition, and PSI and architectures

created in the Sim_Agent Toolkit are based on ideas about emotions.

Another interesting trend is that some aspects of the architectures are starting to merge and be

reused.  The interaction aspects of EPIC have been reused by Soar and by ACT-R.  The

Nottingham Interaction Architecture is similar in some ways and getting similar reuse (e.g., Jones

et al., 2000).  These strands are becoming to quite similar to each other (Byrne, Chong, Freed,

Ritter, & Gray, 1999), and are quite likely to merge in the future.

The importance of model usability is becoming more recognized.  Cogent provides an example

of how easy a modeling tool should be to pickup and use.  Similar developments with Soar and

ACT-R are starting to emphasize reusable code, better documentation, and better tutorial

materials.  Other architectures will have to follow suit to attract users and to train and support their

existing users.  Newell (1990) wrote about the entry level (the bar) being raised as architectures

develop through competition.  It is interesting that usability is perhaps the first clear comparison

level.
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Table 2.  Comparison of architectures covered in this report.

Submodels

Architecture Original purpose Sensing and perception

1 EPAM Model high-level

perception, learning, and

memory.

Visual, auditory perceptual

discrimination is in real-time

(assuming feature-based description

of objects).

2 SDM Simulation of cerebellum as

a content-addressable

memory.

Can be used to recall the nearest

stored memory to any encoded

perceptual input.

3 PSI Exploring the interaction of

cognition, motivation, and

emotion to build an

integrated model of human

action regulation.

Optical perception by "Hypercept"-

process.  This process scans the

(simulated) environment for basic

features, raises hypotheses about the

sensory schemas to which the

features may belong and tests these

hypotheses by subsequent scanning

of the environment (comparable to

saccadic eye-movements).  If a

pattern is not recognizable, a new

schema will be generated.

4 Cogent Design environment for

modeling cognitive

processes.

Input buffers that can be modified

to represent vision and hearing.

5 Jack as an example

of BDI architectures

To constitute an industrial-

strength framework for

agent applications.

JAVA methods + inter-agent

messaging.

6 Sim_Agent toolkit Exploring architectures

using rapid prototyping.

Defined by methods for each agent

class.

7 Engineering-based

models, e.g., APEX

Provide models of humans

in control loops.

Varies, but exists for most models.
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Table 2 (continued).

Submodels

Working/

Short-Term memory

Long-Term Memory Motor Outputs

1 4-7 slot STM; in some

versions (e.g., EPAM-

IV), there is a more

detailed implementation

of a auditory (Baddeley-

like) STM & visual STM.

Discrimination net.  In recent

versions, nodes of the

discrimination net are used to

create a semantic net and

productions.

Eye movements, simple

drawing behavior.

2 Not modeled. Sparse Distributed Memory

models are related to PDP and

neural net memory models.

Motor sequences can be

learned.  Nearest match

memories can be sequences

that could be behaviors.

3 The head of a protocol

memory that

permanently makes a log

of the actions and

perceptions.

The remnants of the logs decay

with time.  Strings of the log

that are associated with need

satisfaction or with pain will be

reinforced and therefore have a

greater chance to survive and

to form a part of the long-term

memory than neutral

sequences of events.

Basic motor patterns

(actions) are combined to

form complex sensory-

motor-programs by

learning (i.e., by

reinforcement of the

successful sensory-motor-

patterns in the logs).

4 Various types supported. Various types supported. Simple buffer

representation of

commands.

5 Object oriented structures

(JAVA), plus relational

modeling support

(JACK).

All JAVA support including

database interfaces etc.

Support for data modeling in

JAVA and C++ using the

JACOB (JACK Object Builder)

component.

JAVA methods.

6 List structures. List structures, rules, and

arbitrary Pop-11 data

structures, but can also use

neural nets if required.

Defined by methods for

each agent class.

7 Usually simple but

extant.

Usually simple but extant. Usually extant but usually

not complex.
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Table 2.  Comparison of architectures covered in this report (continued).

Knowledge Representation

Architecture Declarative Procedural

1 EPAM Chunks, schemas  (templates);

using nodes in discrimination net.

Productions using nodes in a

discrimination net.

2 SDM A sparse set of memory addresses,

where the data is the address.

Memories naturally form

sequences that could be

considered as procedures.

3 PSI Sensory and sensory-motor

patterns consisting of pointer

structures forming schemas.  A

schema includes information about

the more basal elements and the

relations of these elements in space

and time, including language

patterns pointing to sensory and

sensory-motor patterns

(implementation in progress).

Sensory-motor-patterns

forming automatisms.

4 Cogent Numbers, strings, lists, tuples,

connectionist networks.

Production rules, connectionist

networks, Prolog.

5 Jack and other BDI

architectures

Object oriented structures (JAVA),

plus relational modeling support.

JACK plans and JAVA

methods.

6 Sim_Agent toolkit List structures, and arbitrary Pop-

11 data structures (e.g., could be

constrained to express logical

assertions, but need not be).  Could

use neural nets or other

mechanisms.

Rule sets and arbitrary Pop-11

procedures that can also invoke

Prolog or external functions.

7 Engineering models,

e.g., APEX.

Varies, but usually simple. Varies, but usually simple.

Many use some form of

schemas.
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Table 2 (continued).

Higher-Level

Cognitive Functions

Learning Planning Decision Making Situation

Assessment

1
Chunking, creation

of schemas and

production learning

is online (incremen-

tal) and stable against

erroneous data.

Connections between tem-

plates are used in planning.

Knowledge

based.

Overt and

inferred.

2
By incrementing

weights across a

probability

distribution.

Does not plan, but can

remember plans.

Iterative memory

recall process.

Can learn a set of

assessments and

generalize these.

3
Associative and

perceptual learning;

operant conditioning:

sensory-motor

learning, learning

goals (situations that

allow need satisfac-

tion) and aversions

(situations or objects

that cause needs).

Built-in hill-climbing proce-

dure: action schemata (i.e.,

sensory-motor-patterns) are

recombined to form new

plans.  If planning is unsuc-

cessful, or impossible due to a

lack of information, trial-and-

error procedures used to

collect environmental

information.

Expectancy-

value-principle.

Built in as part of

problem solving.

4
Common methods

within connectionist

modules.

Could be implemented in rule

modules.

Specific to

module type.

Can vary.

None built in

(users can

specify).

5
None built in (users

can specify as

required by their

architecture).

None built in (users can

specify as required by their

architecture).

Includes BDI

computation

model.

Includes BDI

computation

model.

6 None built in.

Wright, for example,

included simple

forms of deliberative

mechanisms and

meta-management in

his PhD work.

None built in (users can

specify as required by their

architecture).     Logan's A*

with bounded constraints

available, among others.

None built in

(users can specify

as required by

their

architecture).

None built in

(users can specify

as required by

their

architecture).

7 Usually not extant. Varies, some models do well. Usually good;

this is the domain

of these models.

Varies, often

implicit.
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Table 2.  Comparison of architectures covered in this report (continued).

Multitasking

Architecture Serial/Parallel Resource Representation

1 EPAM Serial processing; learning

done in parallel.

Limited STM capacity, limited

perceptual and motor resources

(uses time parameters).

2 SDM Fully parallel recall process,

serial recall of sequences.

Too low-level for this to be

explicit.

3 PSI System tries to fulfill

different needs (i.e., water,

energy, pain-avoidance,

etc.); interrupts goal

directed behavior to profit

from unexpected

opportunities.

Allocation of time to run an

intention according to strength of

underlying need and according to

expectancy of success.

4 Cogent Modules can work in

parallel, but information is

passed between them

serially.

Would vary with the knowledge

included in modules.

5 Jack and other BDI

architectures

Supports multiple

computational threads that

are handled safely within

the JACK Kernel --

achieving atomic reasoning

steps.

