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ABSTRACT 
 

Electromyography (EMG) signals can be used for clinical/biomedical applications, Evolvable Hardware Chip (EHW) 
development, and modern human computer interaction. EMG signals acquired from muscles require advanced 
methods for detection, decomposition, processing, and classification. The purpose of this paper is to illustrate the 
various methodologies and algorithms for EMG signal analysis to provide efficient and effective ways of 
understanding the signal and its nature. We further point up some of the hardware implementations using EMG 
focusing on applications related to prosthetic hand control, grasp recognition, and human computer interaction. A 
comparison study is also given to show performance of various EMG signal analysis methods. This paper provides 
researchers a good understanding of EMG signal and its analysis procedures. This knowledge will help them develop 
more powerful, flexible, and efficient applications. 

 
 

INTRODUCTION 
 

Biomedical signal means a collective electrical signal 
acquired from any organ that represents a physical 
variable of interest. This signal is normally a function of 
time and is describable in terms of its amplitude, 
frequency and phase. The EMG signal is a biomedical 
signal that measures electrical currents generated in 
muscles during its contraction representing 
neuromuscular activities. The nervous system always 
controls the muscle activity (contraction/relaxation). 
Hence, the EMG signal is a complicated signal, which is 
controlled by the nervous system and is dependent on 
the anatomical and physiological properties of muscles. 
EMG signal acquires noise while traveling through 
different tissues. Moreover, the EMG detector, 
particularly if it is at the surface of the skin, collects 
signals from different motor units at a time which may 
generate interaction of different signals. Detection of 
EMG signals with powerful and advance methodologies  

 
 
is becoming a very important requirement in biomedical 
engineering. The main reason for the interest in EMG 
signal analysis is in clinical diagnosis and biomedical 
applications. The field of management and rehabilitation 
of motor disability is identified as one of the important 
application areas. The shapes and firing rates of Motor 
Unit Action Potentials (MUAPs) in EMG signals provide 
an important source of information for the diagnosis of 
neuromuscular disorders. Once appropriate algorithms 
and methods for EMG signal analysis are readily 
available, the nature and characteristics of the signal can 
be properly understood and hardware implementations 
can be made for various EMG signal related applications. 
So far, research and extensive efforts have been made in 
the area, developing better algorithms, upgrading 
existing methodologies, improving detection techniques 
to reduce noise, and to acquire accurate EMG signals. 
Few hardware implementations have been done for 
prosthetic hand control, grasp recognition, and human-
machine interaction. It is quite important to carry out an 
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investigation to classify the actual problems of EMG 
signals analysis and justify the accepted measures. 
 
The technology of EMG recording is relatively new. 
There are still limitations in detection and 
characterization of existing nonlinearities in the surface 
electromyography (sEMG, a special technique for 
studying muscle signals) signal, estimation of the phase, 
acquiring exact information due to derivation from 
normality (1, 2) Traditional system reconstruction 
algorithms have various limitations and considerable 
computational complexity and many show high variance 
(1). Recent advances in technologies of signal processing 
and mathematical models have made it practical to 
develop advanced EMG detection and analysis 
techniques. Various mathematical techniques and 
Artificial Intelligence (AI) have received extensive 
attraction. Mathematical models include wavelet 
transform, time-frequency approaches, Fourier 
transform, Wigner-Ville Distribution (WVD), statistical 
measures, and higher-order statistics. AI approaches 
towards signal recognition include Artificial Neural 
Networks (ANN), dynamic recurrent neural networks 
(DRNN), and fuzzy logic system. Genetic Algorithm 
(GA) has also been applied in evolvable hardware chip 
for the mapping of EMG inputs to desired hand actions.  
 
Wavelet transform is well suited to non-stationary 
signals like EMG. Time-frequency approach using WVD 
in hardware could allow for a real-time instrument that 
can be used for specific motor unit training in 
biofeedback situations. Higher-order statistical (HOS) 
methods may be used for analyzing the EMG signal due 
to the unique properties of HOS applied to random time 
series. The bispectrum or third-order spectrum has the 
advantage of suppressing Gaussian noise. 

 
This paper firstly gives a brief explanation about EMG 
signal and a short historical background of EMG signal 
analysis. This is followed by highlighting the up-to-date 
detection, decomposition, processing, and classification 
methods of EMG signal along with a comparison study. 
Finally, some hardware implementations and 
applications of EMG have been discussed. 

MATERIALS AND METHODS 
 
EMG: anatomical and physiological background 
 
EMG stands for electromyography. It is the study of 
muscle electrical signals. EMG is sometimes referred to 
as myoelectric activity. Muscle tissue conducts electrical 
potentials similar to the way nerves do and the name 
given to these electrical signals is the muscle action 
potential. Surface EMG is a method of recording the 
information present in these muscle action potentials. 
When detecting and recording the EMG signal, there are 
two main issues of concern that influence the fidelity of 
the signal. The first is the signal-to-noise ratio. That is, 
the ratio of the energy in the EMG signals to the energy 
in the noise signal. In general, noise is defined as 
electrical signals that are not part of the desired EMG 
signal. The other issue is the distortion of the signal, 
meaning that the relative contribution of any frequency 
component in the EMG signal should not be altered. Two 
types of electrodes have been used to acquire muscle 
signal: invasive electrode and non-invasive electrode. 
When EMG is acquired from electrodes mounted directly 
on the skin, the signal is a composite of all the muscle 
fiber action potentials occurring in the muscles 
underlying the skin. These action potentials occur at 
random intervals. So at any one moment, the EMG signal 
may be either positive or negative voltage. Individual 
muscle fiber action potentials are sometimes acquired 
using wire or needle electrodes placed directly in the 
muscle. The combination of the muscle fiber action 
potentials from all the muscle fibers of a single motor 
unit is the motor unit action potential (MUAP) which can 
be detected by a skin surface electrode (non-invasive) 
located near this field, or by a needle electrode (invasive) 
inserted in the muscle (3). Equation 1 shows a simple 
model of the EMG signal: 
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where x(n), modeled EMG signal, e(n), point processed, 
represents the firing impulse, h(r), represents the MUAP, 
w(n), zero mean addictive white Gaussian noise and N is 
the number of motor unit firings. 

 
The signal is picked up at the electrode and amplified. 
Typically, a differential amplifier is used as a first stage 
amplifier. Additional amplification stages may follow. 
Before being displayed or stored, the signal can be 
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processed to eliminate low-frequency or high-frequency 
noise, or other possible artifacts. Frequently, the user is 
interested in the amplitude of the signal. Consequently, 
the signal is frequently rectified and averaged in some 
format to indicate EMG amplitude. 
 
The nervous system is both the controlling and 
communications system of the body. This system 
consists of a large number of excitable connected cells 
called neurons that communicate with different parts of 
the body by means of electrical signals, which are rapid 
and specific. The nervous system consists of three main 
parts: the brain, the spinal cord and the peripheral 
nerves. The neurons are the basic structural unit of the 
nervous system and vary considerably in size and shape. 
Neurons are highly specialized cells that conduct 
messages in the form of nerve impulses from one part of 
the body to another. 
 
