
42

Techniques for the Synthesis of Reversible
Toffoli Networks

D. MASLOV

University of Waterloo

G. W. DUECK

University of New Brunswick

and

D. M. MILLER

University of Victoria

We present certain new techniques for the synthesis of reversible networks of Toffoli gates, as

well as improvements to previous methods. Gate count and technology oriented cost metrics are

used. Two new synthesis procedures employing Reed-Muller spectra are introduced and shown to

complement earlier synthesis approaches. The previously proposed template simplification method

is enhanced through the introduction of a faster and more efficient template application algorithm,

an updated classification of the templates, and the addition of new templates of sizes 7 and 9. A

resynthesis approach is introduced wherein a sequence of gates is chosen from a network, and the

reversible specification it realizes is resynthesized as an independent problem in hopes of reducing

the network cost. Empirical results are presented to show that the methods are efficient in terms

of the realization of reversible benchmark specifications.

Categories and Subject Descriptors: F. Theory of Computation, J.6 [Computer-aided Engineer-
ing], B.6 [Logic Design] [B.6.1 Design Styles, B.6.3 Design Aids]: Computer-aided design

(CAD), Automatic synthesis, Optimization, Switching theory

General Terms: Hardware, Theory of Computation

Additional Key Words and Phrases: quantum computing, reversible logic synthesis, circuit opti-

mization

This work was supported by a Postdoctoral Fellowship (D. Maslov) and Discovery Grants (G. W.

Dueck and D. M. Miller) from the National Sciences and Engineering Research Council of Canada.

Authors’ addresses: D. Maslov: Institute for Quantum Computing and the Department of

Combinatorics and Optimization, University of Waterloo, Waterloo, ON, N2L 3G1, Canada;

email: dmitri.maslov@gmail.com; G. W. Dueck, Faculty of Computer Science, University of New

Brunswick, Fredericton, NB E3B 5A3, Canada; email: gdueck@unb.ca; D. M. Miller, Department of

Computer Science, University of Victoria, Victoria, BC, V8W 3P6, Canada; email: mmiller@uvic.ca

Permission to make digital or hard copies of part or all of this work for personal or classroom use is

granted without fee provided that copies are not made or distributed for profit or direct commercial

advantage and that copies show this notice on the first page or initial screen of a display along

with the full citation. Copyrights for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,

to redistribute to lists, or to use any component of this work in other works requires prior specific

permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn

Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2007 ACM 1084-4309/2007/04-ART42 $5.00 DOI 10.1145/1278349.1278355 http:/doi.acm.org/

10.1145/1278349.1278355.

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 4, Article 42, Pub. date: Sept. 2007.

42:2 • D. Maslov et al.

ACM Reference Format:

Maslov, D., Dueck, G. W., and Miller, D. M. 2007. Techniques for the synthesis of reversible Toffoli

networks. ACM Trans. Des. Automat. Electron. Syst. 12, 4, Article 42 (September 2007), 28 pages.

DOI = 10.1145/1278349.1278355 http:/doi.acm.org/10.1145/1278349.1278355

1. INTRODUCTION

The synthesis of reversible networks has received much attention in recent
years (Agrawal and Jha 2004; Kerntopf 2004; Maslov and Dueck 2004; Maslov
et al. 2005b; Miller 2002; Mishchenko and Perkowski 2002; Patel et al. 2004;
Shende et al. 2003; Tsai and Kuo 2001). There are two primary motivations
for this. One is power consumption. Landauer [1961] showed that irreversible
circuits must consume power, and consequently dissipate heat, whenever they
erase or otherwise discard information. Further, Bennett [1973] showed that for
power not to be dissipated in an arbitrary circuit, it must be built from reversible
gates. While the heat generation due to the information loss in modern CMOS
(Complementary Metal Oxide Semiconductor) is still small, recent work by
Zhirnov et al. [2003] shows the potentially prohibitive difficulty of heat removal
with the increasing density of CMOS. The second motivator is that all quantum
gates are reversible [Nielsen and Chuang 2000].

Hence there are compelling reasons to consider circuits composed of re-
versible gates and the synthesis of such networks. Advances in reversible logic
synthesis can be applied to low-power CMOS design [Schrom 1998], quantum
computing [Nielsen and Chuang 2000], and nanotechnology [Merkle 1993a;
1993b]. Quantum computing seems to be the most promising technology in
terms of its potential practical use. Accordingly, our software provides the op-
tion of minimizing either the gate count or a quantum cost (in fact, any weighted
linear cost function) of the resulting implementation. Research on reversible
synthesis is of particular importance to the development of quantum circuit
construction (in particular, oracles) and may well result in much more power-
ful computers and computations.

In this article, we develop a set of techniques for the reversible circuit syn-
thesis and present a CAD (Computer-Aided Design) tool. There are many chal-
lenges for the designer of such a tool: the small size of modern quantum proces-
sors (the state of the art quantum processor can work with only 7 [Vandersypen
et al. 2001] or 8 [Häffner et al. 2005] qubits; limited control has been recently
demonstrated on a 12-qubit system [Negrevergne et al. 2006]), the difficulty in
constructing a high fidelity implementation of the gates in existing hardware,
and decoherence. Below are desirable CAD tool properties and an explanation
of how they are addressed in this paper:

(1) Reliability: Our CAD tool is guaranteed to find a solution. It is important
to have a network, even if it is not optimal.

(2) Scalability: Our software synthesizes circuits for functions with up to 21
variables in reasonable time. This allows synthesis of larger specifications
than those that can be readily be implemented on the existing (quantum)
hardware. The limiting factor is the size of the truth table that needs to

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 4, Article 42, Pub. date: Sept. 2007.

Techniques for the Synthesis of Reversible Toffoli Networks • 42:3

be stored in memory. In Section 9 we indicate how to improve the existing
software to allow synthesis of larger specifications.

(3) Quality: Optimal or near-optimal networks are the goal of synthesis.
Specific concerns for quantum technology include limited computational
time due to decoherence and inaccuracy in applying the gates leading to
accumulation of the errors, among a number of other issues. Thus, the size
of a design is much more important when dealing with quantum technol-
ogy than it is in other domains, such as CMOS. Results shown in Section 8
indicate that we have succeeded in this goal.

(4) Runtime: We are able to synthesize most benchmark functions within min-
utes. Some of our designs may take up to 12 hours to synthesize on an
Athlon 2400XP machine with 512M of RAM memory running Windows.
However, in Section 9 we discuss how to speed up our tool by a factor of 6
on a 6-processor parallel machine.

The remainder of the article is organized as follows. Section 2 provides the
necessary background. In Section 3, we present an iterative synthesis approach
that selects Toffoli gates so that the complexity of the Reed-Muller spectra spec-
ifying the reversible function is iteratively reduced until the specification be-
comes the identity. The complexity of the procedure depends on the number of
nonzero coefficients in the spectra. This algorithm does not always find a solu-
tion, but it frequently finds better solutions than those found by earlier methods
such as the one presented in Maslov et al. [2005]. We follow this section with the
description of a second Reed-Muller spectra based synthesis algorithm (Section
4). A significant advantage of this algorithm is its guaranteed convergence, and
a lesser quantum cost in the worst case scenario than the previously presented
methods [Maslov et al. 2005, Shende et al. 2006]. Together the new Reed-Muller
techniques and the earlier approach in Maslov et al. [2005] yield significantly
improved results.

As presented in Maslov et al. [2005], once an initial network is found, it
can often be simplified through the application of templates. In Section 6, we
present an improved approach to templates, including classification of all tem-
plates with up to 7 gates and some useful templates with 9 gates. The template
matching algorithm of Maslov et al. [2005b] is replaced with a more efficient
one. Our new matching algorithm is better in the sense that, unlike the pre-
vious algorithm, under certain conditions it is guaranteed to find all possi-
ble network reductions that such a templates based tool can find. It also runs
faster.

A resynthesis approach is presented in Section 7. This method relies on the
fact that any sequence of gates in a reversible network realizes a reversible
function. The method randomly (under some constraints) selects a sequence of
gates from the network and then applies synthesis methods and the templates
to the reversible function defined by that sequence. If the network found by
resynthesis is smaller, it replaces the selected sequence in the original network.
While our current approach to resynthesis is rather naive, it does significantly
reduce the size of the network in many instances, particularly for some of the
larger benchmark problems.

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 4, Article 42, Pub. date: Sept. 2007.

42:4 • D. Maslov et al.

Empirical results are given in Section 8. We present the results of applying
our methods to a number of benchmark functions. Our methods are also shown
to produce an excellent overall average for the synthesis of all 3 × 3 reversible
functions, only 0.16% above the optimum. The paper concludes with a short
summary and suggestions for future research.

2. BACKGROUND

Definition 2.1. An n-input, n-output, totally specified Boolean function
(y1, y2, . . . , yn) = f (x1, x2, . . . , xn) is reversible if it is a bijection, that is; each
input pattern is mapped to a unique output pattern.

Using methods such as the ones described in Maslov and Dueck [2004]; Miller
[2002]; and Tsai and Kuo [2001], a (possibly incompletely specified) multiple-
output Boolean function can be transformed into a reversible function. These
methods are not particularly efficient, and it is an open problem to find bet-
ter ways to perform such a transformation while minimizing the overhead due
to the addition of “constant inputs” and “garbage outputs” [Gershenfeld and
Chuang 1998]. In this article, we assume a reversible specification as the start-
ing point.

Given a reversible specification, there are many ways [Agrawal and Jha 2004;
Kerntopf 2004; Maslov et al 2005b; Mishchenko and Perkowski 2002; Tsai and
Kuo 2001] of constructing a reversible network using multiple control Toffoli
gates defined as follows:

Definition 2.2. For the domain variables {x1, x2, . . . , xn} a multiple control
Toffoli gate has the form TOF (C; t), where C = {xi1 , xi2 , . . . , xik }, t = {x j } and
C ∩ t = ∅. It maps the Boolean pattern (x0

1 , x0
2 , . . . , x0

n) to (x0
1 , x0

2 , . . . , x0
j−1, x0

j ⊕
x0

i1 x0
i2 . . . x0

ik , x0
j+1, . . . , x0

n). The set C that controls the change of the j -th bit is

called the set of controls and t is called the target.