Agents have time perception.

Time can be real-time or

simulated time (dilated, externally

synchronized, etc.).

6 Sim_Agent toolkit Discrete event simulation

technique, with rule sets

within each agent time-

sliced, as well as different

agents being time-sliced.

Allocation of cycles per time-slice

can be made for each rule set, or

for each agent.  There are no built

in memory resource limits.  That

will differ for each architecture

type created.

7 Engineering models,

e.g., APEX

Varies, sometimes explicit

models.

Varies.  Those that interact with

simulations are more advanced.
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Table 2 (continued).

Goal/Task Management Multiple Human

Modeling

Implementation

Platform

1 Bottom up + 1 main goal

per task simulated.

Potential through multiple

EPAM modules.

Mac, PC (any system

supporting Common Lisp).

Graphical environment

supported only for

Macintosh.

2 None. None. UNIX (easily ported).

3 There is a steady

competition of the

different needs/motives to

rule.  The strongest will win

and will inhibit the others

taking command.

Potential through multiple

PSI models.

Windows 95, 98, NT.

4 None built in.  Users can

specify through module

selection and

programming.

None. UNIX (X windows). Microsoft

Windows soon.

5 Built in. JACK Language

includes:

wait_for(condition),

maintenance conditions,

meta-level reasoning, etc.

Allows multiple agents

running together or

distributed, to interact and

communicate as a team or

as adversaries. JACK also

allows extensions to the

basic model, e.g., team

models, etc.

Runs on all platforms that

support JAVA 1.1.3 or later.

6 None built in (users can

specify as required by the

architecture).

The toolkit allows

multiple agents to sense

one another, act on one

another, and communicate

with one another.

Runs on any system

supporting Poplog (and for

graphics the X window

system).  Tested on

Sun/Solaris, PC/Linux, Dec

Alpha/UNIX (Compaq).

Should also run on HP UNIX,

SGI UNIX and VAX VMS.

Should work without graphics

on Windows NT Poplog.

7 Varies.  Some advanced. Some have none; some

work in teams.

Varies.  Not usually designed

for dissemination.
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Table 2 Comparison of architectures covered in this report (continued).

Architecture Language Support

Environment

1 EPAM Common Lisp. Lisp programming + editing

tools.  Some graphical utilities

for displaying eye

movements, structure of

discrimination tree, and task.

Customized code used for

each task modeled.

2 SDM C (Elliman is currently

recoding in JAVA).

None.

3 PSI Pascal (Delphi 4). Delphi 4 features.

4 Cogent Prolog. Graphic and textual editors.

5 Jack and other BDI

architectures

JAVA. JACK is written

in and compiles into

pure JAVA.

JACK Make utilities, and all

available JAVA tools. GUIs

for editing and debugging

agent structures will be

available soon.

6 Sim_Agent toolkit Pop-11 (but allows

invocation of other

Poplog languages

(Prolog, Common Lisp,

Standard ML, &

external functions, e.g.,

C).

Poplog environment,

including VED/XVED,

libraries, incremental

compiler, etc.

7 Engineering models,

e.g., APEX

Varies. Often simple.
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Table 2 (continued).

Validation Comments

1 Extensive at many levels. EPAM models focus on a single,

specific information processing task

at a time.  Not yet scaled up to

multitasking situations.  Used in

high-knowledge domains (e.g., chess,

with about 300,000 chunks).

2 None. This is a system component. A good

way of representing long-term

memory for patterns and motor

behaviors in a larger system.

3 Achievement data and parameters of

behavior have been compared

between subjects and models in two

different scenarios (BioLab and

Island).  Different human subjects can

be modeled by varying parameters.

4 Would be by architecture.  Some have

been done by modeling previously

validated models.

5 Would be by architecture.  None

known.

6 Would be by architecture.  None

known.

7 By model.  Usually validated with

expert opinion.  Some may be

compared with data.

There is a wide range of models

here.
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7.  Review of recent developments and objectives: Specific

projects

We now examine specific projects within the general application areas noted in Chapter 6, broadly

grouped into projects that support the objectives in the previous chapters, that is, of providing

more complete performance, supporting integration of models, and improving model usability.

The format of the projects follows the general format used in Pew and Mavor (1998).  Where

appropriate, this summary also comments on the feasibility and concerns that may arise if the

projects are implemented in Soar, a current common approach for computer generated forces.

The estimates are optimistic, but uniformly optimistic to allow comparisons.  They are in terms of

programmer or analyst time, and assume adequate supervision and cooperation with other

organizations.

7.1  Projects providing more complete performance

The projects presented here roughly address the issues raised in Section 4.  They are grouped in

to three main categories.  We also note some additional uses that models of behavior can be or are

being put to in synthetic environments before concluding.

7.1.1  Gathering data from simulations

It is very clear and consonant with Pew and Mavor (1998, Ch. 12) that data needs to be gathered

to validate models of human and organizational behavior.  An approach at which they hint is to

instrument synthetic environments.  Synthetic environments should be instrumented not only for

playback, but in a way to provide data for developing and testing models.  While the data is not

directly equivalent to real world behavior, as the environment becomes more realistic, the data

should become more realistic as well.

A uniform representation for this data should be created.  This representation should be human

readable, at least in some formats.

Creating summary measures will also be necessary.  Otherwise the sheer volume of data may

preclude its analysis.  The individual actions of control are not likely to be useful on their own

(e.g., pressing an accelerator), but will be required to build higher-level summaries.  Creating

these summaries is likely to represent an additional research agenda item requiring AI, domain

knowledge, and some feeling for behavioral data.

The payback could be quite large for developing models.  Analysis of this data might also

provide insights into the quality of the simulation (e.g., how quickly could someone act and

whether they were limited by the simulation's ability to display information), and provide insights

about the implementation of doctrine (e.g., how often tanks actually follow doctrine).  When done

in cooperation with a simulator's developers, the resources required for this task could be quite

modest.  Otherwise, it could take some time.  Developing initial automated summaries is a six to

twelve month effort.
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7.1.2  Models that learn in synthetic environments

Work on creating agents in synthetic environments has been successful, but one aspect that has

not been modeled that would be particularly useful is learning.  A worthwhile project would be to

take a learning algorithm and put it to use within a synthetic environment, either as (part of) a

problem solver or as an observer.  There are a variety of learning algorithms and models that

would be appropriate, for example, connectionism, one of the hybrid learning architectures

developed within the ONR program (Gigley & Chipman, 1999), Programmable User Models

(Young, Green, & Simon, 1989b), Soar with learning turned on, ACT-R, EPAM, or any of a wide

variety of machine learning algorithms.

This work is likely to be difficult.  This task is large and would allow multiple subprojects to be

attempted.  It could be supported by a wide range of resources.  Including learning with problem

solving has been difficult in the past, but it is likely to lead to more accurate agents and ones that

may be useful for testing and developing tactics.

Soar models exist that function fairly well in a synthetic environment.  If these could be used, a

small project of a programmer-year or two should be able to create an initial model that learns in

a synthetic environment.  Attaching a learning component to find regularities in behavior is likely

to take at least that much time.  Both projects would provide potential PhD topics and are broad

enough to be supported by a wide range of resources.

7.1.3  Using tabu search to model behavior

The internal architecture of a combatant might be constructed from a perceptual module that is

closely coupled to the synthetic environment, and can be modified by plug-in items that alter the

incoming data to be processed (night vision aids, etc.).  The results of perception are crudely

classified using a learning system such as a multi-layer perceptron, which triggers a rapid

emotional response and consequent reactive behavior.  This behavior might be generated using an

SDM that finds the nearest match to previous scenarios and is capable of producing a sequence of

outputs rather than a single state result.  Both perception and emotional response are calibrated by

a perceptual and personality model that may be unique to individual entities, albeit assigned from

a known distribution.