A muscle is composed of bundles of specialized cells 
capable of contraction and relaxation. The primary 
function of these specialized cells is to generate forces, 
movements and the ability to communicate such as 
speech or writing or other modes of expression. Muscle 
tissue has extensibility and elasticity. It has the ability to 
receive and respond to stimuli and can be shortened or 
contracted. Muscle tissue has four key functions: 
producing motion, moving substance within the body, 
providing stabilization, and generating heat. Three types 
of muscle tissue can be identified on the basis of 
structure, contractile properties, and control 
mechanisms: (i) skeletal muscle, (ii) smooth muscle, and 
(iii) cardiac muscle. The EMG is applied to the study of 
skeletal muscle. The skeletal muscle tissue is attached to 
the bone and its contraction is responsible for supporting 
and moving the skeleton. The contraction of skeletal 
muscle is initiated by impulses in the neurons to the 
muscle and is usually under voluntary control. Skeletal 
muscle fibers are well-supplied with neurons for its 
contraction. This particular type of neuron is called a 
“motor neuron” and it approaches close to muscle tissue, 
but is not actually connected to it. One motor neuron 
usually supplies stimulation to many muscle fibers. 
 
The human body as a whole is electrically neutral; it has 
the same number of positive and negative charges. But in 
the resting state, the nerve cell membrane is polarized 
due to differences in the concentrations and ionic 

composition across the plasma membrane. A potential 
difference exists between the intra-cellular and extra-
cellular fluids of the cell. In response to a stimulus from 
the neuron, a muscle fiber depolarizes as the signal 
propagates along its surface and the fiber twitches. This 
depolarization, accompanied by a movement of ions, 
generates an electric field near each muscle fiber. An 
EMG signal is the train of Motor Unit Action Potential 
(MUAP) showing the muscle response to neural 
stimulation. The EMG signal appears random in nature 
and is generally modeled as a filtered impulse process 
where the MUAP is the filter and the impulse process 
stands for the neuron pulses, often modeled as a Poisson 
process (3). Figure 1 shows the process of acquiring EMG 
signal and the decomposition to achieve the MUAPs. 

 

 
Fig. 1: EMG signal and decomposition of MUAPs. 

 
EMG: the history 
 
The development of EMG started with Francesco Redi’s 
documentation in 1666. The document informs that 
highly specialized muscle of the electric ray fish 
generates electricity (3). By 1773, Walsh had been able to 
demonstrate that Eel fish’s muscle tissue could generate 
a spark of electricity. In 1792, a publication entitled “De 
Viribus Electricitatis in Motu Musculari Commentarius” 
appeared, written by A. Galvani, where the author 
showed that electricity could initiate muscle contractions 
(4). Six decades later, in 1849, Dubios-Raymond 
discovered that it was also possible to record electrical 
activity during a voluntary muscle contraction. The first 
recording of this activity was made by Marey in 1890, 
who also introduced the term electromyography (5). In 
1922, Gasser and Erlanger used an oscilloscope to show 
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the electrical signals from muscles. Because of the 
stochastic nature of the myoelectric signal, only rough 
information could be obtained from its observation. The 
capability of detecting electromyographic signals 
improved steadily from the 1930s through the 1950s and 
researchers began to use improved electrodes more 
widely for the study of muscles (1). Clinical use of 
surface EMG for the treatment of more specific disorders 
began in the 1960s. Hardyck and his researchers were the 
first (1966) practitioners to use sEMG (5). In the early 
1980s, Cram and Steger introduced a clinical method for 
scanning a variety of muscles using an EMG sensing 
device (5). 
 
It is not until the middle of the 1980s that integration 
techniques in electrodes had sufficiently advanced to 
allow batch production of the required small and 
lightweight instrumentation and amplifiers. At present a 
number of suitable amplifiers are commercially 
available. In the early 1980s, cables became available 
which produce artifacts in the desired microvolt range. 
During the past 15 years, research has resulted in a better 
understanding of the properties of surface EMG 
recording. In recent years, surface electromyography is 
increasingly used for recording from superficial muscles 
in clinical protocols, where intramuscular electrodes are 
used for deep muscle only (2, 4). 
 
There are many applications for the use of EMG. EMG is 
used clinically for the diagnosis of neurological and 
neuromuscular problems. It is used diagnostically by gait 
laboratories and by clinicians trained in the use of 
biofeedback or ergonomic assessment. EMG is also used 
in many types of research laboratories, including those 
involved in biomechanics, motor control, neuromuscular 
physiology, movement disorders, postural control, and 
physical therapy. 
 
Electrical noise and factors affecting EMG signal 
 
The amplitude range of EMG signal is 0-10 mV (+5 to -5) 
prior to amplification. EMG signals acquire noise while 
traveling through different tissue. It is important to 
understand the characteristics of the electrical noise. 
Electrical noise, which will affect EMG signals, can be 
categorized into the following types: 
1. Inherent noise in electronics equipment: All electronics 

equipment generate noise. This noise cannot be 

eliminated; using high quality electronic components 
can only reduce it.  

2. Ambient noise: Electromagnetic radiation is the source 
of this kind of noise. The surfaces of our bodies are 
constantly inundated with electric-magnetic 
radiation and it is virtually impossible to avoid 
exposure to it on the surface of earth. The ambient 
noise may have amplitude that is one to three orders 
of magnitude greater than the EMG signal. 

3. Motion artifact:  When motion artifact is introduced to 
the system, the information is skewed. Motion 
artifact causes irregularities in the data. There are 
two main sources for motion artifact: 1) electrode 
interface and 2) electrode cable. Motion artifact can 
be reduced by proper design of the electronics 
circuitry and set-up.  

4. Inherent instability of signal: The amplitude of EMG is 
random in nature. EMG signal is affected by the 
firing rate of the motor units, which, in most 
conditions, fire in the frequency region of 0 to 20 Hz. 
This kind of noise is considered as unwanted and the 
removal of the noise is important. 
 

The factors that mainly affect the EMG signal can also be 
classified. This kind of classification is set so that EMG 
signal analysis algorithms can be optimized and 
equipments can be designed in a consistent manner. 
Factors affecting EMG signal falls into three basic 
categories: 
 
1. Causative Factors: This is the direct affect on signals. 

Causative factors can be divided into two classes: 
i. Extrinsic: This is due to electrode structure and 

placement. Factors like area of the detection 
surface, shape of electrode, distance between 
electrode detection surface, location of electrode 
with respect to the motor points in the muscle, 
location of the muscle electrode on the muscle 
surface with respect to the lateral edge of the 
muscle, orientation of the detection surfaces with 
respect to the muscle fibers mainly have an effect 
on EMG signal. 

ii. Intrinsic: Physiological, anatomical, biochemical 
factors take place due to number of active motor 
units, fiber type composition, blood flow, fiber 
diameter, depth and location of active fibers and 
amount of tissue between surface of the muscle 
and the electrode. 



   
 

 
Raez et al. - Techniques of EMG signal analysis: Detection, processing, classification and applications 
www.biologicalprocedures.com 

15

2. Intermediate Factors: Intermediate factors are physical 
and physiological phenomena influenced by one or 
more causative factors. Reasons behind this can be 
the band-pass filtering aspects of the electrode alone 
with its detection volume, superposition of action 
potentials in the detected EMG signal, conduction 
velocity of the action potential that propagate along 
the muscle fiber membrane. Even crosstalk from 
nearby muscle can cause Intermediate Factors. 