Common special forms of this gate are: the NOT gate (a multiple control
Toffoli gate with no controls) denoted TOF (x j), the CNOT gate (Controlled-
NOT, a multiple control Toffoli gate with a single control bit) which is also
known as a Feynman gate [Feynman 1985] and is denoted TOF (xi; x j), and the
original Toffoli gate (a multiple control Toffoli gate with two controls) denoted
TOF (xi1 , xi2 ; x j) [Toffoli 1980].

A reversible network is composed of reversible gates, which due to the re-
strictions dictated by the target technologies [Nielsen and Chuang 2000] form
a cascade.

2.1 Cost of a Reversible Toffoli Network

It is a common practice in reversible logic synthesis research [Agrawal and Jha
2004; Kerntopf 2004; Maslov et al 2005b; Mishchenko and Perkowski 2002; Tsai
and Kuo 2001] to synthesize a network using multiple control Toffoli gates and
report its cost as a simple gate count. However, from the point of view of techno-
logical realization, multiple control Toffoli gates are not simple transformations.
Rather they are composite gates themselves and Toffoli gates with a large set

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 4, Article 42, Pub. date: Sept. 2007.

Techniques for the Synthesis of Reversible Toffoli Networks • 42:5

of controls can be quite expensive [Barenco et al. 1995; Maslov et al. 2005]. We
point out that there are three distinct Toffoli gate simulations [Barenco et al.
1995], one with an exponential cost and requiring no auxiliary bits, and two
with linear costs, one requiring 1 and the other requiring n − 3 auxiliary bits
for an n-bit Toffoli gate. Given its exponential size and the usage of an infinite
number of gate types requiring very accurate hardware realization due to the
small rotation angles, we find multiple control Toffoli gate simulations with
zero auxiliary bits impractical. Among the remaining two linear cost realiza-
tions of the Toffoli gates, the one associated with availability of n − 3 auxiliary
bits is smaller. Maslov et al. [2005] improves over the Toffoli gate simulation
of Barenco et al. [1995] using the basis of elementary quantum gates NOT,
CNOT, controlled-V and its inverse controlled-V + [Nielsen and Chuang 2000].
Such quantum gates were efficiently simulated in liquid state NMR (Nuclear
Magnetic Resonance) quantum technology [Cory et al. 2000; Lee et al. 2006].

Definition 2.3. The cost of a Toffoli network N = G1G2 . . . Gs with n in-
puts/outputs is a sum of costs of its gates, Cost(N) := ∑s

i=1 Cost(Gi), which
may sometimes be followed by an asterisk. The latter and costs of the individ-
ual gates are defined as follows.

—For a network with Toffoli gates of maximal size n − 1, each k-bit (k ≤ n − 1)
Toffoli gate cost is a minimum of the two linear cost realization gate counts
[Maslov et al. 2005] as long as all associated auxiliary bits can be accommo-
dated in the circuit. In this case, no asterisk will follow the numeric value of
cost.

—For an n-bit network containing an n-bit Toffoli gate, during the calculation
of the cost of each multiple control Toffoli gate we assume presence of an
additional auxiliary bit (that is, assume that the network is built with n + 1
lines; otherwise an exponential size Toffoli gate simulation must be employed
[Shende et al. 2003], and we consider it to be inefficient). In such case, numeric
value of the network cost is followed by an asterisk.

In this article, we report two sets of the synthesis results. In one, we minimize
the gate count. This is done to compare the quality of our new approach to the
quality of the previously presented methods. The second set of results contains
networks synthesized to minimize the quantum cost defined above. The costs of
the multiple control Toffoli gates are stored in a table. The software can easily
accommodate different linear cost metrics.

2.2 Reed-Muller Spectra

Every Boolean function y = f (x1, x2, . . . , xn) can be uniquely written as a poly-
nomial of the form a0 ⊕a1x1 ⊕a2x2 ⊕a3x1x2 ⊕ . . .⊕a2n−1x1x2 . . . xn with Boolean
coefficients a0, a1, . . . , a2n−1, which is referred to as the “positive polarity Reed-
Muller expansion.” A compact way to represent this expression is the vector
(“spectrum”) of coefficients (a0, a1, . . . , a2n−1). Given a size n reversible function,
its Reed-Muller spectra (RM spectra) can be viewed as a table of size n × 2n,
where each column represents the Reed-Muller spectrum of the corresponding
output of the reversible function. Note that for reversible functions the last row

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 4, Article 42, Pub. date: Sept. 2007.

42:6 • D. Maslov et al.

of this table is all zeroes and the size of the table can be reduced to n× (2n − 1).
RM spectra can be efficiently computed using fast transform techniques sim-
ilar to a discrete Fast Fourier Transform (FFT). The transformation can be
expressed in matrix form [Thornton et al. 2001] as

R = M nF

M 0 = [
1
]

M n =
[

M n−1 0

M n−1 M n−1

]

where the summation is modulo-2, that is, EXOR, and F is the truth vector
of the given function. In our software, this transformation, called RMT (Reed-
Muller Transform), is implemented by the code shown below which maps a truth
vector f[] of length 2n given as an array of integers into the RM spectrum for
the given function.

void RMT(int f[]){
int i,j,k,m,p;
int n = log(LengthOfVector(f[]));

for (m=1;m<(2^n);m=2*m)
for (i=0;i<2^n;i=i+2*m)
for (j=i,p=k=i+m;j<p;j=j+1,k=k+1)
f[k] = f[k] ^ f[j]; // bitwise EXOR

}

The elements of f [] can be multibit values with each position representing a
separate output function, in which case the procedure computes the RM spectra
in parallel.

Important properties of this transformation include:

(1) self inverse, that is, RMT (RMT (f)) = f ;

(2) order dependence in the sense that the value of f [k] is never updated using
any value of f [j] where j ≥ k;

(3) power-of-two independence in the sense that the value of f [k] for k = 2s is
never updated with the values of f [j], where j = 2t and 1 ≤ s, t ≤ n.

The RM spectra of the size n identity function with outputs y1, y2, . . . , yn

has a single nonzero coefficient a2i−1 for each yi with all other coefficients 0.

Definition 2.4. The RM cost of a reversible function is the total number of
coefficients for which its spectra differs from the spectra of the identity function.

We will refer to each nonzero row of the tabular representation of the RM
spectra for the identity function as a variable row. Such variable rows are those
at positions 1, 2, . . . , 2n−1. We will also refer to all others as nonvariable rows.

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 4, Article 42, Pub. date: Sept. 2007.

Techniques for the Synthesis of Reversible Toffoli Networks • 42:7

2.3 Direct Application of a Toffoli Gate in RM Spectra

Application of a multiple control Toffoli gate TOF (xi1 , xi2 , . . . , xik ; x j) from the
input side of a reversible specification simply requires replacing each occurrence
of the literal x j in the Reed-Muller expansion of the output variable ys = a0 ⊕
as,1x1 ⊕ as,2x2 ⊕ as,3x1x2 ⊕ . . . ⊕ as,2n−1x1x2 . . . xn with the expression x j ⊕
xi1 xi2 . . . xik followed by a simplification of the resulting expression. In the case
where the Reed-Muller spectra is stored as a table this operation requires at
most n × 2n binary operations with no algebraic simplification. Application of
a multiple control Toffoli gate TOF (xi1 , xi2 , . . . , xik ; x j) from the output side can
also be done directly in the spectra. In particular, the polynomials given by
columns yi1 , yi2 , . . . , yik (Boolean vectors of length 2n) of the RM spectra are
multiplied and the result is EXORed with column y j with the result stored in
column y j . Hence, a Toffoli gate can be applied directly while working with the
RM spectra. We note that since most reversible functions have numerous zero
rows in their tabular RM spectra, it may be more efficient to store the indices
and values of nonzero elements of the RM spectra. In this case, application of
a Toffoli gate may require significantly fewer operations.

3. ITERATIVE NETWORK SYNTHESIS USING REED-MULLER SPECTRA

The first synthesis algorithm that we propose is very simple. At each step,
by exhaustive enumeration it selects the Toffoli gate whose application to the
function specification results in the largest decrease of the RM cost. If no gate
application decreases the RM cost, a gate is chosen that results in the minimal
increase of the RM cost. In both cases, if there is a tie between two or more
gates, the gate with the smallest control set is chosen. If there is a tie based on
the number of controls, our method selects the first gate in lexicographic order.

This synthesis approach is similar to some of earlier proposed techniques
[Maslov and Dueck 2004; Miller 2002] in that the gates are chosen to decrease
the function complexity (using a defined metric). We use a different gate library,
and the Reed-Muller spectrum is used rather than the Walsh spectrum [Miller
2002] or Hamming distance defined over the truth table [Maslov and Dueck
2004], resulting in significantly better synthesis results. This is because the
Reed-Muller spectrum corresponds more closely to the functional operation of
Toffoli gates.

It is not surprising that there are drawbacks to such a simple approach.
When considering larger benchmark specifications, we identified two major
problems. First, the algorithm is not guaranteed to converge. In particular, it
did not converge for the hwb type benchmark functions with more than 5 vari-
ables and function ham7. We address this problem by using the other algorithm
(that always converges) first and taking its gate count as the upper bound for
the synthesis using this algorithm. If the algorithm based on minimization of
RM cost does not return a network with fewer gates than the second algo-
rithm that we present below, its solution is considered inefficient. While such
a technique appears efficient for the synthesis of benchmark functions, we are
working on heuristics to force the Reed-Muller based method to converge on
every reversible specification.

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 4, Article 42, Pub. date: Sept. 2007.

42:8 • D. Maslov et al.