The cognitive processing would be rule-based using an established cognitive model, for example,

ACT-R (possibly reprogrammed in JAVA), with planning activities augmented by a tabu search

approach.  There would be interactions between the state of the entity (including its emotional

state) and the cognitive processing based on psychological data on human performance under

stress.  This approach is similar and perhaps a generalization of Sloman's meta-architecture, and

the Soar and PSI architectures.

7.1.4  Unified theory of emotions

There are three specific projects related to modeling emotions that we can propose: (a) adding

general emotional effects, (b) adding reactive emotions, and (c) testing emotional models with

performance data.  While work is ongoing implementing models like this in Soar (Chong, 1999;
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Gratch, 1999) and ACT-R (Belavkin et al., 1999), the domain is large.  Projects can range from a

few months to implement a simple emotional effect to several years or decades to incorporate a

significant amount.

(a) Adding general emotional affects.  As noted above, it is possible to start to realize emotions

and affective behavior within toolkits like Sim_Agent and general cognitive architectures like

ACT-R and Soar.  Including emotions will provide a more complete architecture for modeling

behavior and a platform for performing future studies of how emotions effect problem solving.

Including emotions may also provide a way to duplicate personality and provide another

approach to providing appropriate variations in behavior.  Hudlicka (1997) provides a list of

intrinsic and extrinsic behavior moderators that could be modeled similar to the categories

suggested in Ritter (1993b).  Boff and Lincoln (1986) provide a list of regularities related to

fatigue and other related stressors that might be considered for testing against the model.  By

making ACT-R's motivation sensitive to local performance, we have fit the Yerkes-Dodson law

(Belavkin & Ritter, 2000).

These models should move from applying to a single task to applying to multiple tasks.  They

would then become modifications to the architecture and thus reusable.

(b) Adding Reactive emotions.  It is worthwhile to model reactive processes as well as slower-

acting cognitive behaviors.  The effect of repeated levels of stress also changes the state of the

competence in important ways.  A proportion of troops engaged in active combat will become

ineffective as a result of fear and stress-fatigue.  This will be increased by the number of casualties

taken by a given platoon, the length of time without sleep, the weather conditions, the perceived

chance of survival, and so on.  Modeling these effects at the micro-level of individuals, following

known distributions, would advance the realism of simulations in interesting ways.

In production system architectures, these emotions can initially be implemented by changing the

decision (rule matching) procedure, adding rules to make parameter changes, and by augmenting

working memory to include affective information (e.g., an operator or state looks good or bad).

These types of changes are being applied to an existing model, which matches adult behavior well,

to better match children's more emotional behavior (Belavkin et al., 1999).  These emotional

effects should improve the match to the children's performance by (a) slowing down performance

in general, (b) slowing down initial performance as the child explores the puzzle driven by

curiosity, and (c) abandoning the task if performance is not successful.  This work should be

extended and applied more widely.

(c) Testing emotional models with performance data.  Many of the theories of emotions

proposed have not been compared with detailed data.  Partly this may be because there is not

always a lot of data available on how behavior changes with emotions.  It is no doubt a difficult

factor to manipulate safely and reliably.  But the models must not just be based on intuitions.

The use of simulators may provide a way to obtain further data, with some validity.  Better

instrumentation of some primary features of emotions (e.g., heart rate, blood pressure) is

providing new insights (Picard, 1997; Stern, Ray, & Quigley, 2001) and will be necessary for

testing models of emotions.
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Some argue that emotions are necessary for problem solving.  Examples of brain damaged

patients are put forward (e.g., Damasio's (1994) Elliot) who have impaired problem solving and

impaired emotions.  It is not clear that emotions per se are required, or if multiple aspects of

behavior were impaired as well as emotions by the trauma.  Others agree from first principles that

emotions can improve problem solving (Belavkin, 2001).  Data and a model may help answer

whether this is true.  Clearly, AI models of scheduling do not have the same troubles scheduling

an appointment despite their lack of emotion.

7.1.5  Modeling errors

There are two premises that underpin the modeling of erroneous behavior.  The first premise is

that the attribution of the label error to a particular action is a judgment made in hindsight.  The

identification of the erroneous action forms the starting point for further investigation to identify

the underlying reasons why a particular person executed that particular action in that particular

situation.  In other words, the erroneous action arises as the result of a combination of factors

from a triad of sources: the person (psychological and physiological factors), the system (in the

most general sense of the term), and the environment (including the organization in which the

system is deployed).

The second premise acknowledges that an error is simply another aspect of behavior.  In other

words, any theory of behavior should naturally encompass erroneous behavior.  The behavior can

be adjudged as erroneous only with respect to a description of what constitutes correct behavior.

Once these two premises are accepted, it becomes apparent that modeling erroneous behavior is

actually an inherent and important part of modeling behavior.  If the psychological and

physiological limitations of human behavior are incorporated into a model of human behavior,

then particular types of erroneous behavior should naturally occur in certain specific situations.

The corollary of this argument is that an understanding of erroneous behavior can be used as the

basis for evaluating models of behavior.  So, if a human performs a task correctly in a given

situation, the model should also be able to perform the task correctly in the same situation.  If the

situation is changed, however, and the human generates erroneous behavior as a result, the model

should also generate the same erroneous behavior as the human in the new situation, without any

modifications being required to the model.

Modeling error therefore depends on understanding the concept of error -- its nature, origins, and

causes -- and central to this is the need for an accepted means of describing the phenomenon

(Senders & Moray, 1991).  In other words, a taxonomy of human error is required.

The utility of the taxonomic approach, however, depends on the understanding that the taxonomy

is generated with a particular purpose in mind.  In other words, the taxonomy has to reflect:

1.  A particular notion of what constitutes an error.

2.  A particular level of abstraction at which behavior is judged to be erroneous.

3.  A particular task or domain.
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There is a need to be very clear about the classes of errors and their origin in the models so that

the appropriate ones can be included.  In the military context, for example, a major source of

error is communication breakdown.  One approach to developing an appropriate taxonomy of

errors for the military domain is to use the scheme that lies at the heart of the Cognitive Reliability

and Error Analysis Method (CREAM: Hollnagel, 1998).  The CREAM purports to be a general

purpose way of analyzing human behavior in both a retrospective and a predictive manner.

Although the method was developed on the basis of several years of research into human

performance, mainly in the process industries, it is intended to be applicable to any domain.

The CREAM uses a domain-independent definition of what constitutes an erroneous action (also

called error modes or phenotypes).  One of the goals of the CREAM is to be able to identify the

chain of precursors for the various error modes.  This is achieved by means of a set of tables that

define categories of actions or events.  At the highest level there are three types of tables:

1.  Personal (or operator),

2.  Technological (or system), and

3.  Organizational (or environment).

Within these categories there are sub category tables.  So, for example, the personal tables include

observation, interpretation, planning, and so on.

The individual actions or events are paired together across tables on the basis of causality or to

use the more neutral terms, in a consequent-antecedent relationship.  When CREAM is used to

analyze a particular accident or incident retrospectively, the aim is to build up the list of possible

chains of events and actions which led to the accident or incident.

The contents of the tables are domain specific, so the first step in developing the taxonomy for

agents in synthetic environments depends on identifying the appropriate categories of events and

actions for the military domain.  These categories and the links between individual actions or

events will be generated from a combination of knowledge elicited from domain experts and a

review of the appropriate literature.

The second step is to generate the possible chains of actions and events that precede the various

error modes, based on information available from reports of real accidents or incidents.  This

process will involve access to desensitized accident or incident reports -- like those used in the

Confidential Human Factors Incident Reporting Programme (CHIRP: Green, 1990) originally

operated by the RAF Institute of Aviation Medicine -- which can be analyzed and coded using the

domain-specific CREAM tables generated in Step 1.  Where omissions from the tables are

detected, or links between actions do not already exist, these should be added to the tables.