3. Deterministic Factors: These are influenced by 
Intermediate Factors. The number of active motor 
units, motor firing rate, and mechanical interaction 
between muscle fibers have a direct bearing on the 
information in the EMG signal and the recorded 
force. Amplitude, duration, and shape of the motor 
unit action potential can also be responsible.  

 
The maximization of the quality of EMG signal can be 
done by the following ways: 

 
1. The signal-to-noise ratio should contain the highest 

amount of information from EMG signal as possible 
and minimum amount of noise contamination. 

2. The distortion of EMG signal must be as minimal as 
possible with no unnecessary filtering and distortion 
of signal peaks and notch filters are not 
recommended. 

 
During the EMG signal processing, only positive values 
are analyzed. When half-wave rectification is performed, 
all negative data is discarded and positive data is kept. 
The absolute value of each data point is used during full-
wave rectification. Usually for rectification, full-wave 
rectification is preferred. 

 
EMG signal detection 
 
Precise detection of discrete events in the sEMG (like the 
phase change in the activity pattern associated with the 
initiation of the rapid motor response) is an important 
issue in the analysis of the motor system. Several 
methods have been proposed for detecting the on and off 
timing of the muscle. 
 
The most common method for resolving motor-related 
events from EMG signals consists of visual inspection by 
trained observers. The “single-threshold method,” which 
compares the EMG signal with a fixed threshold, is the 
most intuitive and common computer-based method of 

time-locating the onset of muscle contraction activity (6). 
This technique is based on the comparison of the 
rectified raw signals and an amplitude threshold whose 
value depends on the mean power of the background 
noise (7). The method can be useful in overcoming some 
of the problems related to visual inspection. However, 
this kind of approach is generally not satisfactory, since 
measured results depend strongly on the choice of 
threshold. This kind of method often rely on criteria that 
are too heuristic and does not allow the user to set 
independently the detection and false alarm probabilities 
(8). In “single-threshold method,” the relationship 
between the probability of detection Pdk and the 
probability Pγ that a noise sample is above the threshold 
γ is given by equation 2. 
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In 1984, Winter (9) observed that this approach is 
generally unsatisfactory, since it strongly depends on the 
choice of the threshold. To overcome the “single-
threshold” problems, Bornato et al. (8) introduced 
“double-threshold detection” method in 1998. Double-
threshold detectors are superior to single-threshold 
because they yield higher detection probability. Double-
threshold detectors allow the user to adopt the link 
between false alarm and detection probability with a 
higher degree of freedom than single-threshold. The user 
can tune the detector according to different optimal 
criteria, thus, adapting its performances to the 
characteristics of each specific signal and application (8). 
 
The sEMG signal recorded during voluntary dynamic 
contractions may be considered as a zero-mean Gaussian 
process s(t)∈N(0,σs) modulated by the muscle activity 
and corrupted by an independent zero-mean Gaussian 
additive noise n(t)∈N(0,σn). If the probability of detection 
is Pd then the double-threshold method is given by 
equation 3. 
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The behavior of the double-threshold detector is fixed by 
the parameters: the threshold ro, and the length of the 
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observation window, m. Their values are selected to 
minimize the value of the false-alarm probability and 
maximize Pd for each specific signal-to-noise ratio (SNR) 
(8). In 2004, Lanyi and Adler (10) found that the double-
threshold method proposed by Bornato is complex and 
computationally expensive, requiring a whitening of the 
signal. It is also not very sensitive. Lanyi and Andy 
proposed a new algorithm based on the double-
threshold method that is more sensitive, stable, and 
efficient with decreased computation cost. For specific 
applications, besides the accuracy in the detection, the 
speed of the algorithm can be an important 
consideration. Algorithms with high computation time 
are unsuitable for online detection. One specific 
drawback to the method of Bornato et al. (8) is the 

detection probability to be maximum when Pfa is fixed, 
the second threshold has to be chosen as equal to “1.” 
The second threshold is fixed during detection, which 
implies that the double-threshold detector actually 
becomes single-threshold detector. This method does not 
require the signal-whitening step, which is needed 
previously. The whitening process takes a lot of 
computation time. Moreover, the whitening process 
reduces probability of the signal. This feature will cause 
the detection to miss a part of activation interval. The 
methods proposed by Lanyi and Adler (10) provides a 
fast and more reliable muscle on-off detection. Table 1 
shows the comparison of the different detection methods 
at a glance based on research works by Merlo and Farina 
(11) in 2003. 

 
Table 1: Comparison of 3 main EMG detection methods. 

 SNR(db)  
 2 4 6 8  
Method Bias Std Bias Std Bias Std Bias Std Remark 
Improved method (11) -39 26 -22 25 -12 22 -3 17 Best 
Double threshold (8) 41 68 21 69 12 47 0 53 Good 
Single threshold (11) 55 154 67 147 62 135 72 139 Worse 

 
EMG signal decomposition 
 
EMG signals are the superposition of activities of 
multiple motor units. It is necessary to decompose the 
EMG signal to reveal the mechanisms pertaining to 
muscle and nerve control. Various techniques have been 
devised with regards to EMG decomposition. 
 
Decomposition of EMG signal has been done by wavelet 
spectrum matching and principle component analysis of 
wavelet coefficients. According to Jianjung et al. (12), 
more than one single motor unit (SMU) potential will be 
registered at same time overlapping with each other, 
especially during a strong muscle contraction. In 1997, 
they developed a technique using wavelet transform to 
classify SMU potentials and to decompose EMG signals 
into their constituent SMU potentials. The distinction of 
this technique is that it measures waveform similarity of 
SMU potentials from wavelet domain, which is very 
advantageous. This technique was based on 
spectrummatching in wavelet domain. Spectrum 
matching technique is sometimes considered to be more 
effective than waveform matching techniques, especially  

 
when the interference is induced by low frequency 
baseline drift or by high frequency noise. The technique 
developed for multi-unit EMG signal decomposition 
consists of four separate procedures: signal de-noising 
procedure, spike detection procedure, spike classification 
procedure, and spike separation procedure. According to 
Daniel et al. (13), only wavelet coefficients of lower 
frequency bands are more important in the 
differentiation of action potential (AP) characterization 
than higher bands. This concept is a subjective one which 
was designed empirically. Experimental results of Rie 
Yamada et al. (14) in 2003 showed that high frequency 
information, which were not considered, are also 
important in the classification of MUAP. To overcome 
the subjective criterion for feature selection, they 
proposed another method using principle components 
analysis (PAC) for wavelet coefficients. The 
decomposition algorithm consists of four processing 
stages: segmentation, wavelet transform, PCA, and 
clustering. The advantage of this method is that it does 
not require manual selection of coefficients, and takes all 
frequency information in account. 
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EMG signal decomposition using non-linear least mean 
square (LMS) optimization of higher-order cumulants 
has been proposed by Eric and Damjan (15) in 2002. 
Their decomposition is based on the third-order 
cumulants whose values enter as coefficients of 
nonlinear system of equations. The system is solved by 
nonlinear LMS optimization. For this technique a 
multiple-input multiple-output model was used as it can 
describe several MUAP impositions of EMG signal.  
 
EMG signal processing  
 
Raw EMG offers us valuable information in a 
particularly useless form. This information is useful only 
if it can be quantified. Various signal-processing 
methods are applied on raw EMG to achieve the accurate 
and actual EMG signal. This section gives a review on 
EMG signal processing using the various methods. 
 
