
Techniques for Scheduling with Rejection

Daniel W. Engels⋆, David R. Karger⋆⋆, Stavros G. Kolliopoulos⋆ ⋆ ⋆, Sudipta
Sengupta⋆⋆, R. N. Uma†, and Joel Wein‡

Dartmouth College, MIT, Polytechnic University

Abstract. We consider the general problem of scheduling a set of jobs
where we may choose not to schedule certain jobs, and thereby incur a
penalty for each rejected job. More specifically, we focus on choosing a
set of jobs to reject and constructing a schedule for the remaining jobs
so as to optimize the sum of the weighted completion times of the jobs
scheduled plus the sum of the penalties of the jobs rejected.

We give several techniques for designing scheduling algorithms under this
criterion. Many of these techniques show how to reduce a problem with
rejection to a (potentially more complex) scheduling problem without re-
jection. Some of the reductions are based on general properties of certain
kinds of linear-programming relaxations of optimization problems, and
therefore are applicable to problems outside of scheduling; we demon-
strate this by giving an approximation algorithm for a variant of the
facility-location problem.

In the last section of the paper we consider a different notion of rejec-
tion in the context of scheduling: scheduling jobs with due dates so as
to maximize the number of jobs that complete by their due dates, or
equivalently to minimize the number of jobs that do not complete by
their due date and that thus can be considered “rejected.” We inves-
tigate the approximability of a simple version of this problem, giving
approximation algorithms and characterizing integrality gaps of a class
of linear-programming relaxations.

⋆

dragon@glenfiddich.lcs.mit.edu.Department of Electrical Engineering and Com-
puter Science, Massachusetts Institute of Technology, Cambridge, MA 02139. Re-
search supported by NSF Contract MIP-9612632.

⋆⋆ {karger, sudipta}@theory.lcs.mit.edu. Laboratory for Computer Science, Mas-
sachusetts Institute of Technology, Cambridge, MA 02139. Research supported in
part by ARPA contract N00014-95-1-1246 and NSF contract CCR-9624239, as well
as grants from the Alfred P. Sloane and David and Lucille Packard foundations.

⋆ ⋆ ⋆ stavros@cs.dartmouth.edu.Department of Computer Science, Dartmouth College,
Hanover, NH 03755-3510. Research partially supported by NSF Award CCR-9308701
and NSF Career Award CCR-9624828.

†
ruma@tiger.poly.edu. Department of Computer Science, Polytechnic University,
Brooklyn, NY, 11201. Research partially supported by NSF Grant CCR-9626831.

‡
wein@mem.poly.edu. Department of Computer Science, Polytechnic University,
Brooklyn, NY, 11201. Research partially supported by NSF Grant CCR-9626831
and a grant from the New York State Science and Technology Foundation, through
its Center for Advanced Technology in Telecommunications.

1 Introduction

Most of traditional scheduling theory begins with a set of n jobs to be scheduled
in a particular machine environment so as to optimize a particular optimality
criterion. At times, however, a higher-level decision has to be made: given a set
of tasks, and limited available capacity, choose only a subset of these tasks to
be scheduled, while perhaps incurring some penalty for the jobs that are not
scheduled. Knapsack is a “pure” instance of the problem, where we care only
about what subset to “accept.” In scheduling, however, the set of accepted jobs
must also be scheduled at some cost.

In this paper we contribute to the understanding of this problem by studying
several scheduling models in which the scheduler can choose to reject (not sched-
ule) certain jobs at a penalty. We give several techniques for designing exact and
approximation algorithms in this paradigm.

1.1 Problem Definition. For much of this paper we study variants of the
following basic scheduling problem. We are given n jobs j = 1, . . . , n, each with a
nonnegative processing time pj, a weight wj, and a rejection penalty ej. For each
job we must decide either to schedule that job (on a machine that can process
at most one job at a time) or to reject it. If we schedule job j, we denote its
completion time by Cj . If we reject job j, we pay its rejection penalty ej . Our
goal is to choose a subset S of the n jobs to schedule on the machine so as to
minimize the sum of the weighted completion times of the scheduled jobs and
the penalties of the rejected jobs. We denote the set of rejected jobs by S, and
thus our overall optimality criterion may be denoted as

∑

j∈S wjCj +
∑

j∈S
ej .