The second major problem with the new algorithm is that at each step it tries
every possible Toffoli gate, of which there are n×2n−1 for a size n reversible func-
tion. Current implementation of this algorithm uses a table to store the values
of RM spectra, making the cost of the search for a single Toffoli gate assign-
ment equal to n2 × 4n−1 binary operations. In practice, it is too time-consuming
to synthesize functions with more than 12 input variables (especially if the
resynthesis technique discussed below is also used). We addressed this issue
by having an option to limit the number of controls which every gate that we
try might have. We plan to improve the runtime further by first exploring the
idea noted above of storing only the nonzero coefficients; and second, searching
for heuristics that can guide the selection of a Toffoli gate to avoid the current
exhaustive enumeration. Ideas presented in Agrawal and Jha [2004] and Kern-
topf [2004] might be useful. Further, we developed another synthesis algorithm
that does not have these two major problems. This algorithm is outlined in the
next section.

Despite the stated deficiencies, the iterative algorithm by itself converged
for every one of the 40,320 different 3 × 3 reversible functions. It synthesized
them with an average of 6.38 Toffoli gates per function in 3 seconds on a sin-
gle 750 MHz processor Sun Blade 1000. This compares quite favorably to the
7.25 average for the MMD (Miller-Maslov-Dueck synthesis algorithm, [Maslov
et al. 2005b] algorithm with no templates applied and shows that the iterative
algorithm has very good potential.

4. MMD TYPE REED-MULLER SPECTRA BASED SYNTHESIS APPROACH

The second Reed-Muller based algorithm that we present is similar to MMD
[Maslov et al. 2005b] in the sense that it works with a single row at a time,
and allows a similar bidirectional modification. However, there are a number of
differences between MMD [Maslov et al. 2005b] and the algorithm introduced
in this section. Some of them are:

—our new algorithm works with Reed-Muller spectra, not in the Boolean do-
main (truth table) as does MMD;

—the choice of gates while working with a single row is completely different;

—at any point MMD does not change the correct form of upper rows, which is
not true for the new method.

We start with a description of the unidirectional (basic) version of the algo-
rithm. It consists of 2n − 1 steps (numbered 0 to 2n − 2). At each step i, the
first i rows (rows with numbers 0, 1, . . . , i − 1) in the tabular RM spectra of
the function under synthesis match the first i rows of the RM spectra of the
identity function. The algorithm assigns a (possibly empty) set of Toffoli gates
such that the ith row of the tabular RM spectra is transformed to match the ith

row of the RM spectra of the identity function. It can be observed that for such
an algorithm, when step 2n − 2 is completed, the RM spectra is transformed
to the RM spectra of the identity function, and thus the target specification
is successfully synthesized. This is because row 2n − 1 of the RM spectra of a

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 4, Article 42, Pub. date: Sept. 2007.

Techniques for the Synthesis of Reversible Toffoli Networks • 42:9

reversible function is always zero. We now describe which gates are assigned
depending on the row number and outline a proof showing that a suitable set
of gates will always be found. We use (rn, rn−1, . . . , r1) to denote the values in a
row of the tabular representation for the RM spectra for the reversible function
under consideration. We refer to a row as being earlier than another if it has a
lower row index number.

A: Step i = 0. This step is unique since it is only for this step that we use
NOT gates, and there is no need to consider if earlier rows are changed since
there are none. Given the 0th row has values (rn, rn−1, . . . , r1) we apply NOT
gates TOF (x j) for every r j = 1, j = 1..n.

B: Step i = 2k−1, k = 1..n. Each of these rows is a variable row. Such a row,
(rn, rn−1, . . . , r1), has to be brought to the form (0, 0, . . . , 0, 1, 0, . . . , 0) with 1 at
a position k. This is done through the following two procedures. We first check
if rk = 1. If it is not, we make it equal one by assigning a gate TOF (xs; xk) such
that s = max{ j | r j = 1, j = 1..n} and s > k. According to Lemma 4.1 such an
s exists, and it can be easily verified that application of the gate TOF (xs; xk)
does not affect RM spectra rows earlier in the table.

At this step the row we are working with has the form (rn, rn−1,
. . . , rk+1, 1, rk−1, . . . , r1). We next use gates TOF (xk ; x j) for every r j = 1, j =
1..n. By applying such gates we do not change rows earlier in the table than
the row we are working with and at the same time the ith row is transformed
to the desired form (0, 0, . . . , 0, 1, 0, . . . , 0) with 1 at position k.

C: Step i, i �= 2k , i > 0. For these i, we know that we are working with a non-
variable row. Assume it has values (rn, rn−1, . . . , r1). It has to be transformed
to the form (0, 0, . . . , 0), which is the form of each non variable row of the RM
spectra of the identity function. We first find s = max{ j | r j = 1, j = 1..n}
such that item 2s−1 does not appear in the binary expansion of i. In other
words, choose a variable whose ith value in the RM spectra is 1 and that is
not included in the product associated with the ith element of the RM spectra.
Such an s exists according to Lemma 4.1. We first apply gates TOF (xs; x j) for
every r j = 1, j �= i, j = 1..n. This transforms the row we are working with
into (0, 0, . . . , 0, 1, 0, . . . , 0) with 1 at position s. Second, we apply gate TOF
(X i; xs), where X i is a product of variables x j such that the j th bit of the binary
expansion of the number i equals one. Such an operation transforms the row
we are working with into the desired (0, 0, . . . , 0). Finally, we undo TOF (xs; x j)
if such gates changed RM spectra rows earlier in the table than row i. Clearly,
such “undo” operations do not change the correct form of the pattern we are
working with.

To complete the proof of convergence for the above algorithm we need to
show that at Steps B and C a value s with the required properties can always
be found. The following lemma proves this.

LEMMA 4.1. Suppose the RM spectra of a reversible function f has its first i
rows (rows with numbers 0, 1, . . . , i − 1) equal to the first i rows of the identity
function. Denote the ith row value by (rn, rn−1, . . . , r1). Then,

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 4, Article 42, Pub. date: Sept. 2007.

42:10 • D. Maslov et al.

Table I. Synthesis of an Example Function Stored as a RM Spectra

Function Step1 Step2 Step3 Id

Spectral coef. of cba cba cba cba cba

1 001 000 000 000 000

a 001 001 001 001 001

b 010 010 011 011 010

ab 000 000 000 000 000

c 100 100 100 100 100

ac 011 011 010 000 000

bc 011 011 010 000 000

abc 000 000 000 000 000

Gate applied: TOF (a) ↗ TOF (b; a) ↗ TOF (a, c; b) ↗ TOF (b; a) ↗
The result of application of the gate on the bottom of each column is shown in the following column while reading

from left to right.

—If i = 2k−1 (k = 1..n), then (rn, rn−1, . . . , r1) �= (0, 0, . . . , 0).
—If i = 2k−1 (k = 1..n) and rk = 0, then the number s defined as max{ j | r j =

1, j = 1..n} is greater than k.
—If i �= 2k and (rn, rn−1, . . . , r1) �= (0, 0, . . . , 0), then there exists s, 1 ≤ s ≤ n such

that 2s−1 does not appear in the binary expansion of i and rs = 1.

PROOF. First, we prove by contradiction that if i = 2k−1, then (rn, rn−1,
. . . , r1) �= (0, 0, . . . , 0). Suppose (rn, rn−1, . . . , r1) = (0, 0, . . . , 0) and apply RMT.
The RMT will transform (rn, rn−1, . . . , r1) = (0, 0, . . . , 0) at position i = 2k−1 into
itself due to the properties 2 and 3 (order dependence and power-of-2 indepen-
dence) of the RMT and the fact all nonvariable rows earlier than the ith row are
zero. According to the property 1 (self inverse) of RMT we are in the Boolean
domain now, and we have two rows, the 0th and ith, both equal to (0, 0, . . . , 0).
This is a contradiction since a reversible function cannot have two equal rows
in its truth table representation.

Proof of the second statement is similarly shown by contradiction. Assume
that such an s (which does exist as a result of the proof of the first statement)
is less than k. In that case (rn, rn−1, . . . , r1) can be interpreted as a binary ex-
pansion of a number C < 2k−1 since its largest digit is at a position right of
k. After applying RMT we move to the Boolean domain and find that pattern
(rn, rn−1, . . . , r1) did not change. At the same time, higher in the table, at position
C, we will find a pattern equal to (rn, rn−1, . . . , r1). This is the contradiction.

The proof of statement 3 is similar to the two proofs above. Assume such an
s does not exist. Then, (rn, rn−1, . . . , r1) may contain ones only at those positions
where the binary expansion of i = (in, in−1, . . . , i1) has ones. RMT transforms
(rn, rn−1, . . . , r1) into (rn ⊕ in, rn−1 ⊕ in−1, . . . , r1 ⊕ i1), a pattern that may have
ones only at positions where the binary expansion of i has ones. An equal pattern
may be found in the truth table at position i − r, where r is an integer with
binary expansion (rn, rn−1, . . . , r1). Again having two equal patterns in the truth
table is a contradiction.

Example 1. Consider the 3-variable reversible function specified by the per-
mutation [1, 0, 3, 2, 5, 7, 4, 6] in Boolean domain. The spectra for this function
are shown in tabular form in the column labeled Function in Table I. We want

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 4, Article 42, Pub. date: Sept. 2007.

Techniques for the Synthesis of Reversible Toffoli Networks • 42:11

to select Toffoli gates to transform this specification into that of the identity
(Table I, column Id).

The first row of the function specification does not match the first row of the
RM spectra of the identity function. This can be fixed by applying the NOT
gate TOF (a). Application of this NOT gate from the output side transforms
the specification into the one shown in Table I, column Step1. The first 5 rows
in specification Step1 match the first 5 rows of the RM spectra of the identity.
We need to transform the sixth row from 011 to 000. First, we decrease the
number of ones by applying TOF (b; a). This leads to specification Step2. Note
that the third row of Step2 has also changed, which means that it has to be
updated later. Next, transform the sixth row of Step2 into the desired form
000 by applying TOF (a, c; b). This results in specification Step3. Finally, apply
CNOT gate TOF (b; a), which leads to the identity specification and thus the
network (TOF (b; a) TOF (a, c; b) TOF (b; a) TOF (a)) was constructed. The gates
have been identified from the output to the input.