Wavelet analysis 
 
Both the time and frequency domain approaches have 
been attempted in the past. The wavelet transform (WT) 
is an efficient mathematical tool for local analysis of non-
stationary and fast transient signals. One of the main 
properties of WT is that it can be implemented by means 
of a discrete time filter bank. The Fourier transforms of 
the wavelets are referred as WT filters. The WT 
represents a very suitable method for the classification of 
EMG signals. 
 
Guglielminotti and Merletti (16) theorized that if the 
wavelet analysis is chosen so as to match the shape of the 
MUAP, the resulting WT yields the best possible energy 
localization in the time-scale plane (16). In 1997, Laterza 
and Olmo (17) found out that WT is an alternative to 
other time frequency representations with the advantage 
of being linear, yielding a multiresolution representation 
and not being affected by crossterms; this is particularly 
relevant when dealing with multicomponent signals. 
Under certain conditions, the EMG signal can be 
considered as the sum of scaled delayed versions of a 
single prototype. Based on Guglielminotti’s theory, 
Laterza and Olmo (17) have used wavelet analysis to 
match the shape of the MUAP. For a unipolar recorded 
signal and under certain hypotheses presented by Gabor 
in 1946 (18), the typical MUAP shape can be 
approximated as the second-order derivative of a 

Gaussian distribution. The result suggested using the 
well-known Mexican hat wavelet, which is indeed the 
second-order derivative of a Gaussian distribution. The 
comparison between Mexican hat wavelet and typical 
unipolar MUAP shape is shown in Figure 2. Based on the 
research, Laterza and Olmo concluded that the WT is 
particularly useful for MUAP detection in the presence of 
additive white noise. In this situation, the noise 
contributions are spread over the entire time scale plane, 
independently of the wavelet used. The disadvantage of 
this proposal (17) was that the Mexican hat wavelet is not 
perfectly matched to the MUAP shape. Therefore, the 
obtained results are likely to be subject to further 
improvement if a perfect matching is performed. In 1998, 
Ismail and Asfour (19) came with a theory saying that, 
the most common method used to determine the 
frequency spectrum of EMG are the fast and short term 
Fourier transforms (FFT and SFT). But they also 
concluded that the major drawback of these 
transformation methods is that they assume that the 
signal is stationary. However, EMG signals are non-
stationary. 
 

 
Fig. 2: Comparison between Mexican hat wavelet and typical unipolar 
MUAP shape. 

 
In 1999, Pattichis and Pattichis (20) discovered that the 
WT can also be used to analyze signals at different 
resolution levels. According to the theory, the process of 
analyzing signals at different resolution level is known as 
multiresolution analysis. They analyzed the relationship 
between wavelet coefficients and the time-frequency 
plane. The WT algorithm consists of the decomposition 
phase and reconstruction phases. Pattichis and Pattichis 
briefly outlines how coefficients from each stage of the 
WT can be used to construct functional approximation to 
the original signal. Given signal samples x0, x1, x2….., the 
corresponding continuous time signal is given by 
equation 4: 
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where ( )kt −φ  is called a scaling function. This assumes 
that the signal samples are weighted averages of the 
continuous signal. 
 
Again in 2003, Kumar et al. (21) came with a similar kind 
of proposal saying that the WT decomposes signal into 
several multiresolution components according to a basis 
function called “wavelet function” (WF). The WF is both 
dilated and translated in the time undertaking a two-
dimensional cross correlation with the time domain 
sEMG signal. This method can be seen as a mathematical 
microscope that provides a tool to detect and 
characterize a short time component within a 
nonstationary signal. It is the technique that provides 
information related to the time-frequency variation of the 
signal. Kumar et al. also concluded that the Short Fourier 
Transform (SFT) with the relatively short time windows 
can attempt to track spectral variation with time, but 
does not adopt an optimal time or frequency resolution 
for the nonstationary signal. In (21), sEMG has been 
decomposed using WT with various WF and the output 
of the power transform domain is calculated and used as 
the deciding parameter in choosing the WF that provides 
the best contrast between sEMG cases. As a result of their 
research activity, it can be said that using sEMG and 
wavelet transforms, it is possible to determine the muscle 
fatigue (muscle failure) status simply by determining the 
Sym4 or Sym5 wavelet decomposition of the signal at 
level 8 and 9 (out of 10 levels). Figure 3 shows the 
experimental procedure. 
 

 
Fig. 3: Block diagram of the experiment procedure. 

 
Time-frequency approach  
 
Attempts to gain quantitative information from EMG 
recordings have been extensively investigated when 
signal is represented as function of time (time domain). 
Cohen class transformation, Wigner-Ville distribution 
(WVD), and Choi-Williams distribution are some of the 
time-frequency approaches used for EMG signal 
processing. 
 

Piper (22) showed at the beginning of this century (1912) 
that during a sustained muscle contraction the spectral 
components of the surface myoelectric signal are 
compressed towards the lower frequencies. The 
mechanisms that regulate this phenomenon have only 
been clarified during the last two decades. When sEMG 
is recorded under dynamic contractions, the assumption 
of stationary does not hold because frequency contents of 
the signal continuously changes over time. 
Nonstationaries of the surface myoelectric signal can be 
classified as slow or fast. Slow nonstationaries are mostly 
due to the accumulation of metabolites that causes the 
electrical manifestations of muscle fatigue. Fast 
nonstationaries are mainly related to the biomechanics of 
the task. Variations in muscle force cause a modification 
of the frequency content of the signal. 
 
Cohen class transformation proposed by Cohen during 
1995 (23) has received considerable attention, particularly 
in biomedical signal processing. The class time-frequency 
representation is particularly suitable to analyze surface 
myoelectric signals recorded during dynamic 
contractions, which can be modeled as realizations of 
nonstationary stochastic process. Previous works by 
Martin and Flandrin (24), Amin (25) and Syeed and Jones 
(26) demonstrated that any Cohen class time-frequency 
spectrum S(t,f) may be written as equation 5: 
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where E{} is expectation operator, x(t) is realization of the 
stochastic process under consideration, x*(t) is the 
complex conjugation, g(θ,τ) is the kernel of the 
transformation. 
 
Cohen in 1995 also inferred that when one chooses g(θ, 
τ)=1, the resulting distribution is referred as the Wigner-
Ville distribution (23). WVD is optimal to analyze signals 
constituted by a single component. However, it is not 
well-suited for application to multicomponent signals, 
since the bilinearity of the transform induces the 
presence of interference terms. Syeed and Jones (26) also 
demonstrated that the formulation presented in equation 
5 might also be utilized when a single realization of the 
analyzed stochastic process is available, as is the case 
when processing surface myoelectric signals recorded 
dynamic contractions. 
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The WVD is a time-frequency that can display the 
frequency as a function of time, thus utilizing all 
available information contained in the EMG signal. 
Although the EMG signal can often be considered as 
quasi-stationary there is still important information that 
is transited and may only be distinguished by WVD. 
Ricamato et al. (27) in 1992 discovered that WVD could 
be used to display the frequency ranges of the motor 
unit. It is possible to show the recruitment patterns as the 
muscle performs difficult tasks. The Wigner-Ville 
distribution is given in equation 6:  
 

( ) τττω ωτ detxtxtW j
x

−∞

∞−






 −∫ 






 +=

22
, *  (6) 

 
where x(t) and x’(t) are the signal and its complex 
conjugate respectively. 
 