The possible causal chains of events or actions generated by the second step will provide the basis

for a specification of behavior in a particular situation.  Models of behavior should yield the same

sequences of actions and events in the same circumstances.  The specification of behavior can

therefore be used to test the models of behavior for compliance, during development, with the

model being modified as appropriate to match the specification.
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In addition, the results of the analysis of the incident behavior provide a basis for evaluating the

veracity of synthetic environments.  Performance in the real world (as described in the incident

reports) can be compared with the way people behave when performing in the synthetic

environment.  There should be a high degree of correspondence between the two.  If there is a

mismatch, this suggests that there is a difference between the real world and the synthetic

environment, which may be worth further investigation to identify the source of the difference.

One other beneficent side effect of the CREAM analysis is that the resultant chains of actions and

events can be used in training personnel how to manage error.  If common chains of actions or

events can be identified, it may be possible to train personnel to recognize these chains, and take

appropriate remedial action before the erroneous action that gives rise to the incident is

generated.

Initial models that include errorful behavior can best be created with an existing model.  One to

three years of work should lead to a model that includes errors and has been validated against

human behavior.

7.1.6  Unified theory of personality

It would be useful to identify features that lead to modeling personality, problem-solving styles,

and operator traits.  While models that choose between strategies have been created, there are few

models that exhibit personality by choosing between similar strategies (although see Nerb, Spada,

& Ernst, 1997 for an example used to put subjects in a veridical but artificial social environment).

Personality will be an important aspect of variation in behavior between agents.

Including personality requires a task (and the model) to include multiple approaches and multiple

successful styles.  It is these choices that can thus appear as a personality.  If the task requires a

specific, single approach, it is not possible to express a strategy.  Psychology, or at least cognitive

psychology, has typically not studied tasks that allow or particularly highlight multiple strategies.

Looking for multiple strategies has also been difficult because it requires additional subjects and

additional data analysis that before has not represented real differences in task performance.

Differences in strategies, however, do lead to variance in behavior (Delaney, Reder, Staszewski, &

Ritter, 1998; Siegler, 1987).

There appear to be at least the following ways to realize variance in behavior that might appear

like personality: learning, differences in knowledge, differences in utility theory and initial

weighting, and differences in emotional effects.  Such a model would fulfill a need for a source of

regular, repeatable differences between agents in a situation.

All of the current cognitive architectures can support models of personality.  These types of

changes should be straightforward, as long as there are multiple strategies.  In Soar, personality

can be expressed as differences in task knowledge, as well as differences in knowledge about

strategy preferences either absolutely or based on a different sets of state and strategy features.

ACT-R appears to learn better and faster which strategy to use compared with a simple Soar

model, but requires additional state (Ritter & Wallach, 1998).  Models in both architectures can,

however, modify their choice of strategies.  The role of (multiple) strategies has been investigated
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within the EPAM architecture in several tasks, such as concept formation (Gobet et al., 1997); and

expert memory (Gobet & Simon, 2000; Richman, Gobet, Staszewski, & Simon, 1996; Richman et

al., 1995).

These models could also be crossed with emotional and other non-cognitive effects to see how

personality types respond differently in different circumstances (broadly defined).  This could

even be extended to look at how teams with different mixes of personalities work together under

stress.

The amount of work to realize a model in this area will depend on the number of factors taken

account of by the model.  Providing a full model of personality and how it interacts with tasks

and with other models is a fantasy at this point.  However, a minimal piece of work would take an

existing model and give it more of a personality.  A more extensive project over a year or two

would apply several of these techniques and see how it starts to match human data.

7.1.7  Understanding expectations of behavior

In order to understand what it means to provide realistic behavior, it will be necessary to

understand what people expect from other people, and to understand what aspect of an adversary

is necessary for training.  (These two are different.)  In one sense, this means understanding the

Turing test: what is necessary to appear human?  More important, however, is knowing what is

necessary to train people.  A model that passed the Turing test and appeared human might be

weaker or unusual in some way, such that training with the model did not transfer, or incorrect

behavior was learned.

It would be a useful exercise to study which characteristics of behavior make a model appear

human (so-called believable agents).  The model must start with competencies; it must be able to

perform tasks.  It is likely that it must also include errors, hesitations, and variation in behavior.

Work with the Soar Quake-bot examining how firing accuracy and movement speed make agents

believe is an example of what is required (Laird & Duchi, 2000) to understand what people think

is human.  The Soar Quake-bot has been tested at several settings of such things are firing

accuracy, and then observers are asked to rate its human-ness.  The measure of humanness,

however, does not tell you about how good the Quake-bot is to train against, and what aspects of

the Quake-bot should be made more (or less) human in order to improve training.  The current

belief is that more human makes a better opponent to train against, but we do not know of any

evidence to support this belief.

A useful six-month to one-year study would be to examine a range of models and humans in a

synthetic environment, noting observers' comments and behavior towards a range of behavior.  It

might be these aspects above that make an agent appear human, but it might also include implicit

effects, such as second-order (or lagged) dependencies in behavior.  The results would be

important for training, but also useful for models used in analysis.  This project is similar to, but

conceived of separately from, a similar call proposed by Chandrasakaren and Josephson (1999)

to develop a better understanding of how and how far to develop models.



63 3 September 1999

The results are also essential for understanding how to help modelers.  The results will point out

the most likely mismatches to be left in models because modelers do not consider such behavior

abnormal.  This will provide suggestions about where comparisons with data are particularly

needed by models.  As this is basically experimental work less resources are needed, but the time

to run the experiment and analyze the results will take up to a year for preliminary studies.

7.1.8  A model of situation awareness and Rapid Decision Making

Novices have to do problem solving, and experts can do problem solving but save effort (or

improve their problem solving performance) by recognizing solutions based on the problem.

Viewed broadly, a model that does this transition starts to provide an explanation of situation

awareness and rapid decision making (RDM) as a result of expertise and recognition.

Able (Larkin, 1981) and its recent reimplementations (Ritter et al., 1998b) provide a simulation

explaining the path of development from novice to expert in formal domains (i.e., those where

behavior is based on manipulated equations such as physics or math).  The early (or barely) Able

model works with a backward chaining approach, that is, it starts with what is desired and chooses

domain principles to apply based on what will provide the desired output.  This approach is

applied recursively until initial conditions are found.  The chunking mechanism in Soar gives rise

to new rules that allow the model to use a forward chaining method that is faster.  That is, from

the initial conditions new results are proposed.  The rules are applied until the desired result is

found.  Students at Nottingham have applied the Able mechanism to several new domains.  Their

examples are available at <www.nottingham.ac.uk/pub/soar/nottingham/>.

Work could be done to translate this mechanism, which has worked in Lisp and in several versions

of Soar, into other architectures, and extend it from a simulation to a full process model.  This

would require a rather modest amount of effort, less than a programmer-year to get started if the

programmer was familiar with Soar.  Applying it in a realistic domain would take longer.

7.2  Projects supporting integration

Integration is approached in two ways here: integrating model components and integrating the

model with simulations in more psychologically plausible ways.  Several projects described in this

subsection could be equally at home in the set of projects for making modeling routine, because

the two areas are related.

7.2.1  Models of higher-level vision

It has been argued that an understanding of higher-level vision is necessary for continued

development of models in synthetic environments (Laird, Coulter, Jones, Kenny, Koss, & Nielsen,

1997).  We agree (Ritter et al., 2000).  Neisser’s (1976) perceptual cycle is just starting to be

explored.