At times we consider scheduling models in which the processing of the jobs
is constrained by either release date constraints (job j cannot begin processing
before a specified release date rj) or precedence constraints (j ≺ k is a precedence
constraint stating that job k can begin its processing no earlier than job j com-
pletes its processing). Precedence constraints impose a partial ordering on the
jobs. We also consider models with more than one machine available for process-
ing and other related optimality criteria; we leave their details to be introduced
as appropriate in the body of the paper.

Our interest in these models arises primarily from two considerations. First, it
is becoming widely understood that in actual manufacturing settings a schedul-
ing algorithm is only one element of a larger decision analysis tool that takes into
account a variety of factors such as inventory, potential machine disruptions, etc.
[13]. Furthermore, some practitioners [12] have identified as a critical element of
this larger decision picture the “pre-scheduling negotiation” in which one con-
siders the capacity of your production environment and then agrees to schedule
certain jobs at the requested quality of service (e.g. job turnaround time) and
other jobs at a reduced quality of service, while rejecting other jobs altogether.

Typically, the way that current systems handle the integration of objective
functions is to have a separate component for each problem element and to
integrate these components in an ad-hoc heuristic fashion. Therefore, models
that integrate more than one element of this decision process while remaining

amenable to solution by algorithms with performance guarantees have the po-
tential to be very useful elements in this decision process.

Secondly, our work is directly inspired by that of Bartal, Leonardi, Marchetti-
Spaccamela, Sgall and Stougie [1] who studied a multiprocessor scheduling prob-
lem with the objective of trading off between schedule makespan (length) and
job rejection cost. Makespan and average weighted completion time are perhaps
the two most basic and well-studied of all scheduling optimality criteria; there-
fore, it is of interest to understand the impact of the “rejection option” on the
∑

wjCj objective as well.

Since we will be dealing with a number of scheduling models, we will use the
scheduling notation introduced by Graham, Lawler, Lenstra and Rinnooy Kan
[6] to denote the model being considered.

1.2 Relevant Previous Work. There has been much work on scheduling
without rejection to minimize

∑

wjCj. For the simplest variant of the problem,
1||

∑

wjCj (scheduling jobs with no side constraints on one machine to minimize
∑

wjCj) Smith [19] proved that an optimal schedule could be constructed by
ordering the jobs by non-decreasing pj/wj ratios. More complex variants are
typically NP-hard, and recently there has been a great deal of work on the
development of approximation algorithms for them (e.g. [14, 8, 5, 2, 17, 16]). A
ρ-approximation algorithm is a polynomial-time algorithm that always finds a
solution of objective function value within a factor of ρ of optimal (ρ is also
referred to as the performance guarantee).

To the best of our knowledge the only previous work on scheduling models
that include rejection in our manner is that of Bartal et. al., who seem to have
formally introduced the notion. They considered the problem of scheduling with
rejection in a multiprocessor setting with the aim of minimizing the makespan
of the scheduled jobs and the sum of the penalties of the rejected jobs [1]. They
give a (1 +φ)(≈ 2.618)-competitive algorithm for the on-line version, where φ is
the golden ratio.

1.3 Our Results. Our work differs from that of Bartal et. al. in that we
focus in

∑

wjCj rather than the makespan. More importantly, we focus less on
a particular problem and more on giving general techniques that are applicable
to a number of problems. We address only the offline setting (the problem is
fully specified in advance).

We begin in Section 2 by studying the simplest version of the problem,
1||

∑

S wjCj +
∑

S
ej and give a simple and intuitive greedy algorithm that solves

certain special cases exactly. We show that the general problem 1||
∑

S wjCj +
∑

S
ej is weakly NP-Complete, and give a pseudopolynomial-time algorithm

based on dynamic programming that solves it exactly. Our dynamic program
can be interpreted as capturing the option of assigning a job to a “rejection
machine”. We conclude Section 2 by giving a direct reduction (using the idea
of a “rejection machine”) of certain scheduling problems with rejection to more
complex problems without.

In Sections 3 and 4 we give another example of how techniques that are used
for scheduling problems without rejection can be adapted to handle problem
variants with rejection. In contrast to a direct problem-to-problem reduction,
however, we examine the structure of certain linear-programming relaxations of
such scheduling problems, show how they can be augmented to include a rejection
variable to which a job can be assigned, and then give a thresholding technique
that allows us to obtain an approximation algorithm for a problem with rejec-
tion. This technique is in fact quite general and is applicable to many sorts of
optimization problems; we demonstrate its generality by giving an approxima-
tion algorithm for a variant of the facility location problem with rejection.