Implementing the WVD with digital computer requires a 
discrete form. This allows the use of fast Fourier 
transform (FFT), which produces a discrete-time, 
discrete-frequency representation. The common type of 
time frequency distribution is the Short-time Fourier 
Transform (STFT). According to Davies and Reisman (28) 
(1994), the major difficulty with the STFT distribution is 
that it does not satisfy four important properties that are 
desired for time-frequency distributions. The two 
properties are the time and frequency marginals and the 
other two are time and frequency support. They also 
inform that, the joint density spectrum produced by 
WVD is very noisy but displays very good localization 
properties and it is generally concentrated around the 
instantaneous frequency of the signal. The Choi-Williams 
method proposed in 1993 is an example of a reduced 
interference distribution (29). Davies and Reisman (28) 
discovered that, although the Choi-Williams distribution 
does not satisfy all the desired properties for a time 
frequency distribution but it does satisfy an important 
one, reducing interference. The STFT does not satisfy the 
marginal properties. This factor implies that when a time 
slice of the STFT distribution is taken, it does not equal 
the power density spectrum at that point in time. The 
same is true for a frequency slice of the distribution. The 
time support property is not satisfied because the 
distribution is not necessarily zero before the signal 
begins or after it ends. Time frequency techniques 
require a very clean signal. There are many other time-

frequency distributions. Davies and Reisman (28) chose 
the STFT and Wigner-Ville distributions because they 
have been used widely in the past. According to their 
research, The STFT appears to most clearly show the 
compression of the spectrum as the muscle fatigue. The 
WVD has cross-terms and therefore is not a precise 
representation of the changing of the frequency 
components with fatigue. When walls appear in the 
Choi-William distribution, there is a spike in the original 
signal. It will decide if the walls contain any significant 
information for the study of muscle fatigue. 
 
Autoregressive model 
 
The autoregressive (AR) time series model has been used 
to study EMG signal. A surface electrode will pick up 
EMG activity from all the active muscles in its vicinity, 
while the intramuscular EMG is highly sensitive, with 
only minimal crosstalk from adjacent muscles. Thus, to 
combine convenience and accuracy there is a great need 
to develop a technique for estimating intramuscular 
EMG and their spectral properties from surface 
measurement. Researchers have represented sEMG 
signal as an AR model with the delayed intramuscular 
EMG as the input. 
 
In 1975, Graupe and Cline (30) first introduced the 
autoregressive moving average (ARMA) model to 
represent EMG signals. The empirical result of Graupe 
and Cline shows that the EMG could be considered 
stationary over sufficient short time intervals. Sherif (31) 
replaced the model in 1980 because the electrical 
behavior of the medical deltoid was nonstationary. Sherif 
in his dissertation has emphasized the non-stationary 
nature of the EMG and used an AR, integrated moving 
average (ARIMA) representation. He characterized the 
non-stationary nature of the EMG during different phase 
of muscle activity. Doerschuk et al. in 1983 (32) have 
approached a problem similar to Graupe and Cline, 
namely control of prosthetic devices from EMG signals, 
by AR models of multiple EMG signals. In 1986, Zhou et 
al. (33) represented the surface EMG as an AR model 
with the delayed intramuscular EMG signal as the input. 
The model, referred to as “tissue filter,” relate the 
intramuscular EMG signal waveform to the surface 
EMG. Assuming that prototypes of intramuscular and 
surface EMG signals are available, the parameters of the 
time series model that transforms the intramuscular 
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signals to the surface signals are identified. The 
identified model is then used in estimating the 
intramuscular signal from the surface signal. This model 
is illustrated using real EMG waveforms. Hefftner et al. 
in 1988 (34) evaluated the previous models and selected 
an AR model for EMG signature discrimination because 
of its computational speed. Bernatos et al. in 1986 (35) 
employed a static nonlinear element with time-varying 
autoregressive moving average (ARMA) model and 
Moser and Graupe in 1989 (36) proposed a nonstationary 
identifier of time-varying AR parameters. In 1992, Tohru 
(37) considered that the more precise model such as 
ARMA or ARIMA was not necessary for dynamic muscle 
movements. The computation cost of ARIMA model is 
high, and the determination of the model order is 
complex and sometimes difficult. AR model was chosen 
by Tohru (37) mainly because of its computational cost 
which is a problem in the simulation. Their investigation 
was based on AR model parameters computed by quasi-
stationary processing.  

 
Artificial intelligence 
 
Some Artificial Intelligence techniques mainly based on 
Neural Networks have been proposed for processing 
EMG signal. This kind of technique is very useful for 
real-time application like EMG signal recording and 
analysis. 
 
A real-time application of artificial neural network that 
can accurately recognize the myoelectric signal (MES) is 
proposed by Del and Park (38) in 1994. According to 
their research, MES features are first extracted through 
Fourier analysis and clustered using fuzzy c-means 
algorithm. Fuzzy c-means (FCM) is a method of 
clustering which allows data to belong to two or more 
clusters. The neural network output represents a degree 
of desired muscle stimulation over a synergic, but 
enervated muscle. Real time operation is achieved by 
taking advantage of hardware multipliers present in 
Digital signal processing (DSP) processors to perform 
Fast Fourier Transform for feature extraction and 
neurode input integration for featured classification. 
Adaptive interfaces are a natural and important class 
application for artificial neural network (ANN). Error-
back propagation method is used as a learning procedure 
for multilayred, feedforward neural network. By means 
of this procedure, the network can learn to map a set of 

inputs to a set of outputs. The network topology chosen 
was the feedforward variety with one input layer 
containing 64 input neurodes, one hidden layer with two 
neurodes and one output neurode (38). The model using 
ANN is not only an advance on MES signal recognition 
in real-time but also, it curtails subjects training to a 
minimum. Neural network architectures provide a two-
fold solution: a fast way of system customization to the 
patient and a better patient adoption to the system, 
improving the low rate of acceptance of the devices. The 
method proposed by Del and Park can solve problems 
(acceptable cost and performance criteria) that 
conventional statistical methods cannot. 
 
Another ANN based approach is made in 1996 by 
Cheron et al. (39) with the objectives of developing an 
alternative approach based on artificial dynamic 
recurrent neural networks (DRNN) to identify the 
relationship between the muscle EMG activity and the 
arm kinematics. His objective was to prove that this 
DRNN identification is bio-mechanically plausible. The 
neural network consists of fully interconnected neuron-
like units with two types of adaptive parameters: 
classical weights between the units and the time 
constants associated with each neuron. Specifically, this 
network identifies some of the complex relationships 
between the muscle activity EMG and the upper-limb 
kinematics during complex movements. According to the 
method proposed by Pearlmutter in 1989, the artificial 
neural network is a fully connected 20-neuron network. 
The method is used by Cheron et al. (39), which is 
governed by equation 7: 
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where yi is the state activation level of unit I, F(α) is the 

squashing function 1)1()( −−+= αα eF and xi is given 
by equation 8.  
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The main feature of the proposed DRNN is that its 
simulated movements are the result of the interaction 
between raw EMG signals without any theoretical 
assumptions concerning the type of control. The 



   
 

 
Raez et al. - Techniques of EMG signal analysis: Detection, processing, classification and applications 
www.biologicalprocedures.com 

21

suitability of the DRNN is mainly due to the adaptive 
time constants associated to each neuron-like unit. 
 