There are several areas of higher-level vision (HLV) that are of particular interest for military

modeling.  These areas include:

1. How information from long-term memory indicates incoming danger or serious change

in the environment.
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2. How HLV directs attention.

3. How HLV integrates various aspects of information, or integrates information occurring

at different times.

4. How HLV can be used to facilitate learning.

5. How HLV can be used in planning and problem solving.

To put it simply, HLV is at the interface between lower-level vision (LLV) and postulated memory

entities such as productions, schemas, concepts, and so on.  At the present time, this interface is

poorly understood, perhaps because LLV and long-term memory are not understood in a

sufficiently stable way. (However, see Kosslyn & Koenig, 1992 for neuropsychological

hypotheses about HLV.)

Most models of cognition such as Soar and ACT (actually, most architectures reviewed by Pew

and Mavor, 1998) use modeller-coded information, which avoids dealing with the interface

between LLV and long-term memory constructs.  Neural nets for vision have been used to go

from pixel-like information to features or even higher, but have not been incorporated into

higher-cognition models.  CAMERA (Tabachneck-Schijf, Leonardo, & Simon, 1997) and to a

certain extent EPAM (Feigenbaum & Simon, 1984; Richman & Simon, 1989) explore ways in

which features may be extracted from low-level representation, and may be combined into long-

term memory constructs.

The relationship of HLV and problem solving is undoubtedly an area where more research

should be carried out.  For example, modeling instruction and training requires a theory of how

low-level acoustic input merges with low-level visual input and connects to long-term memory

knowledge.  In some cases vehicles and gunfire will be heard rather than seen, and this will direct

visual attention in the appropriate direction.  Perceptual models of hearing are also well developed

and exploited with dramatic success in, for example, the MPEG-2 compression standard that is

likely to form the basis for much broadcast and recorded sound in the future.  The variance

amongst individuals is large for both auditory and visual perception, and both processes are

degraded temporarily or permanently by intense overload as is likely in a military environment.

Work extending this approach to create integrated architectures (Byrne et al., 1999; Hill, 1999;

Ritter & Young, in press) is ongoing.  Significant progress will require at least a year-long project,

and a longer period would be more appropriate.

7.2.2  Tying models to tasks

It should be easier to tie cognitive models to synthetic environments in psychologically plausible

ways.  There are two approaches that seem particularly useful and plausible that we can ground

with particular suggestions for work.  They are consistent with Pew and Mavor's (1998, p. 200)

short-term goal for perceptual front ends.

The first approach is to provide a system for cognitive models to access ModSAF's display and

pass commands to it.  This approach has the advantage that it hides changes in ModSAF from the

programmer/analyst and from the model.  The disadvantage is the need for ModSAF experts,
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programmers, users, time, and money to make it work.  There has been such a system created for

Soar models to use ModSAF (Schwamb, Koss, & Keirsey, 1994), but it is our impression that this

system, although it was quite useful, needs further development and dissemination.

The second approach is to create a reusable functional model of interaction based on a particular

graphics system or interface tool (as does the Nottingham Interaction Architecture and ACT-

R/PM).  A functional rather than a complete model may be more appropriate here as a first step.

This functional approach has been already created in Tcl/Tk (Lonsdale & Ritter, 2000), Garnet

and Common Lisp (Ritter et al., 2000), Visual Basic (Ritter, 2000), Windows bitmaps (St. Amant

& Riedl, in press), Windows 98 objects (Misker, Taatgen, & Aasman, 2001), and most recently in

Java.  They could be created in Amulet, X-windows, Delphi, or a variety of similar systems, each

of which allows models to interact with synthetic environments through a better programming

interface.  A functional model would then provide the necessary basis for improving the accuracy

and psychological plausibility of interaction.

This approach could also support creating cognitive models in general, such as for problem

solving, working memory, and the effect of visual interaction.  These could be later assimilated

back into models and architectures in the synthetic environments.

A good programmer can create an initial system in about two weeks.  Integrating and applying

these models takes several months to a year.

7.2.3  Review of existing simulations

In order to provide for reuse and to understand the current situation, a review of simulation

systems used (for as broad a geographic region as possible, working with allied nations if

possible) should be created that is similar to the listing in Pew and Mavor (1998, Ch. 2 Annex).

This listing, for example, could initially be created by an intercalated year (co-op) student and

then maintained as part of standing infrastructure.  This listing could provide an initial basis for

understanding what the total needs were and the totality of current simulation efforts.

7.2.4  Focus on a flagship task

Supporting all the uses of synthetic forces as shown in Table 1 with a single model of behavior is

probably impossible in the short term.  The uses of simulations in operations research, in training

individual group behavior, and in examining new materials or doctrine are too disparate to be met

by a single approach.  While the various levels and uses of simulations mentioned here are related

by the real world they all represent, it does not appear to be possible in the next five to ten years

to integrate them to the extent to which the real world is integrated.

While there may be some systems that allow multiple use, and there will certainly be some reuse

between these areas, a focus for work must be selected.  Therefore, a more narrow focus on the

most important uses for DERA and its customers should be adopted.  A selective focus on the

most approachable or most natural set of uses is more likely to be successful in the short term,

and may provide a better foundation upon which to build in the long term.  Discussion of these

issues should be grounded, if possible, with a set of potential uses with possible systems and
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domains that will be used in the next five to ten years.  Complete unification is not likely in that

time period, but significant reuse should be strived for.

Having a focus would also support the choice of a specific application.  Applications can be then

chosen with a user audience in mind.  Having a specific audience will help the application to be

useful and to be seen as useful by a well-defined user community.

Work that attempts to serve too many needs will serve all of them poorly.  Projects and research

programmes will have to pick a domain and an application (or two), and work with them.  This

application could be an existing use or application, such as the Purple Link exercise in 1997, or it

could be a new use.  Work with simulations for training often have high payoffs.  Augmenting

existing training would be a natural place to consider starting.

The students being trained could also be coopted to help test the simulation.  Apocryphal tales

from MIT suggest that building computer-based tutors to deliver instruction is as useful for

learning as using the resulting tutors.  Creating and validating these models would be good

training for such students as well.

7.2.5  A framework for integrating models

Perhaps the most significant current requirement is a way to integrate multiple cognitive and

behavior architectures into synthetic environments.  Currently, it takes a large amount of effort to

introduce new models of behavior and connect them directly to simulations via the DIS protocol.

Coupling cognitive architectures to a simulation via ModSAF is probably marginally easier

because ModSAF, while difficult to use, provides physical models and an interface to the network.

The left-hand side of Figure 1 shows the organization of systems like Tac-Air Soar that interact

with ModSAF to generate behavior.

A worthwhile medium- to long-range goal would be to develop utilities to support making a tool

like ModSAF even more modular.  The core activities of supporting communication across the

network for simulation and supporting the physical model need to be provided, but are not of

particular interest for modeling behavior.

Efforts have attempted to provide similar interfaces for Soar; however, they have never been fully

successful.  They have made hooking Soar up easier, but have not yet made it easy (e.g., Ong,

1995; Ong & Ritter, 1995; but also see the Soar home page for later utilities

<bigfoot.eecs.umich.edu/~soar/>).  Work on the Tank-Soar simulator (provided as a demo in the

latest release of Soar, Soar 8.3) might provide a path for this.

The right-hand side of Figure 1 shows how future systems might interact with ModSAF using the

same interface that users see through a simulated eye & hand designed to allow models to interact

with synthetic environments (Ritter, Jones, Baxter, & Young, 1998a).  The interface to the physical

simulation could no doubt be made more regular and easier to use so that other architectures,

such as Sim_Agent, could be hooked up to it.  We suspect this project might take a good

programmer familiar with ModSAF about half-time over a year because we have had a similar

system built in two weeks by someone who was an expert in their graphical programming
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language.  A much longer time should be allowed, however, because this system requires knowing

ModSAF very well because it will make use of all of ModSAF and may require extending

ModSAF.