Finally, in Section 5, we move to a different and more traditional notion of
rejection in scheduling, which is nonetheless not well understood. In this setting
each job has a due date, and a job is essentially “rejected” if it is not scheduled
by its due date. Specifically, we consider the problem 1|rj|

∑

Uj : scheduling jobs
with release dates on one machine so as to minimize the number of jobs that
miss their deadline or, equivalently, maximize the number of jobs that meet their
deadline. This is similar to the problem of scheduling jobs with rejection because
the jobs that do not meet their deadline can be considered rejected. Nothing
is known about approximating these strongly NP-hard scheduling problems.
We give integrality gaps for both maximization and minimization versions of
the problem and also give an approximation algorithm for the maximization
problem.

2 Scheduling with Rejection

In this section, we focus on the problem of scheduling jobs on a single machine to
minimize weighted completion time. If rejection is not considered, the problem
is solvable in polynomial time using Smith’s rule: schedule the jobs in increasing
order of pj/wj. We show that adding the option of rejection makes the problem
weakly NP-complete. Such problems cannot admit polynomial-time solutions
unless P = NP. But they can admit pseudo-polynomial time algorithms that
run fast when the input numbers are small. We give such an algorithm, based
on dynamic programming, for our scheduling problem.

Intuitively, the dynamic program can be seen as solving a scheduling problem
on two machines, one a “rejection machine” that takes care of all of the rejected
jobs and has an unusual cost function for doing so. It is therefore a variant of
Rothkopf [15] and Lawler and Moore’s [10] pseudo-polynomial algorithms for
scheduling to minimize weighted completion time on a fixed number of parallel
machines. Indeed, our algorithm also generalizes to schedule with rejection on
any fixed number of parallel machines. We use the “rejection machine” intuition
again to devise a 3/2-approximation algorithm for the problem of scheduling
with rejection on an arbitrary number of machines.

Although we use the two-machine intuition, the rejection cost that the second
machine pays is in some sense a simpler function than the weighted completion

time. So for certain special cases, we are able to give simple and efficient poly-
nomial time algorithms based on greedy methods.

2.1 Complexity of Scheduling with Rejection. For any fixed number of
processors m > 1, Pm||(

∑

S wjCj +
∑

S̄ ej) is trivially seen to be NP-complete
by restricting the problem to Pm| |

∑

wjCj, a known weakly NP-complete prob-
lem [4]. However, we can also prove that adding rejection makes the single ma-
chine problem NP-complete.

Theorem 1. 1||(
∑

S wjCj +
∑

S̄ ej) is weakly NP-complete.

Proof. We reduce the Partition Problem [4] to 1||(
∑

S wjCj+
∑

S̄ ej) in a straight-
forward manner. Each of the n elements ai in the Partition Problem correspond
to a job Ji in 1||(

∑

S wjCj +
∑

S̄ ej) with weight and processing time equal to
ai and rejection cost equal to bai + 1

2
a2

i , where b = 1
2

∑n

i=1 ai.

2.2 Dynamic Programming. We give an O(n
∑n

j=1 wj) time algorithm
using dynamic programming to solve 1||(

∑

S wjCj +
∑

S̄ ej). In the full version
of the paper, we will show how to modify it to obtain an FPAS for 1||(

∑

S wjCj+
∑

S̄ ej).
To solve our problem, we set up a dynamic program for a harder problem:

namely, to find the schedule that minimizes the objective function when the total
weight of the scheduled jobs is given. We number the jobs in ascending order
of pj/wj. Let φw,j denote the optimal value of the objective function when the
jobs in consideration are j, j + 1, . . . , n, and the total weight of the scheduled
jobs is w. Note that φw,n = 0 for any w 6= wn and φwn,n = wnpn, forming the
boundary conditions for the dynamic program.

Now, consider any optimal schedule for the jobs j, j + 1, . . . , n in which the
total weight of the scheduled jobs is w. In any such schedule, there are two
possible cases — either job j is rejected or job j is scheduled. So we have φw,j =
min (φw,j+1 + ej , φw−wj,j+1 + wpj).

Now, observe that the weight of the scheduled jobs can be at most
∑n

j=1 wj,

and the answer to our original problem is min{φw,1 : 0 ≤ w ≤
∑n

j=1 wj}. Thus,

we need to compute exactly n
∑n

j=1 wj values φw,j. We remark that a similar
dynamic program solves 1||(

∑

S wjCj +
∑

S̄ ej) when the processing times are
equal.