Fuzzy logic systems are advantageous in biomedical 
signal processing and classification. Biomedical signals 
such as EMG signals are not always strictly repeatable 
and may sometimes even be contradictory. According to 
Chan et al. (40), one of the most useful properties of 
fuzzy logic systems is that contradictions in the data can 
be tolerated. Furthermore, using trainable fuzzy systems, 
it is possible to discover patterns in data which are not 
easily detected by other methods, as can also be done 
with neural network. Finally, the experience of medical 
experts can be incorporated. It is possible to integrate this 
incomplete but valuable knowledge into the fuzzy logic 
system, due to the system’s reasoning style, which is 
similar to that of a human being. This is a significant 
advantage over the artificial neural network (ANN). 
Fuzzy logic systems emulate human decision-making 
more closely then the ANN. The kernel of a fuzzy system 
is the fuzzy inference engine. The knowledge of an 
expert or well-classified examples are expressed as or 
transferred to a set of “fuzzy production rules” in the 
form of IF-THEN, leading to algorithms describing what 
action or selection should be taken based on the 
currently observed information (40). 
 
The blind source separation (BSS) method proposed in 
2001 by Belouchrani et al. (41) is a neural network based 
method that separates a linear mixture of stationary 
independent sources received by different sensors by the 
use of higher-order statistical moments in the learning 
algorithm. In 2004, Farina et al. (42) discovered that the 
EMG signals generated by different muscles may overlap 
in the time and frequency domain, thus classic linear 
filtering approaches cannot be applied for the purpose of 
source separation. She informed that previous studies 
aimed at applying BSS approaches to sEMG signals did 
not provide any validation of the performance and did 
not discuss the assumptions and the limitations of the 
BSS method to sEMG signal analysis. To overcome the 
problems, an approach based on spatial time-frequency 
distributions were applied to separate both simulated 
and experimental nonstationary sEMG signals (42). Table 
2 shows the diagnosis performance of Time domain, 
Frequency domain and wavelet coefficients using 
Artificial Neural Networks. 

Table 2: Diagnosis performance of time domain, 
frequency domain and wavelet coefficients using 
Artificial Neural Networks. 
Feature Set Average % 
Time domain 78.3 
Frequency domain 62.5 
Wavelet DAU4 66.2 
Wavelet DAU20 59.6 
Wavelet CH 63.3 
Wavelet BL 65.8 
 
Higher-order statistics 
 
Higher-order statistics (HOS) is a technique for 
analyzing and interpreting the characteristics and nature 
of a random process. The subject of HOS is based on the 
theory of expectation (probability theory). Due to the 
limitations of: 
 
i. The detection and characterization existing 

nonlinearities in the sEMG signal; 
ii. Estimate the phase; and 
iii. Exact information due to derivation from normality. 

HOS have been introduced in the 1960s and applied 
in the 1970s. 

 
A statistical method to estimate the amplitude and the 
number of newly MUAPs has been proposed by 
Kanosue et al. in 1974 (43). The method uses the second-
and fourth-order moments with parametric model of the 
elementary MUAP waveforms. Low-order models are 
obtained using second-order statistics (SOS) and provide 
parsimonious description of real data. Recently, there has 
been an increasing interest towards employing higher-
order statistics (HOS). Higher-order Statistics (HOS) is a 
technique for analyzing and interpreting the 
characteristics and nature of a random process. The 
subject of HOS is based on the theory of expectation 
(probability theory) (1). In 1991, Giannakis and Tsatsanis 
(44) used HOS for EMG signal analysis. According to 
Giannakis and Tsatsanis, SOS is phase-blind, but has 
low-variance estimators and when limited to linear-
Gaussian processes, they yield computationally and 
statistically efficient models. In 1995, Yana et al. (45) has 
generalized the method to estimate MUAP waveforms 
and their occurring frequency without any assumption 
for the MUAP waveforms. The method was utilized as a 
noninvasive method to analyze the forth production 
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mechanism of the muscle. According to his theory, H(w) 
and λ respectively donate a single MUAP waveform and 
its occurring frequency is given by equation 9 and 10. 
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According to equation 11, ( ) ( ) ( )ωϕωωϕ .arg H=  is 
estimated from the bispectrum using the phase 
estimation algorithm. MUAP waveforms can be found 
using equation (9) through (11). Their research shows 
that MUAP amplitude increases when load weight is 
increased. 
 
From 1987 to 1993, HOS based signal analysis techniques 
have been developed by researchers like Nikias, Mendal, 
Raghuveer, and Petropulu for deterministic and non-
deterministic phase signals, testing of Gaussianity and 
linearity, coherence and coupling of the signal, and more. 
During the 1990s, Nikias et al. (2, 46, 47) had discovered 
that the main advantage of HOS over SOS is that HOS 
can suppress Gaussian noise in detection, parameter 
estimation, and classification. Nikias informs that HOS is 
blind to any kind of Gaussian process; a non-zero HOS 
measurement can provide a test of the extent of non-
Gaussianity in a signal. Another feature of HOS is that 
the HOS spectrum of the sum of two or more statistically 
independent random processes equal the sum of their 
individual HOS spectra, therefore, HOS can extract 
information due to derivation from Gaussianity and it 
provides suitable measurement of the extent of statistical 
dependence in time series. Further, the bispectrum, first 
member of HOS spectra, carries magnitude and phase 
information that allows one to recover both the Fourier 
magnitude and phase value of the system impulse 
response with the expectation of a linear phase term. In 
2000, Kaplanis et al. (48) have given their theory of sEMG 
signal analysis using HOS. According to their theory, to 
quantify the non-Gaussianity of a random process, the 
normalized bispectrum, or bicoherence is estimated 
according to equation 12: 
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where P(.) is the power spectrum. 
 
The test of Gaussianity is based on the mean bicoherence 
power defined in equation 13 with the summation 
performed over the non-redundant region. 
 

( )∑= 21,ωωng BS  (13) 

 
The bicoherence index was used for characterizing the 
Gaussianity of the signal. Results indicate that sEMG 
signal distribution is highly non-Gaussian at low and 
high levels of force whereas the distribution has 
maximum Gaussianity at mid level of maximum 
voluntary contraction level (MVC). A measure of 
linearity of the signal, based on deciding weather or not 
the estimated bicoherence is constant, follows the reverse 
pattern with the measure of Gaussianity. The power 
spectrum’s median frequency decreases with the increase 
of force. 
 
In 2004, Shahjahan Shahid (1) applied HOS for EMG 
signal analysis and characterization due to its advantages 
of HOS over SOS. He has proposed the “Bispectrum of 
Linear System.” Modeling the bispectrum of a time series 
signal as the output of a linear system allows an 
application of useful techniques for identification and 
characterization of the system, which produces the 
system output signal. Let e(n) be a zero mean, stationary 
random signal applied to a LTI system according to 
Figure 4, whose frequency response is H(k) (where the 
time domain system response h(n), is causal and stable). 
Assume that w(n) is an independent identically 
distributed random Gaussian white noise that represents 
the system noise and x(n) is the system output. 
According to the convolution theorem for a LTI system 
output x(n) can be written as equation 14. 
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Fig. 4: A model of the LTI system. 