4.1 Bidirectional Method

The following lemma suggests how a bidirectional modification can be devel-
oped.

LEMMA 4.2. Suppose the RM spectra of a reversible function f has its first
i rows equal to the first i rows of the identity function. Then, so does the RM
spectra of f −1, the inverse of f .

PROOF. This statement is, obviously, correct if one works with the truth
table representation. In particular, if function f maps a pattern j into itself
in the truth table, so will the inverse function. Due to the property 2 (order
dependence) of the RMT, the same holds for all j , 0 ≤ j < i.

Assume the first i − 1 positions in the RM spectra of f match the first i − 1
positions of the RM spectra of the identity, then according to Lemma 4.2 so
do the first i − 1 positions of the RM spectra of f −1. Hence, every assignment
of gates that transforms the ith row of f to match the ith row of the identity
without changing earlier rows (such gates are assigned from the output side
of the cascade) will also transform the ith row of f −1 to match the ith row of
the identity. Analogously, an assignment of gates that “fixes” the ith row of f −1

will transform the ith row of the RM spectra of f to that of the ith row of the
identity spectra. In latter case, the gates are assigned to the input side of the
cascade being built. The question of which specification to work with, that of
the function or its inverse, is equivalent to the question of which side of the
network to assign the gates to, the input side or the output side. This is why
we call this modification bidirectional.

Our approach chooses between using the function or its inverse based on
the cost associated with fixing the ith row of the corresponding RM spectra.
By choosing a smaller cost associated with such a transformation we hope to
synthesize an overall smaller network. In the case of a tie, we base our decision
on the RM cost of the remaining specification—preference is given to a set of
transformations that yield lower RM cost. We base this decision on the belief
that, on average, functions with smaller RM cost are simpler to synthesize.

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 4, Article 42, Pub. date: Sept. 2007.

42:12 • D. Maslov et al.

Finally, when these criteria do not resolve the choice, the gates are assigned to
the output side (working with RM spectra of the function). Perhaps, there are
better heuristics to be found for the decision of which side to work with, and it
would be both interesting and beneficial to explore them.

THEOREM 4.3. For any reversible function of size n the network synthesized
by either of the two methods (unidirectional or bidirectional) contains

(1) In the multiple control Toffoli gates library: at most n NOT gates, at most
2(n − 1)(2n − n − 2) + n2 CNOT gates, and at most

(n
k

)
Toffoli gates with k

controls for each k ∈ [2..n − 1].
(2) In NCT (NOT-CNOT-Toffoli) [Shende et al. 2003] library: at most n NOT

gates, at most 2n2n + o(n2n) CNOT gates, and at most 3n2n + o(n2n) Tof-
foli gates (assuming an additional auxiliary bit is available; otherwise the
circuit may not be constructible [Shende et al. 2003]).

(3) In NCV (NOT-CNOT-controlled-sqrt-of-NOT)[Maslov et al. 2005] library:
at most 11n2n + o(n2n) NOT, CNOT, controlled-V and controlled-V + gates
(again, assuming an additional auxiliary bit is available; otherwise the cir-
cuit may not be constructible).

PROOF. Proof of the first statement is based on an analysis of the basic
synthesis algorithm described above. First, at most n NOT gates are used at
step 0 (A:) of the synthesis algorithm, and none are used thereafter. At most
n CNOT gates are required at each of the steps i = 2k (B:), totaling to n2

CNOT gates. At each step i, i �= 2k , i > 0 (C:) at most 2(n − 1) CNOT gates
are required. The number of such steps is 2n − n − 2, giving a grand total of
2(n − 1)(2n − n − 2) + n2 CNOT gates. Finally, on each step i, i �= 2k , i > 0 (C:),
assuming i = 2i1 + 2i2 + · · · + 2ik , at most one multiple control Toffoli gate with
control set {xi1 , xi2 , · · · , xik } is used. Calculating the number of such Toffoli gates
with k controls gives

(n
k

)
.

Calculation of the result in NCT library is based on multiple control Tof-
foli gate realizations from [Barenco et al. 1995]. In NCV library, the result is
based on multiple control Toffoli gate realizations from [Maslov et al. 2005] and
formulas

n∑
k=0

k
(

n
k

)
= n2n−1;

n/2∑
k=0

k
(

n
k

)
= n2n−2 + o(n2n).

Item 2 of the Theorem 4.3 shows a tighter upper bound (under the natural
assumption that a CNOT gate is no more expensive than a larger Toffoli gate)
for our synthesis algorithm as compared to the upper bound of n NOT gates,
n2 CNOT gates and 9n2n + o(n2n) Toffoli gates for the synthesis algorithm
in Shende et al. [2003]. We also note another feature of this algorithm that
might be useful for a more robust algorithm implementation. Linear reversible
functions (considered in Patel et al. [2004]) will always be synthesized using
NOT and CNOT (linear) gates only. While synthesizing linear functions, it is
sufficient to store only the zeroth and all variable rows of its RM spectra. This
allows synthesis of size 1000 × 1000 linear reversible functions while making
a minimal change to the existing software.

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 4, Article 42, Pub. date: Sept. 2007.

Techniques for the Synthesis of Reversible Toffoli Networks • 42:13

The synthesis algorithm described in this section synthesized all size 3 re-
versible functions with the average of 6.98 Toffoli gates per function (no tem-
plates applied) in 7 seconds on (1.8 GHz) AMD Athlon XP2400+ processor.
Again, this compares favorably to the 7.25 average for the MMD algorithm. For
larger benchmark specifications this synthesis algorithm usually constructs
smaller quantum cost networks compared to the MMD and iterative algo-
rithms discussed in the previous section. Both phenomena should probably
be explained by the tighter upper bound in Theorem 4.3 as compared to the
upper bound in Maslov et al. [2005b].

5. COMPARISON OF THE NEW ALGORITHMS WITH MMD

In this section we compare performance of the newly presented synthesis meth-
ods to the performance of the MMD method [Maslov et al. 2005b]. Table II lists
the name and size of a benchmark function tested and the number of gates and
quantum cost (Definition 2.3) calculated when the synthesis methods MMD, it-
erative RM spectra based and MMD-type RM spectra based are applied. From
this test we draw the following conclusions. The iterative RM spectra based
method generally produces the smallest circuits for small specifications. How-
ever, when tested on larger functions it may diverge (Div.) or take a long time
to complete, and thus does not apply (N/A). For larger specifications, the RM
spectra based MMD type method takes the lead as far as quantum costs are con-
cerned, and the application of the original MMD method results in the smallest
gate count. In scope of this paper, a smaller quantum cost is more desirable
than a smaller gate count, because quantum cost is a better indication of the
technological cost of implementing a circuit.

6. TEMPLATES

In previous sections we discussed how to obtain a Toffoli circuit given a function
specification. Since optimal synthesis is not feasible, we employed a number
of heuristics. The result of heuristic search is, usually, a non-optimal circuit
specification. Thus, optimization techniques can be applied to such circuits. In
particular, we investigate a form of local optimization technique, called tem-
plates.

Templates are a generalization of rewriting rules. A rewriting rule is defined
as a procedure that takes 2 equivalent circuits (circuits that compute the same
function) and replaces one with the other. If the cost of the circuit to be replaced
is greater than the cost of the replacement circuit this leads to a circuit cost
reduction. Rewriting rules, other then templates, were proposed in Iwama et al.
[2002] and Shende et al. [2006] for gate count reduction and in Lomont [2003]
and Nielsen and Chuang [2000] for quantum circuits.

In many reversible logic synthesis papers, the cost of a network is defined
as a weighted gate count. We refer to this as a linear cost circuit metric. In the
more general case of a nonlinear cost metric, the cost of the complete circuit
does not relate to the gates in a simple linear manner. An example of such a
situation can arise when considering the Peres gate [Peres 1985] which, when
simulated by a Toffoli gate (cost 5) and a CNOT gate (cost 1) would have a cost

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 4, Article 42, Pub. date: Sept. 2007.

42:14 • D. Maslov et al.

T
a

b
le

II
.

T
e
st

in
g

P
e
rf

o
rm

a
n

ce
o
f

th
e

S
y
n

th
e
si

s
M

e
th

o
d

s

n
am

e
si

ze
M

M
D

G
C

M
M

D
Q

C
It

er
.G

C
It

er
.Q

C
R

M
-b

as
ed

G
C

R
M

-b
as

ed
Q

C
3

1
7

3
6

14
6

14
7

1
5

4
4

9
4

1
6

7
2

*
15

71
*

2
0

7
2

*

4
m

o
d

5
5

9
2

5
7

15
9

2
5

5
m

o
d

5
6

1
8

1
7

7
*

12
85

*
1

8
1

7
7

*

a
d

d
3

4
6

1
8

5
13

6
1

4

cy
cl

e
1

0
2

1
2

19
12

06
2

7
1

5
6

9
19

12
06

cy
cl

e
1

7
3

2
0

48
60

69
N

/A
N

/A
48

60
69

h
a

m
3

3
6

10
7

1
1

6
10

h
a

m
7

7
25

9
3

D
iv

.
D

iv
.

3
1

57
h

a
m

1
5

1
5

13
8

2
1

4
5

N
/A

N
/A

1
5

9
26

4
h

w
b

4
4

1
8

7
0

*
12

48
*

1
6

5
6

*

h
w

b
5

5
5

7
4

8
1

*
5

5
5

6
9

*
53

18
3

h
w

b
6

6
13

4
1

7
2

3
*

D
iv

.
D

iv
.

1
4

9
81

6*
h

w
b

7
7

30
2

5
5

2
8

*
D

iv
.