Theorem 2. Dynamic programming yields an O(n
∑

wj)-time (or an O(n
∑

-
pj)-time) algorithm for exactly solving 1||(

∑

S wjCj +
∑

S̄ ej).

2.3 Special cases. We consider two special cases for which simple greedy
algorithms exist to solve 1||(

∑

S wjCj +
∑

S̄ ej). We give an algorithm for the
case when all weights are equal. An algorithm for the case when all processing
times are equal is analogous and not presented. Our greedy algorithm, which we
call SCHREJ, is as follows. We start with all jobs scheduled, i.e., the scheduled set
S = {1, 2, . . . , n}. (Note that we can optimally schedule the jobs in any subset

S using Smith’s ordering.) We then reject jobs greedily until we arrive at an
optimal schedule. Note that when we reject a previously scheduled job j, there
is a change (positive or negative) in the objective function. We determine a job
k that causes the maximum decrease in the the objective function. If there is
no such job, then (as we will argue below) we have reached an optimal solution.
Otherwise, we remove job k from S (i.e. reject it), and iterate on the remaining
jobs in S.

As this algorithms runs, we maintain the set S of currently scheduled jobs.
Let ∆j(S) denote the amount by which the cost of our schedule changes if we
(pay to) reject job j ∈ S. Let k ∈ S be such that ∆k(S) is minimum.

Lemma 1. During any iteration of SCHREJ, for any j ∈ S, we have

∆j(S) = −[wj

∑

i≤j,i∈S

pi + pj

∑

i>j,i∈S

wi] + ej

The following lemma is an immediate consequence of Lemma 1.

Lemma 2. The value of ∆j(S) increases across every iteration of SCHREJ, so
long as job j remains in S.

The following lemma argues that the algorithm can terminate when ∆k(S) ≥ 0.

Lemma 3. For a set S of jobs, if ∆j(S) is non-negative for each j ∈ S, then
there is an optimal schedule in which all the jobs in S are scheduled.

Proof. (sketch) Consider any non-empty set of jobs R ⊂ S. Start with the sched-
ule in which all jobs in S are scheduled, and start rejecting the jobs in R one by
one. Observe that the objective function value does not decrease during every
such rejection.

For the above lemmas, we have not used the fact that the weights wj are
equal. But this fact is used by the next lemma, which proves that we are justified
in moving job k from S to S when ∆k(S) < 0.

Lemma 4. For a set S of jobs with equal weights, if ∆k(S) (the minimum of
the ∆j(s) for j ∈ S, as computed in SCHREJ) is negative, then there is an optimal
schedule for the set of jobs in S in which job k is rejected.

Proof. (sketch) Consider an optimal schedule Γ in which job k is scheduled and
the set of rejected jobs is R. Clearly, R is non-empty, otherwise, since ∆k < 0,
we can get a better schedule by rejecting job k. We show that we can improve
the schedule Γ by rejecting job k and instead scheduling one of the jobs in R
(the one immediately preceding or following job k according to Smith’s rule).
We compare the objective function value for the two schedules by starting from
a schedule in which all jobs are scheduled, and then rejecting the set R of jobs
in a particular order. This order is slightly different for the two cases considered.

Theorem 3. Algorithm SCHREJ outputs an optimal schedule for 1||(
∑

S wjCj +
∑

S̄ ej) with equal weights in O(n2) time.

Proof. (sketch) By induction. According to the previous lemmas, SCHREJ only
rejects job it is safe to reject, and terminates when all remaining jobs must be
in the optimal schedule.

2.4 Worst-Case Performance Guarantees. We now turn to several NP-
hard variants of the problem and give small-constant-factor approximation al-
gorithms; we do this by reducing the problem with rejection to a scheduling
problem without rejection.

First we consider the single machine version of the problem 1||(
∑

S wjCj +
∑

S̄ ej). An instance I can be reduced in an approximation-preserving manner to
an instance I′ of R||

∑

wjCj with n+1 unrelated machines. Let the machines be
indexed 1, 2, . . . , (n+1). Machine (n+1) is the original machine with pn+1,j = pj

for job j. Job j has pjj =
ej

wj
on machine j and pij = ∞ on machine i where

i = 1, . . . , n and i 6= j. We omit further details. A similar reduction can be ob-
tained from 1|rj|(

∑

S wjCj +
∑

S̄ ej) to R|rij|
∑

wjCj using the observation that
without loss of generality ej > wjrj for all j. Inspection of the argument above
reveals that it can be extended to parallel identical machines and parallel unre-
lated machines. Using the approximation algorithms of Schulz and Skutella [17]
for R||

∑

wjCj and R|rij|
∑

wjCj we obtain the following theorem.