DIS Network

ModSAF

Cog Arch

cross compilation simulated 
Eye / Hand

Cog Arch

network support

physical model

automated 
behaviourGUI

ModSAF

GUI

Figure 1.  A functional description of Tac-Air Soar and how it uses ModSAF on the left and a

perceptual interface to ModSAF on the right.

7.2.6  A framework for integrating knowledge

Currently, there are multiple knowledge sets in different simulations that exist in multiple formats.

It would be useful to create a framework for integrating multiple knowledge sets, allowing the

knowledge to be reused in different simulations.

One way to do this is to create a task editor that could take a knowledge set and compile it for

different architectures.  The editor would have to be based on a high-level description of

knowledge, such as generic tasks (Wielinga, Schreiber, & Breuker, 1992).  These generic tasks

would then be compiled into things such as an ACT-R or Soar rule set.

There are potentially huge payoffs from this very high risk project.  First, it would provide a way

to reuse knowledge in multiple simulations.  This reuse would help validate models, and might

provide a way forward for validating architectures.  Second, it would provide another way of

documenting behavior models.  The (presumably) graphic representation would allow others to

browse and understand the model on a high level.  Third, it would assist in writing models.  In

most cases, there are a lot of low-level details in creating these models that are not of theoretical

interest, but require attention, such as using the same attribute name consistently.  A high-level

compiler for knowledge like this would bring with it all the advantages traditionally associated

with high-level languages.  When done with Soar models could be built two to three times faster

(Yost, 1992).
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PC-Pack (<www.epistemics.co.uk>) is a potential tool to start building upon.  Implementing an

initial, demonstration version of this approach would take a good programmer six to twelve

months.  Putting it to use would take longer.

7.2.7  Methods for comparing modeling approaches

We find ourselves in a position where a number of different approaches to simulating human

behavior are on offer.  Some of these approaches, at least, see themselves as rivals, and make

competing claims about their suitability and quality.  How can we set about assessing and

comparing them?

There can, of course, be no one method that answers such a question.  Earlier sections of this

report have discussed how practical considerations such as usability and communicability come

into play as well as scientific qualities such as agreement with data.  Thus, almost any defensible

comment about a model or architecture can be relevant to considering a choice between them.

However, there are some methods available that are too loose and varied to constitute a

"technique" but are useful nonetheless for comparing and contrasting such differing approaches.

They take the form of matrix exercises, in which a range of modeling approaches are pitted

against a battery of concrete scenarios to be modeled.  Young and Barnard (1987) provide the

basic rationale for such a method, and explain how it can be used to judge the fit and scope of a

modeling approach.  They argue, first, that the modeling approaches need to be applied to

concrete scenarios.  It is not sufficient to try comparing approaches on the basis of their "features"

or "characteristics".  Second, it is important to use a range of scenarios.  Taking just a single case

will inevitably introduce a bias towards or against certain approaches, and will fail to provide an

indication of their scope.  Young, Barnard, Simon and Whittington (1989a) provide a short

example of such a matrix exercise, and show how the entries in the matrix can be interpreted.

This kind of matrix exercise derives from the idea of a bake-off between rival approaches, but also

differs in important respects.  It must be recognized that there is unlikely to be a winner, one

approach that is regarded as the best in all respects.  Moreover, the matrix exercise is

fundamentally co-operative rather than competitive.  Instead of finding the best approach, it

provides a tool for probing the scope of applicability of the different approaches, and

investigating their relative strengths and weaknesses, advantages and disadvantages.

Some exercises of this kind have been performed in public.  At the Research Symposia associated

with the CHI conferences in 1993 and 1994, Young (in 1993) and Young and C. Lewis (in 1994)

organized such matrix exercises on the design of an undo facility for a shared editor (1993), and

on the analysis of the persistent "unselected window" error and of the design of an automated

bank teller machine as a walk-up-and-use device (in 1994).  Furthermore, there are precedents for

such an exercise in a military research context.  In 1993, NASA funded a comparative study of

models of pilot checklist completion.  ONR has funded, on a longer timescale, multiple analyses

and modeling of several interactive tasks using hybrid architectures (Gigley & Chipman, 1999).

The speech recognition community in the United States uses this approach in a quite competitive

way as well.  The US Air Force (contract officer Michael Young) has recently started a similar
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programme to explore models of complex behavior.  Pew and Mavor appear to call for this kind

of activity (1998, pp. 336-339), but without specifying so concrete a methodology.

A final but important point about such an exercise is that it cannot be done successfully on the

cheap.  The exercise requires earmarked and realistic funding in order to provide useful results.

A considerable amount of work is required: first in negotiating, agreeing, and then specifying a

set of concrete and clearly described scenarios, ideally with associated empirical data; and then

subsequently for applying the modeling approaches to the scenarios, performing the

comparisons, and drawing conclusions.  Multiple research groups are used and the funding is

leveraged by their existing work.

7.2.8  (Re)Implementing the battlefield simulation

There are strong arguments for implementing communicating agents and intra-agent processes in

JAVA.  These are discussed in Bigus and Bigus (1997), and in the context of JACK Intelligent

Agents by Busetta et al. at <www.agentlink.org>.  In fact, there are powerful arguments for

building the entire synthetic agent simulation in JAVA as described below.  This is possible within

the Higher Level Architecture (HLA) framework.  Implementing Soar in JAVA has also been

mooted (Schwamb, 1998).

A core system implementation is needed that can then be accessed through Application

Programming Interfaces (APIs).  Supporting software is available for this, but any software could

be developed for the purpose, provided it conformed with the standard.  The core system might

be written in JAVA or any other language provided only that the API is implemented.  Similarly,

entities may be written in any language, or several, provided that they set up calls to the API

specification.  There are a number of arguments for using JAVA as the basis for both individual

entity simulation and for building a core system to the HLA specification.  These are described

below.

The single most attractive advantage of developing a synthetic battlefield simulation within a

JAVA environment lies in the capabilities available within RMI that forms part of the JAVA run-

time environment.  This is a distributed object model with some similarities to Microsoft’s DCOM,

but with the advantage that it is effective on any platform that supports a JAVA run-time

environment.  It goes well beyond traditional RPC in being entirely object based, even allowing

objects to be passed as parameters.  This means that object behavior as well as data can be passed

to a remote object in a seamless and transparent way.  A mortar weapon being passed as an

argument to an individual infantry man entity and arriving complete with its complement of

munitions and ability to be fired gives a picture of this capability.  The JAVA run-time

environment also supports a naming and directory service API (JAVA JNDI) that allows the

objects of RMI calls to be found.  (For more details of this see <www.javasoft.com/products/

jndi/index.html>.)

To show how such a service might be used, suppose that a simulation of an individual paratrooper

has been developed.  This simulation is a uniquely named JAVA object that can be invoked on

any machine on the network used for the simulation.  The JNDI service will inform a process of
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which machines have a suitable simulation available.  To take this an important stage further, we

use a class-factory object to produce the individual paratrooper objects.  This class factory might

use randomized parameters to make each entity distinct to fit a known distribution (like cabbage-

patch dolls).  To introduce these entities into the simulation a process would ask the naming

service for a suitable class-factory object.  This might be on one of any number of machines and

is therefore extremely robust against damage to the network.  The class factory can then be asked

to produce any number of paratrooper entities each of which (in JAVA) is capable of serializing

itself to any other machine on the network, and running there.  Indeed the simulation can be

moved from machine to machine at will, perhaps in response to a condition such as imminent

power failure.

This approach would also support testing new platforms.  A manufacturer might develop an

improved simulation of a Tornado fighter-bomber.  They then could introduce a new machine

with a suitably registered class-factory object.  Once this was connected to the network, the new

simulation would be immediately available even if this were done while a simulation was running.