D
iv

.
4

3
5

30
36

*
h

w
b

8
8

68
8

1
5

5
2

7
*

D
iv

.
D

iv
.

1
1

0
1

76
99

*
h

w
b

9
9

16
25

4
8

3
8

4
*

D
iv

.
D

iv
.

2
7

8
7

22
28

4*
h

w
b

1
0

1
0

36
94

1
2

4
0

2
2

*
D

iv
.

D
iv

.
6

2
9

1
49

30
3*

h
w

b
1

1
1

1
83

12
3

4
3

6
5

4
*

D
iv

.
D

iv
.

1
4

5
6

6
12

67
09

*
m

o
d

5
a

d
d

e
r

6
3

7
5

9
1

*
24

24
2

6
3

5
2

4
*

m
o
d

1
0

2
4

a
d

d
e
r

2
0

55
15

75
N

/A
N

/A
55

15
75

rd
5

3
7

2
0

1
8

1
19

11
3

19
1

8
1

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 4, Article 42, Pub. date: Sept. 2007.

Techniques for the Synthesis of Reversible Toffoli Networks • 42:15

of 6, but when constructed directly in terms of quantum primitives has a cost
of 4. When elementary quantum blocks are decomposed into pulses (as is done
in liquid NMR quantum technology), similar nonlinear cost effects can arise.

We call a rewriting rule regular if the replacement circuit has smaller cost,
otherwise we call it irregular. The qualifier regular is omitted when it is clear
in context. The idea of applying regular rewriting rules to transform subcir-
cuits of a given circuit is a powerful tool for circuit cost reduction. Application
of irregular rules may be helpful in techniques such as simulated annealing.
The simplification procedure consists of two parts. First, find as many regu-
lar rewriting rules as possible, and second, apply them to reduce the cost of a
given circuit. Straightforward application of such an approach to quantum cir-
cuit cost reduction can be found in Lomont [2003] and was proposed in Iwama
et al. [2002] for reversible networks composed of multiple control Toffoli gates.
However, there are potential problems with this approach in its simplest form.

—The number of regular rewriting rules is very large even for small param-
eters. For instance, assuming Toffoli type gates have unit cost, the number
of regular rewriting rules for reversible binary networks where k = 3 gates
are replaced with s = 2 gates in a network with n = 3 input/output variables
is 180. It can be easily shown that this number grows exponentially with
respect to each of the parameters k, s, and n.

—Often, rewriting rules are redundant in the sense that a G1G2G3 → G4G5

rewriting rule can be a derivative of a G2G3 → G5 rewriting rule if G1 = G4.
Further, it can be shown that even the number of nonredundant rules grows
exponentially on n, and likely grows exponentially on k and s (keeping s < k).

—It is possible that commuting some gates in a cascade may permit the appli-
cation of rewriting rules that decrease the cost. These gate interchanges are
frequently possible and do not change the linear term cost of a network. It
is possible to account for such a situation, but it will require introduction of
a significant number of large rewriting rules. The templates matching algo-
rithm we introduce takes care of this additional complexity associated with
interchangeability of the gates.

The following observations are useful to understanding the template ap-
proach.

Observation 1. For any network G0G1 . . . Gm−1 realizing function f , the net-
work G−1

m−1G−1
m−2 . . . G−1

0 is a valid network1 for the function f −1. This of
course includes the case where the cascade of gates realizes the identity, in
which case the inverse function is also the identity. We use Id to denote
both the identity function and a network realizing the identity function, the
meaning being clear from the context.

Observation 2. For any rewriting rule G1G2 . . . Gk → Gk+1Gk+2 . . . Gk+s, its
gates satisfy the following:

G1G2 . . . GkG−1
k+sG

−1
k+s−1 . . . G−1

k+1 = Id .

1Toffoli gates are self inverses: every gate G = G−1. Thus, applying templates to networks of Toffoli

gates will not require introducing any new gate types.

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 4, Article 42, Pub. date: Sept. 2007.

42:16 • D. Maslov et al.

Fig. 1. Two cycles of a size 7 template: (a) can not be simplified using smaller and equal size

templates and (b) can be simplified—gates G5, G6, and G0 can be replaced with two if template

(5a) from Figure 3 is used.

Observation 3. For G0G1 . . . Gm−1 = Id and any parameter p, 0 ≤ p ≤ m
G0G1 . . . G p−1 → G−1

m−1G−1
m−2 . . . G−1

p is a valid rewriting rule. In the most
trivial circuit cost metric, where the cost of every gate is 1, i.e., the gate count
is calculated, the rewriting rule is regular for parameters p in the range
m
2

< p ≤ m.

Observation 4. If G0G1 . . . Gm−1 = Id , then G1 . . . Gm−1G0 = Id .

Observation 4 allows one to write an identity network with m gates in m
(generally) different ways. We refer to each as a cycle. We are now ready to give
the formal definition of a template.

Definition 6.1. A size m template is a cascade of m gates (a network) that
realizes the identity function. For a cascade to be a template, there must be
at least one cycle that can not be reduced in size (gate count) by the applica-
tion of smaller or equally sized templates. Only the irreducible cycles are used
when applying templates. A template G0 G1 . . . Gm−1 can be applied in either
direction:

(1) Forward application is a rewriting rule of the form

GiG(i+1) mod m . . . G(i+p−1) mod m → G−1
(i−1) mod mG−1

(i−2) mod m . . . G−1
(i+p) mod m,

where

0 ≤ i, p ≤ m − 1.

(2) Backward application is a rewriting rule of the form

G−1
i G−1

(i−1) mod m . . . G−1
(i−k+1) mod m → G(i+1) mod mG(i+2) mod m . . . G(i−k) mod m,

where

0 ≤ i, p ≤ m − 1.

Our earlier template definitions did not require the existence of a cycle that
cannot be simplified, however, this part of the definition is important. We illus-
trate this with an example of a size 7 template with two cycles such that one
simplifies and the other does not, shown in Figure 1. The network in Figure 1(a)
does not simplify, whereas the one in Figure 1(b) can be simplified since its right-
most three gates can be replaced with two gates TOF (t2, t3, C1, C2, C3, C4; t1)
and TOF (t2, C1, C2, C3, C4; t1).

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 4, Article 42, Pub. date: Sept. 2007.

Techniques for the Synthesis of Reversible Toffoli Networks • 42:17

Consistency of the template definition follows from the above four observa-
tions. One of the immediate benefits that the templates bring is significant
reduction of the space required to store the rewriting rules (this is a significant
improvement considering how much space is required in Shende et al. [2006]
to store some small identities). In fact, one template occupies the same storage
space as used by a single rewriting rule, yet it is capable of storing up to 2m2

non redundant rewriting rules. Assuming the trivial circuit cost metric where
each gate has a cost of one, the number of regular nonredundant rewriting rules
can be as high as m2 for the odd numbers m and m(m − 1) for even m.

We earlier observed that the number of nonredundant rewriting rules grows
exponentially; therefore, template classification is highly desirable. Depending
on the set of model gates, classifications differ. We consider some of the partic-
ular questions and methods of proper classification of Toffoli templates in the
next section.

6.1 Toffoli Templates

We wrote a program that helped us find the Toffoli templates. To build templates
of size s = s1 + s2 the program first uses depth first search to find optimal
networks of maximal sizes s1 and s2 using 3 to 4 input variables (which likely
provides enough generality—we do not have a formal proof that it does—to find
if a template is missing, but fails to generalize it once a candidate is found).
In the second step, the program computes two sets with the truth vectors of
functions realizable by cascades of sizes s1 and s2. Then, for every function in
the first set it finds its inverse in the second set. If such a function is found the
two networks are combined (use observations 1 and 2 to see that the resulting
cascade is always the identity function) and templates of size less than s are
applied to simplify the cascade. If this leads to a simplification for all cycles, the
constructed identity is not a new template. Otherwise, it is a piece of a template
and needs generalization.

The algorithm described finds those lines in a template that contain targets
of the gates, but fails to extract all the possible assignments of the controls.
Generalization requires finding all the possible gate controls that apply with-
out changing the network functionality, that is, leaving it as the identity. The
following theorem is useful as it limits the set of choices worth trying to assign
the controls. The proof is straightforward and thus it is omitted. However, it is
available directly from the authors upon request.

Definition 6.2. For any network G0G1 . . . Gm−1 with an input line that has
controls only (control line), its characteristic vector (α0, α1, . . . αm−1), αi ∈ {0, 1}
for 0 ≤ i ≤ m − 1 has ones at positions i where the gate Gi has a control, and
zeros everywhere else.

THEOREM 6.3.

(1) If a control line with the characteristic vector (α0, α1, . . . αm−1) appears in a
template of size m, any set of lines with this characteristic vector is a possible
control set.

(2) Lines with characteristic vectors (0, 0, . . . 0) and (1, 1, . . . 1) are possible con-
trol lines for any template.

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 4, Article 42, Pub. date: Sept. 2007.

42:18 • D. Maslov et al.

Fig. 2. Generalizations of a size 9 template.

(3) If lines with characteristic vectors (α0, α1, . . . αm−1) and (β0, β1, . . . βm−1) are
control lines of a template, the line with characteristic vector (α0 ∨ β0, α1 ∨
β1, . . . αm−1 ∨ βm−1) is also a possible control line.

(4) If there exists a line with exactly two EXOR symbols on it, being targets of
two gates Gi and G j , every possible control line has αi = α j .

Template generalization is a part of our software package. It is interesting
to note that during the generalization process the number of templates may
increase. Figure 2 illustrates how a template found by our program (bottom 4
lines: t1, t2, t3 and C1, |C1| = 1) can be generalized in two different ways.

In Maslov et al. [2005b], we reported a Toffoli network with 4 gates for the 3-
bit binary full adder. Assuming the trivial cost metric, we applied our templates.
This resulted in no gate count reduction and we can conclude that the network
is optimal for the given cost metric (gate count). Proof by contradiction. Suppose
it is not. Then, there exists a smaller network for a 3-bit full adder, say with
3 gates. Using Observation 2 one can construct an identity cascade of size 7
built on 4 lines that would differ from the templates and will not be simplified
by the means of the templates. Running our template finding program shows
that it is impossible, and hence the network is optimal. The following theorem
generalizes this observation.