Theorem 4. There exists a 3
2 -approximation algorithm for R||

∑

S wjCj+
∑

S̄ ej

and a 2-approximation algorithm for R|rj|
∑

S wjCj+
∑

S̄ ej , both in expectation.

3 A General Problem P with Rejection

In this section we give a rather general method of converting certain kinds of
approximation algorithms for optimization problems without rejection to ap-
proximation algorithms for problem variants with rejection. In contrast to the
last result in the previous section, however, which was a direct reduction to a
scheduling problem in which the solution to that scheduling problem was used
as a black box, in this case we exploit the common structure of different linear-
programming relaxations used in approximation for scheduling and other opti-
mization problems.

We begin by stating a general “assignment” optimization problem and gain-
ing some understanding of the structure of solutions to two relaxations of this
problem. Then we use this structure in a general algorithm for the optimization
problem augmented to include the possibility of rejection.

Let us consider the following general problem P. We have two sets of objects
O1 and O2. We want to assign each object in O1 to an object in O2 such that
a given set of constraints are satisfied by the assignment and some objective
function of the assignment is minimized. We will formulate this problem as an
integer program which uses the 0-1 decision variables xij, where xij is 1 if object
i ∈ O1 is assigned to object j ∈ O2 and 0 otherwise. So P is formulated by the

following integer program (IP). Let c, d ≥ 0.

minimize cTx + dTy (3.1)
subject to

∑

j xij = 1 ∀i ∈ O1 (3.2)
∑

i,k∈S(j)⊆O2
xik ≤ κj ∀j ∈ O2 (3.3)

A(x ◦ y) ≥ 0 (3.4)
xij ∈ {0, 1} ∀i ∈ O1, ∀j ∈ O2 (3.5)
xij = 0 (i, j) ∈ M ⊆ O1 ×O2 (3.6)

Here, x ◦ y denotes the concatenation of vectors x, y. A(x ◦ y) ≥ 0 is a set of
additional constraints that have to be satisfied by any feasible assignment. We
call the constraints (3.3) capacity constraints.

We can replace the integrality constraint on xij by the constraint 0 ≤ xij ≤ 1.
This essentially means that an object i ∈ O1 can be fractionally assigned to
objects in O2. We will let (LP 1) denote the resulting relaxation to (IP).

We will now consider the following additional relaxation to (LP 1). Let β
be a positive constant that is at most 1. We will further relax the constraint
∑

j xij = 1 to the constraint β ≤
∑

j xij ≤ 1. This says that at least a β fraction
of object i ∈ O1 must be assigned to some object(s) in O2. We will call this
linear program (LP 2).

Let us denote their corresponding optimal solutions by IP ∗, LP 1∗ and LP 2∗

respectively. Since (LP 1) is a relaxation of (IP) and (LP 2) is a relaxation of
(LP 1), we have the inequality LP 2∗ ≤ LP 1∗ ≤ IP ∗.

Let A be an algorithm that accepts a feasible solution to (LP 1) as input
and returns an output with value at most ρ times the input’s objective function
value (it thus acts as a ρ-approximation algorithm for (IP 1)). We will show that
if problem P satisfies certain Conditions 1 and 2 (to be stated later), then we
can use A in an approximation algorithm (with somewhat worse performance)
for a version of P that allows rejection. We now state Condition 1.

Condition 1 There exists a polynomial-time algorithm to convert a feasible so-
lution q to (LP 2), of value v(q), to a feasible solution to (LP 1) of value within
at most f(β) · v(q).

Case a: f(β) = 1
β
, if P does not have capacity constraints.

Case b: f(β) = 1
β2 , if P has capacity constraints.