No relinking, recompilation, or even pause in the simulation would be needed.  The objects could

be defined in conformity with the HLA standard.

JAVA also supports secure communications and has well-developed APIs for database

connectivity and for driving graphics devices.  An attractive user interface is very much easier to

develop using the JAVA Foundation Classed (JFC) than, for example, using X-Motif.  In addition,

if a JIT (Just In Time) compiler is available to the RTE,  programs developed in JAVA show little

performance degradation in comparison with C++.

A synthetic environment could be developed using facilities offered by the JAVA run-time

environment and existing APIs that would come much closer than existing simulations in meeting

the design goals of maintainability, versatility, and robustness.  This approach would have to be

agreed with multiple communities, and would require a large amount of resources if it were

applied uniformly.

7.3  Projects improving usability

This section reviews several possible projects for making model building more routine.  For

practical reasons, it is useful to make the process more routine.  It is also important for theoretical

reasons.  If the models cannot be created within a time commensurate with gathering data, the

majority of work will continue to be data gathering because theory development will be seen as

too difficult.

7.3.1  Defining the modeling methodology

There is not yet a definitive approach or handbook for building models that can also be used for

teaching and practicing modeling cognitive behavior.  Newell and Simon's (1972) book is too

long and mostly teaches by example.  Ericsson and Simon's (1993) book on verbal protocol

analysis has comments on how to create models.  Although useful, the comments are short.

VanSomeren, Barnard, and Sandberg (1994) provide a useful text, but it is slightly short and

some of the details of going from model to data are not specified (if indeed they can be).
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Baxter's (1997) report and Yost and Newell's (1989) article examples of the process are useful,

but tied to a single architecture and not widely available.  There are other useful papers worth

noting, but they are short and do not provide the full story (Brazier et al., 1999; Ritter & Larkin,

1994; Sun & Ling, 1998).

Rouse (1980) has also made an attempt at describing the modeling process.  He identifies the

following steps as forming an important part of the modeling process: (a) definition, (b)

representation, (c) calculation, (d) experimentation, (e) comparison, and (f) iteration.  Rouse

mainly focuses on the representation and calculation aspects of modeling, particularly from an

engineering point of view.  He describes several methodologies, including control theory, queuing

theory, and rule-based production systems;  he also provides a short tutorial on several of these

modeling methods together with practical examples of systems engineering models.  The

examples are taken from a wide variety of domains including aviation, air traffic control, and

industrial process control.  It is not a complete treatise on human behavior, but does provide

suggestions for methods that may be useful in modeling certain aspects of human behavior.

Similar tutorials and methodological summaries should be created until they converge.  The

results will be useful to practitioners and to those who are learning to model, which will be an

important audience as this field grows.  The output is most likely to require a textbook.  A year to

several years of support would significantly help create this.

7.3.2  Improvements to ModSAF

A major problem with ModSAF is usability.  ModSAF is large and has a complicated syntax.

Users report problems learning and using it.  One way to improve its usability might be a better

interface; better manuals and training aids might also be useful.

The approach used by models of behavior to interact with basic simulation capabilities such as

ModSAF needs to be regularized.  A fundamentally better approach might be possible.  There

exists an interface between ModSAF and Soar that partly provides a model eye and hand.  This

eye/hand could be improved to provide a more abstract interface to ModSAF, one that might be

easier to use.

One thing we have repeatedly noted is that getting models to interact with simulations is more

bearable when both are implemented within the same development environment.  When they are

not, work proceeds much more slowly (Ritter et al., 2000; Ritter & Major, 1995), requiring a

mastery of both environments.  The situation is exacerbated because the development and use of

any communication facility tends to be an ill-defined problem with numerous wild subproblems

(i.e., problems where the time to solution can be high and with a large variance, that is, not easily

predicted).  So, for example, although the ModSAF Tac-Air system (Tambe, Johnson, Jones, Koss,

Laird, Rosenbloom, et al., 1995) appears as if it was developed using joint compilation techniques,

it was probably difficult to use because it implements communication between ModSAF and the

Tac-Air model using sockets.  Although informal communication with researchers in the Soar

and robotics communities suggest that the use of sockets may be becoming more routine, this has

not always been the case.
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7.3.3  Environments for model building and reuse

There remains a need for better environments for creating models.  Few modeling interfaces

provide much support for the user to program at the problem space level or even the knowledge

level, although the Cogent interface is interesting as an example of usability, the Soar interface is

providing increasing amounts of support at the symbol level.  TAQL (Yost & Newell, 1989) and

Able (Ritter et al., 1998b) have been moderately successful but modest attempts to create high

level tools in Soar, for example.

Soar, in particular, needs a better interface.  While there is now a modest interface, even the latest

versions of the Soar interface (Kalus & Hirst, 1999; Laird, 1999; Ritter et al., 1998b) are not as

advanced as many expert system shells and the previous, Lisp-based version (Ritter & Larkin,

1994).  Gratch's (1998) planning level interface should be expanded and disseminated as a

modeling interface.  Knowledge acquisition tools and techniques (e.g., Cottam & Shadbolt, 1998;

O'Hara & Shadbolt, 1998) might be particularly useful bases upon which to build.

Associated with this project would be general support for programming.  This includes lists of

frequently asked questions, tutorials, and generating models or model libraries designed for reuse.

These libraries should either exist in each architecture, or in the general task language developed

in the previous task.  These would serve as a type of default knowledge for use in other

applications.  We can already envision libraries of interaction knowledge (about how to push

buttons and search menus), arithmetic, and simple optimization like the default knowledge in

Soar.

Work on improving the modeling interfaces for each architecture should be incorporated as part

of another modeling project so that the developers of the interface have a ready-made audience.

There are multiple additions that would be useful and multiple approaches that could be explored,

so it could take almost any amount of resources, ranging from a month to several years.

7.3.4  Individual Data Modeling (IDM): An approach for validating

models

What is the best way to make theoretical progress in the study of behavior in general and of

cognition in particular?  To develop micro-theories explaining a small domain or to aim at a

higher goal, and develop an overarching theory covering a large number of domains -- a unified

theory?  Modern psychology, as a field, has tended to prefer micro-theories.  It is true that unified

theories have regularly appeared in psychology -- think of Piaget’s (1954) or Skinner’s (1957)

theories -- but it is generally admitted that such unified theories have failed to offer a rigorous

and testable picture of the human mind.  Given this relatively unsuccessful history, it was with

interest that cognitive science has observed Newell’s (1990; see also Newell, 1973) call for a

revival of unified theories in psychology.

One of the reasons for the limited success of Newell’s own brand of UTC is that the methodology

commonly used in psychology, based on controlling potentially confounding variables by using

group data, is not the best way forward for developing UTCs.  Instead, Gobet and Ritter (2000)

propose an approach, which they call individual data modeling (IDM), where (a) the problems
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related to group averages are alleviated by analyzing subjects individually on a large set of tasks;

(b) there is a close interaction between theory building and experimentation; and (c) computer

technology is used to routinely test versions of the theory on a wide range of data.  They claim

that there are significant advantages here, that this approach will also help traditional approaches

progress, and that the main potential disadvantage -- lack of generality -- may be taken care of by

adequate testing procedures.

IDM offers several particular advantages in this area.  It does not require as much data because

the data will not be averaged but compared on a fine-grained level.  This is attractive when the

data is detailed or expensive to acquire, or where the model makes detailed predictions.  The other

advantage it offers is that it provides a model that produces more accurate behavior on a detailed

level.  It is this detailed level of behavior that will be necessary for not only appearing human in a

Turing test, but leading to accurate training results because it performs like a comparable

colleague or foe.