THEOREM 6.4. For the complete classification of the templates of size up to m
and their complete (in the sense that no possible application is missed) applica-
tion to network size reduction:

—For even numbers m, each subnetwork of size m
2

is optimal in any metric. The
network itself is optimal if the number of gates is m

2
or less.

—For odd numbers m, each sub network of size m
2
� is optimal in any metric,

and each sub-network of size �m
2
� is optimal in the trivial metric. Similar

statements hold for the entire network if the number of gates is not greater
than m

2
� or �m

2
� respectively.

We conclude this section with a (most likely complete) list of the templates
of size up to 7 and some templates of size 9, illustrated in Figure 3. Lines ti

in Figure 3 represent each a single line, and lines marked with Cj represent
a possibly empty set of lines, all of the same form. We note that the templates

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 4, Article 42, Pub. date: Sept. 2007.

Techniques for the Synthesis of Reversible Toffoli Networks • 42:19

Fig. 3. All Toffoli templates of size up to 7, and some templates of size 9.

of size less than 5 are equivalent to those found in Maslov et al. [2005b]. We
report a smaller number of different templates of size 6 compared to the tem-
plates reported in Maslov et al. [2005b]. There are two reasons for that. First,
the template illustrated in Figure 8(d) of Maslov et al. [2005b] is not fully gen-
eralized, which we found with the help of our new software. And second, the
template classification depends on how the templates are applied. Our algo-
rithm for template application differs from the originally reported [Maslov et
al. 2005b] and is discussed in the following section. A quick explanation of why
the new algorithm is more accurate at finding more simplifications than the
original is that template illustrated in Figure 8(b) of Maslov et al. [2005b] can
now be simplified with the other templates which was not possible before. This
is due to the improved matching algorithm.

6.2 Template Application

To apply templates to circuit cost reduction, we first consider all the templates
of the form ABAB. Such templates applied for parameter p = 2 describe all
gate commutations AB → BA. That is, they define when the two adjacent
gates in a cascade can be swapped. We call such templates moving rules and

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 4, Article 42, Pub. date: Sept. 2007.

42:20 • D. Maslov et al.

apply them to move the gates in a cascade to permit the application of cost
reducing template substitutions. The complete description of the templates of
form ABAB is very simple (this may of course not be true for all gate types).
Assuming gate A has control(s) CA and target TA and gate B has control(s) CB

and target TB, these two gates form a moving rule if, and only if, TA �∈ CB and
TB �∈ CA. It turns out that all Toffoli templates of size 4 are the moving rules.

Templates of size other than 4 are applied as follows. We choose a starting
gate for matching. The position of the starting gate (Start) in the matching will
change with time, and we begin with Start = 2. Suppose Start = k in a cascade
with n gates at the present time. We apply smaller templates first. They are
easier to match, because one needs to find fewer gates to do the replacement,
and in a sense smaller templates allow more general network transformation
(for instance, applying size 2 templates can be described as deleting adjacent
pairs of identical gates, while applying size 9 templates has no obvious simple
description). For each of the templates, we match gate k in the network to the
first gate in each of the m cycles of the template, which is always possible. We
then try to find the gates in the network that match those in the template as-
suming the first gate of the template cycle matches this kth gate in the network
and trying both directions for the template application. Next we explain only
how to apply a single template cycle in the forward direction, because applica-
tion of other cycles and in the backward direction is analogous. At this point, we
create two arrays, integer MatchIndex[] with one element k indicating that one
gate at position k in the network is found and properly matched, and Boolean
MoveIndex[] with one element equal to 1 and indicating that all gates can be
moved to the one found (in this case no moving is required). In addition, integer
CurrentGate = k indicates that at the present moment we look at the gate k.
To match more gates, we decrease CurrentGate by 1 and see if gate k − 1 in the
network matches the second gate in the template cycle. If it does, we increase
the size of MatchIndex array by 1, and add k−1 to it. We also increase size of the
MoveIndex array and add a new element, 1 to it. Since gate k−1 neighbors with
gate k, there is no need to check if the gates can be moved together. Finally, we
check if these 2 gates can be replaced with a smaller network using the present
template cycle, and if they can, do the replacement and return Start = k − 1.
The template matching resumes with starting gate at position k −1 and by try-
ing the smallest template first. If gate CurrentGate did not match the second
gate in the template, we decrease integer CurrentGate by 1 (it is now equal to
k − 2) and see if this gate matches the second gate of the template cycle.

In general, if some s gates are matched and can be moved together (that
is, MatchIndex = [k1, k2, . . . , ks] and MoveIndex = [m1, m2, . . . , ms] where
MoveIndex contains a nonzero value indicating that the gates can be moved to
the corresponding position), and a gate in a network at position CurrentGate =
ks+1 matches (s + 1)st gate of the template cycle, the procedure for matching is
as follows. First, we check if the gates can be moved together to each of the net-
work positions k1, k2, . . . , ks, ks+1. If the gates can be moved together, we update
array MoveIndex to contain s + 1 Boolean values that show where it is possi-
ble to move the gates. We next check if it is beneficial to replace the matched
and movable together s + 1 gates with the remaining m − s − 1 of the given

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 4, Article 42, Pub. date: Sept. 2007.

Techniques for the Synthesis of Reversible Toffoli Networks • 42:21

Fig. 4. Application of template (a) to the network (b) starting at the gate 7. The network simplifies

to the form (c).

template. If it is, we do the replacement at the maximal value of an element of
MatchIndex, k j , corresponding to the nonzero value m j of the MoveIndex and
return new Start = k j − s + j . The template matching resumes from this po-
sition in the network and the smallest template. If the gates cannot be moved
together, we decrease value of the CurrentGate by one and try to match the
gate at this position in the network. When CurrentGate becomes equal to zero
or if we cannot match enough gates to do a beneficial replacement using the
template, we try to match another cycle, the next template of the same size,
or a larger template. If no templates match with a starting position Start, we
increase its value by one (start matching with the next gate in the network)
until we run out of gates in the network that could serve as a Start. In such a
case, template application is completed.

We illustrate how the templates are applied with an example below.

Example 2. Consider network in Figure 4(b). Suppose Start = 7 and the
template cycle that we want to match and apply is as illustrated in Figure 4(a).
In other words, we start with the following known values MatchIndex =
[7], MoveIndex = [1] and CurrentGate = 7. Line t1 of the template must cor-
respond to the line d of the network, and line t2 should match one of a, b or c
— this guarantees that gate 7 matches the first gate of the template cycle. The
steps of matching are:

—Let CurrentGate = 7 − 1 = 6. Gate 6 does not match the second gate of the
template cycle in Figure 4(a) since we expect to find a gate with target at a
line where gate 7 has a control. As a result, CurrentGate gets decreased by 1.

—CurrentGate = 5. Gate 5 matches the second gate of the template if t2 = c,
C1 = {b} and C3 = ∅. Gate 7 can be moved to gate 5, and gate 5 cannot move
to the gate 7. Therefore, MoveIndex becomes [1, 0]. The MatchIndex is [7, 5].
We check that the replacement of the two gates we matched with the three
reconstructed from the template is not beneficial, but since MoveIndex has
non-zero values, we try to match more gates.

—CurrentGate = 4. Gate 4 in the network does not match the third gate in the
template cycle because we are looking for a gate with the target on line d .

—CurrentGate = 3. Gate 3 in the network does not match third gate in the
given template cycle because we try to find a gate with no control at line c.

—CurrentGate = 2. Gate 2 matches the third gate of the template cycle if
C2 = {a}. Gate 2 can be moved to gate 5, but gate 5 cannot be moved past

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 4, Article 42, Pub. date: Sept. 2007.

42:22 • D. Maslov et al.

gate 3. Thus, MoveIndex = [0, 1, 0]. MatchIndex = [7, 5, 2] and according to
the template cycle, these three gates can be replaced with two. It is clearly
beneficial to do the replacement. According to the MoveIndex the replacement
can be done if all gates are moved to the gate 5 in the network. The network
after template application is illustrated in Figure 4(c). Return Start = 4,
because at this position the replacement part (in a dashed box) starts.

The template application resumes starting with the forth gate in the network
in Figure 4(c) and trying to apply the smallest template.

In our program realization, function apply templates is used to apply tem-
plates. It has an option of applying the templates to reduce the gate count or the
quantum cost and works according to the algorithm discussed above. We made
a modification of the matching algorithm in which we never look for the gates
in the network further away from position Start than 20. This is because we
found that in practice the gate span in template application is usually less than
20. Such restriction also makes the template algorithm faster—it is linear in
the number of gates in the network. The template application algorithm from
Maslov et al. [2005b] has an n3 worst case scenario and n2 best case scenario
runtime in terms of the gate count of the circuit to be reduced. In addition, the
template application algorithm introduced in this section reduces the circuits
better (assuming both algorithms work with the same set of templates) than
the one presented in Maslov et al. [2005b], and can be used in conjunction with
different circuit cost metrics.

7. RESYNTHESIS PROCEDURE

In our program implementation, we first synthesize a function and its inverse
using the MMD method [Maslov et al. 2005b] and the newly presented Reed-
Muller spectra based algorithms. We then simplify each of the synthesized
networks using templates, choose the smaller network N and declare it to be
the final result. Each subnetwork Nsub of the final implementation is itself
a network that computes some reversible function. This reversible function
can be determined and synthesized on its own. We refer to such procedure as
resynthesis. If such resynthesis yields a smaller subnetwork, it replaces Nsub

leading to simplification of the overall network N .
We have implemented two drivers for this resynthesis procedure. First, a

random driver that performs a user-specified number of iterations. For each
iteration, a number (again specified by the user) of random subnetworks are
resynthesized and the best overall simplification is chosen and forwarded to the
next iteration. Second is an exhaustive driver. It tries all possible subnetworks
with at least 5 gates of a given network. This is because it is not necessary
to resynthesize networks with 4 or less gates, since in our synthesis approach
every subnetwork of size 4 is optimal. This result is a corollary of Theorem 6.4.