We now modify the original problem P to include rejection, and use our
structural insights to give an approximation algorithm. We modify P so that
each object i ∈ O1 can either be assigned to an object j ∈ O2 or can be rejected
for a certain penalty. Let us call this modified problem PR. The problem PR can
be formulated similar to IP . But now we will have an additional 0-1 decision
variable zi which is 1 if object i ∈ O1 is rejected and 0 otherwise. The objective
function to be minimized is now given by cTx + dTy + gTz and the constraint
∑

j xij = 1 in the (IP) is replaced by
∑

j xij + zi = 1. Let the corresponding
linear relaxation be (LP 1R). We introduce a second “decomposability” condition
that is natural for problems involving rejection. Let P(S) denote the restriction
of the assignment problem P above, such that xij is defined only for i ∈ S ⊆ O1.

Intuitively, we want to capture the notion that the set O1 − S of objects to be
rejected is determined by the objective but not the constraints of PR.

Condition 2 Let (x, y) be a feasible solution for P(O1). If xij with i ∈ O1 −S,
is removed from x to obtain x′, the pair of vectors (x′, y) is feasible for P(S).

Consider the following algorithm B to get a solution for PR. First solve
(LP 1R). If

∑

j xij < β, then include i ∈ O1 in the set S̄ of rejected objects. Else

include i ∈ S. Trivially, S∪ S̄ = O1 and S∩ S̄ = ∅. β ∈ (0, 1] will be chosen later.
The resulting fractional solution is a solution to (LP2). Convert it to a solution
to (LP1) (as described in Condition 1) and follow algorithm A to assign objects
in S to O2.

Theorem 5. Let P satisfy Conditions 1(a) and 2. If there is a ρ-approximation
algorithm for P w.r.t (LP 1), then B is a (1 + ρ)-approximation algorithm for
PR w.r.t (LP 1R).

Proof. Let (x∗, y∗, z∗) be an optimal solution to (LP 1R) with objective value
LP 1∗R = γ + δ, where γ = cTx∗ + dTy∗, and δ = gTz∗. The cost of rejecting

objects in S̄ is at most δ
1−β

. The term γ can be written as γS + γS̄ + dTy∗,

where γS is the optimal cost of fractionally assigning objects in S to objects in
O2 and γS̄ is the optimal cost of fractionally assigning objects in S̄ to objects
in O2. Denote by x∗

S the vector x∗ restricted to elements x∗
ij such that i ∈

S. By Condition 2, q = (x∗
S
, y∗) is a feasible solution to (LP 2)(S) of P(S),

with value v = γS + dTy∗. Since Condition 1(a) is satisfied by P, q can be
converted to a feasible solution to (LP 1)(S) of value at most ρ

β
v. Therefore B is

a (max{ ρ
β
, 1

1−β
})-approximation algorithm for PR w.r.t (LP 1R). Note note that

(max{ ρ
β
, 1

1−β
}) is minimized for β = ρ

ρ+1
yielding a performance guarantee of

(1 + ρ).

Theorem 6. Let P satisfy Conditions 1(b) and 2. If there is a ρ-approximation
algorithm for P w.r.t (LP 1), then B is a (2/(ρ+2−

√

ρ(ρ + 4)))-approximation
algorithm for PR w.r.t (LP 1R).

4 Applications

Scheduling Problem. We consider the problem of scheduling jobs on a sin-
gle machine subject to release dates and precedence constraints, 1|rj, prec|-
(
∑

S wjCj +
∑

S̄ ej). Hall, Schulz, Shmoys and Wein [8] have given a 3-approxi-
mation algorithm for the corresponding problem without rejection 1|rj, prec|-
∑

wjCj based on a time-indexed linear-programming relaxation [20] of the prob-
lem. It can be shown that this relaxation of 1|rj, prec|(

∑

S wjCj+
∑

S̄ ej) satisfies
Conditions 1(b) and 2. So for the rejection variant of this problem, by Theorem
6 with ρ = 3 and β = 0.791, we have

Theorem 7. There is a 4.79-approximation algorithm for 1|rj, prec|(
∑

S wjCj+
∑

S̄ ej), under the assumption that maxj rj +
∑n

j=1 pj is polynomial in n.

A polynomial-size interval-indexed formulation [16, 20] can be used to obtain an
improved (4.496)-approximation. This formulation is not of the form (IP) but
can be shown to satisfy an extension to Theorem 6.

Uncapacitated Facility Location Problem. In this problem, we are given
a set of locations N = {1, . . . , n} and subsets F, D ⊆ N . We may open a facility
at location i ∈ F for a non-negative cost fi. For each location j ∈ D, there is
a positive integral demand dj that must be shipped to it. The cost of shipping
a unit of demand from a facility at location i to a location j is given by cij

where the cij’s are non-negative. Since we consider only the metric variant of
the problem, the cij’s are symmetric and satisfy the triangle inequality.