Work using this approach is ongoing at Nottingham and at Penn State.  A full test would require

one to two years of work to gather data and compare it with a model.  This project could be

combined with other projects, however, because it is a methodology and not a feature of behavior

to include in a model.

7.3.5  Automatic model building

Most process models induced from protocols are created by hand.  There has been some work to

do this automatically or semi-automatically with machine learning techniques.  Semi-automatic

generation is done in the event structure modeling domain (a sociological level of social events)

by a program called Ethno (Heise, 1989; Heise & Lewis, 1991).  It iterates though a database of

known events finding those without known precursors.  It presents these to the modeller, querying

for their precursors.  As it runs it asks the modeller to create simple qualitative, non-variablized

token matching rules representing the event's causal relationships based on social and scientific

processes.  The result at the end of an analysis is a rule set of ten to twenty rules that shape

sociological behavior in that area.  In a sense, the modeller is doing impasse driven programming

(i.e., what is the next precursor for an uncovered event not provided by an already existing rule?).

After this step, or in place of it, the modeller can compare the model's predictions with a series of

actions on a sociological level (a protocol in the formal sense of the word).  The tool notes which

actions could follow, and queries the modeller based on this.  Where mismatches occur, Ethno can

present several possible fixes for configuration.  Incorporating the model with the analysis tool in

an integrated environment makes it more powerful.  It would be a short extension to see the social

events as cognitive events in a protocol.

Stronger methods for building models from a protocol are also available.  Cirrus (VanLehn &

Garlick, 1987) and ACM (Langley & Ohlsson, 1984) will induce decision trees for transitions

between states that could be turned into production rules given a description of the problem

space, including its elements, and the coded actions in the protocol.  Cirrus and ACM use a variant

of the ID3 learning algorithm (Quinlan, 1983).  (ID3 induces rules that describe relationships in

data.)
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These tools look like a useful way to refine process models.  Why is automatic creation of process

models not done more often?  Perhaps it is because these tools do not create complete process

models.  They take a generalized version of an operator that must be specified as part of a process

model.  It could also be that finding the conditions of operators is not the difficult problem, but

that creating the initial process model and operators is.  It could also be that it is harder to write

process models that can be used by these machine learning algorithms.  In any case, these

methods should be explored further.

Diligent (Angros, 1998), Instructo-Soar (Huffman & Laird, 1995), and Observo-Soar (van Lent,

1999) are approaches to create models in Soar that learn how to perform new tasks by observing

behavior and inferring problem solving steps to duplicate it.  Related models have been used in

synthetic environments (Assanie & Laird, 1999; van Lent & Laird, 1999).  They have had limited

use, but suggest that learning through observation may be a quite important way to create models

as an important way that humans learn.  Their lack of use could simply be due to that they are

novel software systems.  As novel systems they are probably difficult for people other than their

developers to use, and they will have to go through several iterations of improvement (like most

pieces of software) before they are ready for outsiders.  With a small user base (so far), the need

has not forced the software development, which has further decreased their potential audience.

Automatic modeling tools need to be developed.  Machine learning algorithms and theories of

cognition are developed enough that this could be a very fruitful approach.  A several-year effort

here could yield large benefits of more routine modeling.

7.3.6  Using genetic algorithms to fit data

There are two potential uses of genetic algorithms worth highlighting.  The first is for generating

behavior as described above in Section 5.2.

The second use of genetic algorithms is for optimizing model fits by adjusting their parameters

(Davis & Ritter, 1987; Ritter, 1991).  Most model fits have been optimized by hand, which leads

to absolute and relative performance problems.  In absolute terms, researchers may not be getting

optimal performance from their models.  In relative terms, comparisons of or hand- optimized

models may not be fair.  (Sometimes even one model is optimized and the other not.)  In the case

of models with multiple parameters (with submodels to include), this job is not tractable by hand.

The results obtained by optimizing models with genetic algorithms suggest that optimizations

done by hand are likely to be inferior to those done by genetic algorithms (Ritter, 1991) or by

other machine learning techniques (Butler, 2000).  Use of genetic algorithms (or similar

techniques) would improve performance in absolute terms, provide fairer comparisons between

models, and encourage the inclusion of parameter set behavior in model comparisons.  Several

years of a PhD student working within a project with a model to optimize is probably a good way

to progress work in this area.

This optimization should initially be done with an existing model so that the developers of the

interface have a ready-made model and audience.  The basic approach is simple and robust, and

should be straightforward to demonstrate.  Making it routine and portable are separate steps and
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more advanced steps, so it could take almost any amount of resources, ranging from a month to

several years.

7.4  Other applications of behavioral models in synthetic environments

The are numerous ways that behavioral models could be applied outside the military domain.  We

will examine just four types of them here.

The most obvious additional application of the models arising from approaches proposed in this

report is in the provision of automated support for system operators.  This support can take the

form of intelligent decision support systems or embedded assistants that guide operator behavior.

There are some existing applications, most notably the Pilot's Associate (Geddes, 1989), its

derivative Hazard Monitor (Greenberg, Small, Zenyah, & Skidmore, 1995), and CASSY (Wittig &

Onken, 1992), all from the aviation domain.  In the UK, the Future Organic Airborne early

warning system is attempting to insert a knowledge-based system into the Osprey aircraft and

radar simulation to assist users.

These assistants, because they have a model of what the user is likely to do next, should be able to

assist the user:  if not by performing the task, then by preparing materials or information, or by

modifying the display to help distinguish between alternatives or make performing actions easier.

In the past, such assistants have had only a limited ability to model users.  With increased validity

and accuracy, these models may become truly useful.

The second application is in education and training.  The uses in education have been fairly well

illustrated by Anderson's work with cognitive model-based tutors (Anderson, Corbett, Koedinger,

& Pelletier, 1995).  In training, behavioral models can be used to provide experts to emulate

(Ritter & Feurzeig, 1988).  The same knowledge can also be used to debrief students'

performances.  The knowledge can also be used to populate adversaries and colleagues in the

same environment (Bloedorn & Downes-Martin, 1985).

Training needs exist outside the military in several domains where dynamic models are necessary.

Mining, for example, is starting to use virtual reality to train simple tasks (Hollands, Denby, &

Brooks, in press).  Virtual reality is already being used to train hazard spotting, avoiding mine

machinery as a pedestrian, and driving vehicles underground (Schofield & Denby, 1995).

The third application is in entertainment.  This has been proposed for some time as an

application.  The recent report by the (US) National Research Council on this topic (Computer

Science and Telecommunications Board, 1997) suggests that not only is it possible to use

synthetic environments and the behavioral models in them for entertainment, but it is currently

being done by the Center for Interactive Technologies at the University of Southern California.

The fourth application is in system analysis.  The behavioral models can be used to examine

different system designs to measure errors, processing rates, or emergent strategies.  To return to

mining again, truck models in a simulation can be used to examine road layouts in mines

(Williams, Schofield, & Denby, 1998).
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7.5  Summary of projects

This report has laid out important objectives for models of behavior in synthetic environments in

the important areas of providing more complete performance, increased integration of the

models, and improved usability of the models,  It should be noted that funding bodies may be

interested in supporting some of this work because most of these projects will not simply improve

engineering models of human behavior, but will also improve our understanding of behavior and

our general scientific ability to predict and model human behavior in general.

These proposals, taken as a whole, call for several general research programmes.  They suggest

several moderating variables that affect cognition, including emotions, personality, and

interactions with the environment, which should be included in cognitive architectures.  They

argue for creating or moving towards a more uniform format for data and models and a more

clearly defined approach for modeling.  There are also several concrete suggestions for making

this approach easier and more routine, including providing more usable modeling environments

and supporting automatic model generation.  Finally, we were able to suggest some further

applications of models of behavior in synthetic environments.
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