 
By using the bicepstrum, a system can be reconstructed 
from its output signal upon reconstructing the phase 
components of a system. Since an LTI system output 
signal carries all the information about a system plus 
noise, upon considering the system output signals as 
non-Gaussain noise, it is possible to estimate the system 
impulse response by using the system reconstruction 
algorithm. Algorithms can be developed for system’s 
input impulse characterization so that the actual EMG 
signal from the muscle can be acquired. According to 
Shahjahan Shahid, traditional system reconstruction 
algorithms have various limitations and considerable 
computational complexity and many show high 
variance. The most common bispectrum based system 
reconstruction algorithm has been improved by 
separating out the skewness parameter. Also, the 
Cepstrum of Bispectrum - a new branch of cepstrum - has 
been developed and applied by Shahjahan Shahid to 
perform system impulse function reconstruction in a 
computationally simple manner. The algorithm 
developed shows better performance than traditional 
algorithms. The cepstrum of bispectrum is also used to 
develop an algorithm for reconstruction of system input 
impulse sequence from a LTI system output signal. The 
results showed that resting muscle’s EMG contains a 
train of impulse-like MUAPs whose peaks are oriented to 
both sides of zero level. This means that there is no 
involvement of motor unit in the resting muscle. On the 
other hand MUAPs tend to be oriented to one side of the 
zero level when the muscle is contracting. Figure 5 shows 
a sample raw EMG signal and its bispectrum curve. 
 

 
Fig. 5: Sample EMG signal and its bispectrum curve. 
 

Other methods 
 
There are some other models proposed by various 
researchers for the purpose of EMG signal processing. 
Some of these models are briefly explained here. 
 
In 1969, Rosenfalck (49) mathematically formulated 

9096)( 3 −= −zexzg  based on the experimental works 
of Ludin on the intercostals muscle. Nandedkar and 
Stalberg (50) modified the expression in 1983 from g(z) to  
e(z) = g(2z)  in order to match better experimental data, 

leading to 90768)( 23 −= − zezze . This is taken as the 
default intracellular formulation for the single fiber 
action potential modeling. 
 
Nanderdar and Barkhaus (51) has a model proposed in 
1992 based on a simple principle of vector summation. 
According to Slawnych, Laszlo, and Hershler theory 
(1990), Nandedkar model assumes that the MUAP 
amplitude adds algebraically to generate the compound 
action muscle protential (CAMP) amplitude. Since 
MUAP waveforms do not occur synchronously, this 
assumption is not valid. If two MUAPs of amplitude A1 
and A2 are summated, then the amplitude of the resulted 
waveform is not equal to A1+A2. In other words, a MUAP 
contributes less than its amplitude to CMAP amplitude, 
this phenomena is called phase cancellation. According 
to (51) the amplitude of their sum denoted as A12 lower 
then A1+A2. It is expressed in equation 15. 
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In 1994, Englehart and Parker (52) considered two types 
of interpulse interval (IPI) probability density function 
(pdf) models. The discharge sequence as a series of IPI, 
estimation of the IPI mean, variance, and probability 
density function (pdf) have been used as descriptors of 
motor neuron activity. The Gaussian density function is 
expressed by equation 16: 
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where xµ  is the mean and 2

xσ  is the variance. 
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The Gamma density function is expressed by equation 
17: 
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where α is the location parameter, β is the scale 
parameter, ρ is the shape parameter and Γ( ) is the 
gamma function. 
 
According to the model, the estimates of the moments 
and the pdf of the neural discharge sequence are 
susceptible to bias if the data are nonstationary. Some 
factors that may affect the degree of stationary of 
experimentally IPI data are duration of contraction, the 
means of force production, and the level of contraction. 
 
An analytical expression for the myoelectric signal was 
derived using the integralpulse frequency and amplitude 
modulation (IPFAM) model by Zhang et al. (53) in 1995. 
The model has three main elements: The pulse amplitude 
modulation (PAM), the pulse frequency modulation 
(PFM) and the linear system. The PAM describes the 
association of the EMG amplitude with variations in 
muscular force, the PFM describes the variations in the 
EMG signal caused by changes in the nerve firing rates 
and the linear system, p(t), represents the compound 
motor unit action potential including effects of 
propagation dispersion and tissue filtering. In this 
model, the potential rises until a pre-determined 
threshold is reached, which causes an action potential or 
event to occur. Thus, the IPFAM model includes the most 
important features associated with the generation of real 
EMG signals. 
 
A real-time system for EMG signal analysis was done by 
Karlsson and Nystrom in 1995 (54). The aim was to 
develop a system for clinical use with the characteristics 
of graphics feedback, flexible parameter selection, 
standard method and flexible addition processing. To 
produce a time-frequency representation of a signal, the 
short-time Fourier transform was proposed to be used. A 
major drawback of this method was that stationary 
signal was assumed. Even when there is no voluntary 
change of muscle state, myoelectric signals are non 
stationary simply due to the inherent physiology of the 
organs. 

A model of EMG is proposed by Duchene and Hogrel 
(55) in 2000. According to Duchene and Hogrel any new 
processing algorithm needs to be optimized by 
comparing its result to the original parameter values to 
get an optimized criterion. This optimization can only be 
done if all actual values are known. Only a 
comprehensive simulation model can help fulfill this 
requirement. The extracellular action potential is 
calculated after the intracellular action potential for 
modeling the single fiber action potential. According to 
the initial work of de Lorente (56), the potential at an 
observation point [z0, y0] can be expressed by equation 
18: 
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where z and y are the axial and radial directions, 
respectively, S1 and S2 are the fiber sections at the fiber 
ends and r is the distance between the surface elements 
dS and the observation point. 
 
Hamilton and Stashuk (57) proposed the latest 
simulation of clinical EMG signals so far in 2005. 
According to the proposal, the first requirement for EMG 
signal simulation is the creation of a model of the 
structure of a muscle. This is performed in the following 
stages: 
 
1. Muscle and motor unit territory diameter 

calculation; 
2. MY territory center location; 
3. Fiber layout and assignment; 
4. Updating MU territory centers; 
5. Calculating actual MU territory centers; 
6. Assignment of fiber diameters; and 
7. Assignment of neuromuscular junction locations. 
 
This model is unique because it incorporates the 
followings: 

 
1. The spatial relationship between muscle fibers, the 

MUs they constitute, and the macro level muscle 
morphology; 

2. MUP calculations combining the clinical 
measurement of needle tip and cannula detected 
voltages contributed by physiologically positioned 
and activated individual fibers; 
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3. Variability of detected MUAPs due to NMJ 
transmission delay variability; 

4. A new mechanism for MU recruitment based 
entirely on muscle morphology; and 

5. Clinically realistic needle placement. 
 
EMG signal classification 
 
The common feature for classifying intramuscular EMG 
signal is the Euclidean distance between the MUAP 
waveforms. For clinical interests, the main feature of the 
EMG signal is the number of active motor unit (MUs), 
the MUAP waveforms, and the innervations time 
statistics. According to Wellig and Moschytz (58), the 
determination of the MUAP waveform and the number 
of active MUs can be considered as a classification 
problem. 
 