We now add the additional constraint that each location j ∈ D can either be
assigned to some facility i ∈ F in which case it incurs a cost of cij for each unit
of demand shipped or it may be rejected incurring a penalty of ej .

A sequence of papers [18], [7], [3] give approximation algorithms for the basic
problem that are based on a linear programming relaxation. We show that the
linear program can be modified and that Conditions 1(a),2 apply, yielding

Theorem 8. There is a 2.736-approximation algorithm for the uncapacitated
facility location problem with rejection.

5 Integrality gaps and approximations for 1|rj | ∑

Uj
We now move to a more traditional notion of rejection in scheduling, which is
nonetheless not well understood. We have one machine and each job has a release
date rj and a due date dj; a job j is essentially “rejected” (Uj = 1) if it cannot
be scheduled to complete by its due date. An optimal solution minimizes

∑

Uj .

5.1 The quality of fractional relaxations. Solving 1|rj|
∑

Uj to optimal-
ity is strongly NP-hard, [9] therefore we are interested in approximations. We
distinguish between two optimization metrics. In the minimization problem one
seeks to minimize

∑n
j=1 Uj. In the maximization problem one seeks to maximize

the number of jobs that meet their deadline, i.e.
∑n

j=1(1 − Uj). A heavily used
technique in approximation algorithms for scheduling problems is that of solving
first a fractional relaxation. Typically, a relaxation in a single-machine setting
allows jobs to be processed in a preemptive manner once released. We call the
resulting schedule Sf , fractional. For 1|rj|

∑

Uj , the contribution Uj of job j
to the objective of a fractional relaxation is equal to 1 − zj , where 0 ≤ zj ≤ 1
is the fraction of job j that is processed before the deadline dj. The optimum
objective value of a fractional schedule would typically be superoptimal for the
problem at hand. Hence if an efficient rounding algorithm is invoked to convert
the fractional schedule into a feasible one, it will incur some degradation to the
fractional objective. We study gaps between the fractional and the true optima.
We use pmax and pmin to denote the maximum and minimum processing times
among the input jobs.

Lemma 5. There is an instance J of 1||max
∑n

j=1(1 − Uj) on which the value
of a fractional schedule is Ω(ln(pmax/pmin)) times the true optimum.

Theorem 9. There is an instance J of 1|rj, pj = p|min
∑n

j=1 Uj on which the
value of a fractional schedule is at most 2/n times the true optimum.

5.2 An IP formulation and approximation algorithms. The results in
the previous section indicate that fractional relaxations may give weak bounds
for approximation. We show that nonetheless they can yield solutions of good
quality for the maximization problem; we give an IP formulation and an ap-
proximation algorithm associated with its linear relaxation. The formulation we
propose uses interval-indexed variables and thus has polynomial size. We define
the set I to contain all disjoint time intervals of the form (a, b] where a, b are
consecutive release times or deadlines, i.e. for no other release time or deadline
c is it the case that a < c < b. Therefore |I| = O(n). The intervals in I are
numbered so we refer unambiguously to i ∈ I. If i = (a, b] the length l(i) of i is
b− a. The set I(j) of legal intervals for job j is the set of intervals (ajk

, bjk
] in I

such that rj ≤ ajk
and bjk

≤ dj. In the ensuing formulation we use the variable
xij to denote the time spent processing job j during interval i ∈ I.

minimize
∑n

j=1 Uj (5.1)

subject to
∑

i∈I(j) xij ≤ pj j = 1, . . . , n (5.2)
∑n

j=1 xij ≤ l(i) i ∈ I (5.3)

1 −

∑

i∈I(j)
xij

pj
≤ Uj j = 1, . . . , n (5.4)

xij = 0 i 6∈ I(j) j = 1, . . . , n (5.5)
xij ∈ Z+ (5.6)
Uj ∈ {0, 1} j = 1, . . . , n (5.7)

It can be seen that the integer program IP 1 formed by equations (5.1)
through (5.7) is a valid relaxation of the problem. Observe that even in an
integer solution to IP 1 a job j may be processed in a preemptive manner. Call
LPmin the linear relaxation of IP 1. Let LPmax be the linear relaxation of IP 1
with (1) replaced with “maximize

∑n

j=1(1 − Uj)”. It can be shown that the
gaps in Lemma 5 and Theorem 9 apply also for the fractional optima of LPmin,
LPmax.