The resynthesis procedure captures a somewhat similar idea for circuit op-
timization as peep-hole optimization introduced in Shende et al. [2006] for
NOT-CNOT-Toffoli circuit simplification. Whereas [Shende et al. 2006] substi-
tute a subcircuit with its optimal implementation, we synthesize the reversible

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 4, Article 42, Pub. date: Sept. 2007.

Techniques for the Synthesis of Reversible Toffoli Networks • 42:23

function a given subnetwork realizes in hopes of achieving a better implemen-
tation. The circuit we substitute is thus not guaranteed to be optimal. However,
our resynthesis can be applied to subcircuits with a large number of variables
(practically, 21), while optimal implementations can only be found and substi-
tuted for all 3-variable and some 4-variable circuits [Shende et al. 2006]. Since
our work emphasizes synthesis of multiple control Toffoli gate networks, and
the majority of non-empty subcircuits in benchmark function designs span over
more than 4 bits, the simplification procedure from Shende et al. [2006] does
not apply. The simplification procedure from Shende et al. [2006] can, obviously,
be employed to synthesize optimal NOT-CNOT-Toffoli 3-bit reversible specifica-
tions. However, the focus of this paper is on the study of techniques applicable
to the synthesis of larger specifications.

8. EMPIRICAL RESULTS

We have applied our synthesis approach to a number of reversible benchmark
specifications from Maslov et al. [2005a]2. We report two types of the results:
gate count and quantum cost minimization. Gate count minimization is consid-
ered to make fair comparison to the previous approaches that used gate count
as the target for minimization. We believe that circuits with minimized quan-
tum costs are of a greater practical interest since quantum cost was defined
as to reflect the expected cost of experimental implementation. The results can
be found in Table III. The name, size, GC and QC columns give the name
of each benchmark function, size (number of variables) of the reversible spec-
ification as considered in the literature, the best reported gate count, and the
best reported quantum cost (as per Definition 2.3) for the networks with Toffoli
gates. The next two columns report the gate count and the quantum cost when
our tool is applied to synthesize a given function with the option of minimiz-
ing the gate count. The last two columns report the synthesis results with the
option of quantum cost minimization. We find that realizations in the last two
columns could be more practical. We note that networks for benchmark func-
tions 4mod5, 5mod5, hwb8 − hwb11, and network for rd53 with quantum cost
79 found in Maslov et al. [2005a] are the results of the techniques discussed in
this paper and were not reported before.

Table III shows our software synthesizes smaller3 networks than earlier
presented heuristics. For instance, the gate count for the hwb6 benchmark
function was reduced from 126 to 42 gates, that is, our network is one third of the
size of the best previously presented; and quantum cost for an implementation
of this function was reduced by a factor of 10.

2In our comparison, we considered the networks and function specifications from the above web

page. However, our quantum cost calculation differs from the one used in Maslov et al. [2005a],

therefore quantum costs reported in Table III are slightly different (higher) from those that can be

found online.
3Maslov et al. [2005a] contains networks synthesized using Toffoli and Fredkin gates, but we do not

compare our results to those in a table form, just mention that the presented results are, generally,

significantly better.

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 4, Article 42, Pub. date: Sept. 2007.

42:24 • D. Maslov et al.

T
a

b
le

II
I.

B
e
n

ch
m

a
rk

F
u

n
ct

io
n

S
y
n

th
e
si

s

B
en

ch
m

ar
k

P
re

vi
ou

s
G

at
e

co
u

n
t

m
in

im
iz

at
io

n
:

Q
u

an
tu

m
co

st
m

in
im

iz
at

io
n

:
n

am
e

si
ze

G
C

Q
C

G
C

-g
c

Q
C

-g
c

G
C

-q
c

Q
C

-q
c

3
1

7
3

6
1

4
6

1
4

6
1

4

4
4

9
4

1
6

6
4

*
1

2
3

2
1

2
3

2

4
m

o
d

5
5

5
1

3
5

1
3

5
1

3

5
m

o
d

5
6

1
0

8
5

*
8

7
7

*
1

0
7

1
*

a
d

d
3

4
4

1
2

4
1

2
4

1
2

cy
cl

e
1

0
2

1
2

1
9

1
2

0
6

1
9

1
2

0
6

1
9

1
2

0
6

cy
cl

e
1

7
3

2
0

4
8

6
0

6
9

4
8

6
0

6
9

4
8

6
0

6
9

cy
cl

e
1

8
3

2
1

N
/A

N
/A

5
1

6
8

1
9

5
1

6
8

1
9

h
a

m
3

3
5

9
5

9
5

9

h
a

m
7

7
2

3
9

1
2

1
6

9
2

5
4

9

h
a

m
1

5
1

5
1

3
2

1
8

8
1

7
0

4
6

3
1

0
9

2
1

4

h
w

b
4

4
1

7
6

9
*

1
1

2
3

1
1

2
3

h
w

b
5

5
5

5
3

5
3

*
2

4
1

1
4

2
4

1
1

4

h
w

b
6

6
1

2
6

1
5

1
9

*
4

2
1

5
0

4
2

1
5

0

h
w

b
7

7
2

8
9

5
1

9
6

*
2

3
6

3
9

8
4

*
3

3
1

2
6

0
9

*

h
w

b
8

8
6

3
7

1
4

6
3

6
*

6
1

4
1

2
7

4
5

*
7

4
9

6
1

9
7

*

h
w

b
9

9
1

5
4

4
4

3
1

3
8

*
1

5
4

1
4

3
0

8
9

*
1

9
5

9
2

0
3

7
8

*

h
w

b
1

0
1

0
3

6
3

1
1

2
0

0
3

4
*

3
5

9
5

1
1

7
4

6
0

*
4

5
4

0
4

6
5

9
7

*

h
w

b
1

1
1

1
9

3
1

4
3

2
8

2
0

0
*

8
2

1
4

3
3

6
3

6
9

*
1

1
6

0
0

1
2

2
1

4
4

*

m
o
d

5
a

d
d

e
r

6
2

1
1

4
5

1
5

9
1

1
7

8
1

m
o
d

1
0

2
4

a
d

d
e
r

2
0

5
5

1
5

7
5

5
5

1
5

7
5

5
5

1
5

7
5

rd
5

3
7

1
2

1
2

8
1

2
1

2
8

1
6

6
7

rd
5

3
7

1
6

7
9

1
2

1
2

8
1

6
6

7

G
a

te
co

u
n

t
a

n
d

q
u

a
n

tu
m

co
st

m
in

im
iz

a
ti

o
n

co
lu

m
n

h
e
a

d
e
rs

se
t

th
e

g
o
a

l
fo

r
o
u

r
to

o
l

m
in

im
iz

a
ti

o
n

cr
it

e
ri

a
.
A

st
e
ri

sk
s

in
th

e
q

u
a

n
tu

m

co
st

ca
lc

u
la

ti
o
n

co
lu

m
n

s
in

d
ic

a
te

n
e
ce

ss
it

y
o
f

th
e

a
d

d
it

io
n

o
f

a
si

n
g
le

q
u

b
it

to
th

e
a

ct
u

a
l
q

u
a

n
tu

m
im

p
le

m
e
n

ta
ti

o
n

,
re

fe
r

to
D

e
fi

n
it

io
n

2
.3

.
A

ct
u

a
l

ci
rc

u
it

s
a

re
a
v
a

il
a

b
le

fr
o
m

M
a

sl
o
v

e
t

a
l.

[2
0

0
5

a
].

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 4, Article 42, Pub. date: Sept. 2007.

Techniques for the Synthesis of Reversible Toffoli Networks • 42:25

We limited the search time for our software to 12 hours for each benchmark
function. Most functions took significantly less time to synthesize than the al-
lowed 12 hours; most time (12 h) was spent to synthesize only one function,
c ycle18 3. A general rule was to synthesize a function using all three algo-
rithms, apply the templates, resynthesize with random driver until several
iterations do not bring any simplification and apply exhaustive driver until no
further simplification occurs. In the chosen period of 12 hours, there was no
time left to apply exhaustive driver to functions (networks for) hwb7, hwb8,
hwb9 and all networks with 10 and more variables other than ham15 and
cycle10 2. Due to the time constraints, we did not apply random driver to the
networks for hwb11 and cycle18 3. Our software potentially can synthesize
functions with more than 21 variables, but as the number of variables and
gates in the synthesized network grows, the runtime for such synthesis grows
exponentially.

In the literature, one of the common tests of the quality of a heuristic re-
versible synthesis method is how it performs on the 40,320 reversible functions
with 3 inputs [Agrawal and Jha 2004; Kerntopf 2004; Maslov et al. 2005b].
We run this test and report the results only as a means of comparison of our
technique to those heuristics reported earlier.

In our implementation of the discussed techniques, we used the 3 synthesis
methods (MMD [Maslov et al. 2005b], iterative from Section 3, and bidirectional
from Subsection 4.1) that are applied to both function and its inverse, then
the templates were applied and the exhaustive driver is run until no further
simplification is found. This is a time-consuming test, and it takes around 96
hours for it to complete. Techniques to reduce the runtime are discussed in
Section 9.

Table IV compares our synthesis results to the earlier reported synthesis
algorithms and the optimal results found by depth-first search [Shende et al.
2003]. It can be seen that our results are significantly closer to the optimal
synthesis than those reported earlier (by Maslov, Dueck, and Miller, column
MMD; [Maslov et al. 2005b] and by Agrawal and Jha, column AJ [Agrawal and
Jha 2004]). Our results are, on average (WA), only 0.16% off from the optimal
size (column Opt. [Shende et al. 2003]). It can also be seen that our synthesis
results are better than the best presented by Kerntopf [2004] (column K), even
though that his work uses a larger gate library (given a larger gate library one
would expect lower gate counts).