Lemma 6. There is an algorithm that outputs in polynomial time a solution to
1|rj, p ≤ pj ≤ 2p|max

∑n
j=1(1 − Uj) of value at least ⌈z∗/10⌉, where z∗ is the

optimum of LPmax for the problem.

Theorem 10. There is an algorithm that outputs in polynomial time a solution
to 1|rj|max

∑n
j=1(1−Uj) of value at least ⌈z∗/(10⌈log(pmax/pmin)⌉)⌉, where z∗

is the optimum of LPmax for the problem.

Acknowledgments. We are thankful to David Shmoys for providing pointers
to the literature and giving us access to [11] and to David Williamson for helpful
discussions.

References

1. Y. Bartal, S. Leonardi, A. Marchetti-Spaccamela, J. Sgall, and L. Stougie. Multi-
processor scheduling with rejection. In Proc. 7th SODA, 95–103, 1996.

2. C. Chekuri, R. Motwani, B. Natarajan, and C. Stein. Approximation techniques
for average completion time scheduling. In Proc. 8th SODA, 609–618, 1997.

3. F. A. Chudak. Improved approximation algorithms for uncapacitated facility lo-
cation. In Proc. 6th IPCO 1998. To appear.

4. M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the

Theory of NP -Completeness. W.H. Freeman and Company, New York, 1979.
5. M. Goemans. Improved approximation algorithms for scheduling with release

dates. In Proc. 8th SODA, 591–598, 1997.
6. R.L. Graham, E.L. Lawler, J.K. Lenstra, and A.H.G. Rinnooy Kan. Optimization

and approximation in deterministic sequencing and scheduling: a survey. Annals

of Discrete Mathematics, 5:287–326, 1979.
7. S. Guha and S. Khuller. Greedy strikes back: Improved facility location algorithms.

In Proc. 9th SODA, 1998.
8. L. A. Hall, A. S. Schulz, D. B. Shmoys, and J. Wein. Scheduling to minimize average

completion time: Off-line and on-line approximation algorithms. Mathematics of

Operations Research, (3):513–544, August 1997.
9. E. L. Lawler. Scheduling a single machine to minimize the number of late jobs.

Preprint, Computer Science Division, Univ. of California, Berkeley, 1982.
10. E. L. Lawler and J. M. Moore. A functional equation and its application to resource

allocation and sequencing problems. In Manag. Sci., volume 16, 77–84, 1969.
11. E. L. Lawler and D. B. Shmoys. Weighted number of late jobs (preliminary version).

To appear in: J.K. Lenstra and D.B. Shmoys (eds.) Scheduling, Wiley.
12. Maxwell. Personal communication. 1996.
13. I. M. Ovacik and R. Uzsoy. Decomposition Methods for Complex Factory Scheduling

Problems. Kluwer Academic Publishers, 1997.
14. C. Phillips, C. Stein, and J. Wein. Scheduling jobs that arrive over time. In Proc.

of 4th WADS, LNCS, 955, 86–97, Berlin, 1995. Springer-Verlag. To appear in
Mathematical Programming B.

15. M. H. Rothkopf. Scheduling independent tasks on parallel processors. In Manag.

Sci., volume 12, 437–447, 1966.
16. A. S. Schulz and M. Skutella. Random–based scheduling: New approximations

and LP lower bounds. In J. Rolim, editor, Randomization and Approximation

Techniques in Computer Science, LNCS, 955, 119 – 133. Springer, Berlin, 1997.
17. A. S. Schulz and M. Skutella. Scheduling–LPs bear probabilities: Randomized

approximations for min–sum criteria. In R. Burkard and G. Woeginger, editors,
Algorithms – ESA’97, LNCS, 1284, 416 – 429. Springer, Berlin, 1997.

18. D. B. Shmoys, É. Tardos, and K. Aardal. Approximation algorithms for facility
location problems. In Proc. of the 29th ACM STOC, 265–274, 1997.

19. W.E. Smith. Various optimizers for single-stage production. Naval Research Lo-

gistics Quarterly, 3:59–66, 1956.
20. M. E. Dyer and L. A. Wolsey. Formulating the single machine sequencing problem

with release dates as a mixed integer program. In Discrete Applied Mathematics,
26, 255-270, 1990.