9. CONCLUSION

In this article, we presented new techniques for the synthesis of reversible Tof-
foli networks. The main contributions include two Reed-Muller spectra based
approaches to reversible synthesis; a better characterization of templates and
an improved method of their application, classification of the templates of size
7 (most likely complete) and demonstration of some useful templates of size 9.
We also investigated an approach involving resynthesis of subnetworks that
significantly improves the results, particularly for larger benchmark functions.
We structured our software as to have an option of minimizing the gate count
or a technology-motivated cost. To our knowledge, this is the first attempt to

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 4, Article 42, Pub. date: Sept. 2007.

42:26 • D. Maslov et al.

Table IV. Number of reversible functions using a specified (column Size) number of gates for

n = 3 for different synthesis algorithms as indicated by citations. The results we report in this

paper are listed in column Ours. Column K is separated from the remainder of the table to stress

that the gate library used in that work is different (larger). Row starting with WA reports the

Weighted Average for the circuit gate count, and row % reports the same number but in percent

with respect to the optimal size.

MMD [Maslov AJ [Agrawal and Opt. [Shende K [Kerntopf
Size et al. 2005b] Jha 2004] Ours et al. 2003] 2004]

13 6

12 62

11 391

10 1444

9 3837 30 2 86

8 7274 3297 659 577 2740

7 9965 12488 10367 10253 11774

6 9086 13620 16953 17049 13683

5 5448 7503 8819 8921 8068

4 2125 2642 2780 2780 3038

3 567 625 625 625 781

2 102 102 102 102 134

1 12 12 12 12 15

0 1 1 1 1 1

WA: 6.801 6.101 5.875 5.866 6.010

% 116% 104% 100.16% 100% N/A

minimize a technology-motivated cost of the implementation in the relevant
literature. We have implemented our methods in C++ and shown they produce
results significantly better than those reported in the literature.

Further work can be done to optimize the code. For instance, our algorithm
can be easily parallelized. Assuming a 6 processor machine, each of the 6 net-
works (3 methods, function and its inverse are synthesized) can be synthe-
sized (including the template application) on a separate processor. The work
of random driver and exhaustive driver can be distributed evenly among the
processors. In total, such an algorithm on a parallel machine should be able
to run almost 6 times faster as compared to a single processor machine. For
large networks, template application can be parallelized by cutting them into
smaller subnetworks and then applying the templates at the cutting points by
restricting Start to grow no more than 20. The developed CAD tool should ben-
efit from integrating into it the synthesis and circuit optimization techniques
from the literature, such as those found in Agrawal and Jha [2004], Kerntopf
[2004], and Shende et al. [2003, 2006].

Possible directions in the future research include identifying ways to syn-
thesize reversible functions stored in compact formats (we suggest trying the
associative table data format to store RM spectra), synthesizing incomplete
specifications, as well as developing new heuristics and incorporating them
(which, for the most part, should be straightforward) into the existing project.

ACKNOWLEDGMENTS

The authors wish to acknowledge the help of N. Scott, from the University of
New Brunswick, who assisted in the preparation of this manuscript.

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 4, Article 42, Pub. date: Sept. 2007.

Techniques for the Synthesis of Reversible Toffoli Networks • 42:27

REFERENCES

AGRAWAL, A. AND JHA, N. K. 2004. Synthesis of reversible logic. In Proceedings of the Conference
and Exhibition on Design, Automation, and Test in Europe. 21384–21385.

BARENCO, A., BENNETT, C. H., CLEVE, R., DIVINCENZO, D. P., MARGOLUS, N., SHOR, P., SLEATOR, T., SMOLIN,

J. A., AND WEINFURTER, H. 1995. Elementary gates for quantum computation. Phys. Rev. A, 52,
3457–3467.

BENNETT, C. H. 1973. Logical reversibility of computation. IBM J. R&D, 17, 525–532.

CORY, D. G. , LAFLAMME, R., KNILL, E., VIOLA, L., HAVEL, T. F., BOULANT, N., BOUTIS, G., FORTUNATO,

E., LLOYD, S., MARTINEZ, R., NEGREVERGNE, C., PRAVIA, M., SHARF, Y., TEKLEMARIAM, G., WEINSTEIN,

Y. S., AND ZUREK, W. H. 2000. NMR-Based quantum information processing: achievements and

prospects. Wiley Inter Science.

FEYNMAN, R. 1985. Quantum mechanical computers. Optic. News, 11, 11–20.

GERSHENFELD, N. AND CHUANG, I. L. 1980. Quantum computing with molecules. Scientific
American.

HÄFFNER, H., HÄNSEL, W., ROOS, C. F., BENHELM, J., CHEK-AL-KAR, D., CHWALLA, M., KÖRBER, T., RAPOL,

U. D., RIEBE, M., SCHMIDT, P. O., BECHER, C., GÜHNE, O., DÜR, W., AND BLATT, R. 2005. Scalable

multiparticle entanglement of trapped ions. Nature, 438, 643–646.

IWAMA, K., KAMBAYASHI, Y., AND YAMASHITA, S. 2002. Transformation rules for designing CNOT-

based quantum circuits. In Proceedings of the IEEE/ACM Design Automation Conference, 419–

424.

KERNTOPF, P. 2004. A new heuristic algorithm for reversible logic synthesis. In Proceedings of the
IEEE/ACM Design Automation Conference, 834–837.

LANDAUER, R. 1961. Irreversibility and heat generation in the computing process. IBM J. R&D,

5, 183–191.

LEE, S., LEE, S., KIM, T., LEE, J., BIAMONTE, J., AND PERKOWSKI, M. 2006. The cost of quantum gate

primitives. J. Multiple-Valued Logic Soft Comp., 12(5–6).

LOMONT, C. 2003. Quantum circuit identities. Arxiv quant-ph/0307111.

MASLOV, D. AND DUECK, G. W. 2004. Reversible cascades with minimal garbage. IEEE Trans. Com-
put. Aid. Des., 23, 11, 1497–1509.

MASLOV, D., DUECK, G., AND SCOTT, N. 2005a. Reversible logic synthesis benchmarks page.

http://www.cs.uvic.ca/∼dmaslov/.

MASLOV, D., DUECK, G. W., AND MILLER, D. M. 2005b. Toffoli network synthesis with templates.

IEEE Trans. Comput. Aid. Des. 24, 6, 807–817.

MASLOV, D., YOUNG, C., MILLER, D. M., AND DUECK, G. W. 2005. Quantum circuit simplification using

templates. In Proceedings of the Conference and Exhibition on Design, Automation, and Test in
Europe, 1208–1213.

MERKLE, R. C. 1993a. Reversible electronic logic using switches. Nanotechn., 4, 21–40.

MERKLE, R. C. 1993b. Two types of mechanical reversible logic. Nanotechn., 4, 114–131.

MILLER, D. M. 2002. Spectral and two-place decomposition techniques in reversible logic. In

Proceedings of the 45th IEEE Midwest Symposium on Circuits and Systems. 493–496.

MISHCHENKO, A. AND PERKOWSKI, M. 2002. Logic synthesis of reversible wave cascades. In Proceed-
ings of the International Workshop on Logic and Synthesis, pp. 197–202.

NEGREVERGNE, C., MAHESH, T. S., RYAN, C. A., DITTY, M., CYR-RACINE, F., POWER, W., BOULANT, N.,

HAVEL, T., CORY, D. G., LAFLAMME, R. 2006. Benchmarking quantum control methods on a 12-

qubit system. Physic. Rev. Lett..
NIELSEN, M. AND CHUANG, I. 2000 Quantum Computation and Quantum Information. Cambridge

University Press.

PATEL, K. N., MARKOV, I. L., AND HAYES, J. P. 2004 Efficient Synthesis of Linear Reversible Circuits.

In Proceedings of the International Workshop on Logic and Synthesis, 470–477.

PERES, A. 1985. Reversible logic and quantum computers. Phys. Rev. A, 32, 3266–3276.

SCHROM, G. 1980 Ultra-low-power CMOS technology. PhD thesis, Technische Universität Wien,

1998.

SHENDE, V. V., PRASAD, A. K., MARKOV, I. L. AND HAYES, J. P. 2003. Synthesis of reversible logic

circuits. IEEE Trans. Comput. Aid. Des. 226, 723–729.

SHENDE, V. V., PRASAD, A. K., PATEL, K. N., MARKOV, I. L., AND HAYES, J. P. 2006. Algorithms and

data structures for simplifying reversible circuits. ACM J. Emerg. Techn. Comp. Sys., 2(4).

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 4, Article 42, Pub. date: Sept. 2007.

42:28 • D. Maslov et al.

THORNTON, M. A., DRECHSLER, R., AND MILLER, D. M. 2001. Spectral Techniques in VLSI CAD.

Kluwer Academic Publishers.

TOFFOLI, T. 2001. Reversible computing. Tech memo MIT/LCS/TM-151, MIT Lab for Computer

Science.

TSAI, I. M. AND KUO, S. Y., 2001. Quantum boolean circuit construction and layout under locality

constraint. In IEEE Conference on Nanotechnology, 111–116.

VANDERSYPEN, L. M. K., STEFFEN, M., BREYTA, G., YANNONI, C. S., SHERWOOD, M. H., AND CHUANG, I. L.

2006. Experimental realization of Shor’s quantum factoring algorithm using Nuclear Magnetic

Resonance. Nature, 414: 883–887.

ZHIRNOV, V. V., KAVIN, R. K., HUTCHBY, J. A., AND BOURIANOFF, G. I. 2003. Limits to binary logic switch

scaling – a Gedanken model. Proc. IEEE, 91 11, 1934–1939.

Received April 2006; revised November 2006, March 2007; accepted May 2007

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 4, Article 42, Pub. date: Sept. 2007.