The representation of time-triggered and non-
overlapping MUAPs produces a shimmer. MUAP 
shimmer is influenced by the time-offset of the sampled 
waveforms, local fluctuation of the baseline and 
background noise. MUAP shimmer can also be 
influenced by all noises that are different from both 
background noise and noise caused by offsets. Besides 
background noise and the effects of the offset, white 
noise influences the classification. If the classification is 
to be performed in the wavelet domain, wavelet 
coefficients which refer to frequency bands lying below 
150 Hz should be avoided. The classification with 
wavelet coefficient needs the wavelet coefficient (Ff[m,n]) 
of four frequency bands (m=2, 3, 4, 5). The classification 
performance not only depends on the MUAP shimmer 
on the variance within a class but also on the distance 
between the class means. Therefore, the best selection of 
these four frequency bands depends on the Fourier 
transform of the MUAP waveforms themselves. Boualem 
and Peter (59) theorized that the time frequency 
representation of WVD provided high-resolution signal 
characterization in time-frequency space and good noise 
rejection performance. This theory can be very useful for 
EMG signal classification purposes. For the purpose of 
classifying EMG patterns, AR parametric model is used. 
In 1991, Zhang et al. (60) extracted and compared two 
types of features based on signal processing for the 
purpose of classifying EMG patterns. The two features 
were the coefficients of AR parametric models and the 
components of Fourier frequency spectra. The method 

showed better results while describing the EMG linear 
envelopes (LE). 
 
In 1995, Christodoulou and Pattichis (61) proposed that 
the classification procedure using ANN is implemented 
in three phases:  

 
i. In the first phase unsupervised learning is applied 

based on one dimensional self-organizing feature 
map and competitive learning. 

ii. In the second phase, in order to improve 
classification performance, a self-supervised learning 
technique, the learning vector quantization is 
applied. 

iii. In the third phase, the actual classification takes 
place. 

 
Classification of real EMG data into their constituent 
Motor unit action Potential is often a difficult task 
because of MUAPs waveform variability, jitter to single 
fiber potentials and MUPAs superposition. According to 
Christodoulou and Pattichis ANN appears attractive for 
the solution of such problem because of their ability to 
adopt and to create complex classification boundaries. 
Figure 6 shows EMG classification strategy using ANN 
approach. 
 

 
Fig. 6: EMG classification strategy using ANN approach. 

 
The DRNN proposed by Chan et al. (40) is much more 
adaptive to temporal treatment than the classical 
feedforward network which is more dedicated to 
classification tasks. Their result shows that it is successful 
in identifying the complex mapping between full-wave 
rectified EMG signals and upper-limb trajectory. The 
training process and classification results of the fuzzy-
logic method by Cheron et al. (39) are superior to those of 
Neural Network based approaches; primarily in that the 
fuzzy system gives more consistent classification results 
and is insensitive to over-training. Typical EMG 
Classification accuracy rate is given in Table 3. 
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Table 3: Typical EMG classification accuracy rate. 
Method Accuracy rate 
Coefficients of AR 99% 
Neural Networks 84% 
Fuzzy System 85% 
 
Motor unit number estimation (MUNE) 
 
Accurate estimation of MUAP templates in the presence 
of background EMG activity and instrumentation noise 
is an important requirement of quantitative clinical EMG 
analysis, especially if EMG signal decomposition is 
utilized. MUNE is a procedure used to evaluate the 
number of motor axons connected to a muscle. All 
MUNE techniques rely on assumptions that must be 
fulfilled to produce a valid estimate. 
 
In 1971, McComas proposed a simple neurophysiological 
technique for estimating the number of motor units in a 
muscle (62). A maximal bioelectric response of the 
muscle was recorded using sEMG following a 
supramaximal electrical stimulation of the muscle’s 
nerve. The maximal EMG response was then divided by 
an estimate of the average single motor unit response. 
The result was an estimate of the number of single motor 
unit responses that made up the maximal EMG response. 
 
According to Stashuk et al. (63), the number of motor 
units in a muscle can be estimated by dividing size-
related parameter values measured from a maximal M-
Wave by corresponding parameter values measured 
from an average surface-detected motor unit action 
potential (S-MUAP). The accuracy of the estimate is 
dependent on how representative the average S-MUAP 
is of the population of S-MUAPs which contributed to 
the maximal M-Wave. F-Wave responses have been 
shown to represent the full range of S-MUAP sizes. An 
automated system was been developed to obtain a 
maximal M-Wave, to extract a sample of F-Wave 
responses, to compute an average S-MUAP and to 
estimate the number of MUs in a muscle. 
 
In 1998, Zhengquan Xu and Shaojun Xiao (64) presented 
a method for estimating the mean and standard 
deviation of inter-pulse intervals (IPIs) of individual 
MUAP trains. Through a weighted matching between 
the observed IPI probability density function and the 
modeled function, the firing parameters are estimated. 

The weighted function is used to approximate the 
validity of IPI data so that all valid information provided 
by IPI data are utilized as far as possible. For this reason, 
the method can provide reliable estimations even if the 
MUAP trains are extracted with significant errors. Thus, 
this method is very useful for estimating the firing 
statistics of surface EMG where the individual MUAP 
trains are difficult to be accurately identified. 
 
Given that the MUAP originates at some distance below 
a standard sEMG electrode, the basic shapes of surface 
MUAPs can ideally be represented by only a very small 
number of waveforms or wavelet functions. Based on 
this determination, Ping and Rymer (65) in 2003 
evaluated ways to estimate the number of MUAPs 
present in standard surface EMG records, using wavelet 
based matching techniques to identify MUAP 
occurrences. The reason for this approach is that 
estimates of the numbers of MUAPs are likely to be a 
more accurate reflection of the neural command to the 
muscle. The wavelet matching methods, using an even 
more selective surface electrode, can correctly estimate 
the number of MUAPs in the surface EMG signals at 
higher force levels. However, the maximum MUAP 
number correctly estimated in the surface EMG cannot 
be significantly increased. 
 
Recently in 2005, Major and Jones (66) used the model to 
simulate four MUNE techniques (Incremental 
Stimulation, Revised Incremental, Multiple Point 
Stimulation, and Spike-Triggered Averaging) and have 
compared the reliability of each. They had also compared 
the relative utility of using EMG versus force as the 
output measurement from the muscle. The use of models 
allows a detailed testing of methodological assumptions 
in different MUNE techniques which will lead to a more 
accurate and reliable method of performing MUNE. This 
will translate into earlier diagnosis and improved 
treatment assessment of patients with neuromuscular 
disease. The basic principle underlying the four MUNE 
techniques they simulated is the division of the total 
muscle response by an estimated mean single motor unit 
response (SMUP). Muscle responses can be measured 
using EMG or force. The surface EMG response of 
multiple motor units to an electrical stimulus applied to 
a nerve is known as the compound muscle action 
potential (CMAP). Thus, the estimated number of 
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functional motor units in a muscle (or group of muscles) 
is given by equation 19. 
 

)(
)(max

SMUPmean
CMAPN =  (19) 

 
Hardware models 
 
Due to the advanced development of the biomedical 
science, the application of biomedical instruments 
becomes essential in daily life. Design of application 
specific integrated circuit for the biomedical instrument 
has become quite important recently. Various hardware 
has been implemented to develop prosthetic hands for 
disabled people. Hardware chips have also been 
designed to filter EMG signal to achieve the accurate 
signal for the prosthetic arm control and other 
applications like grasp recognition and human computer 
interactions. 
 
The microprocessor system for myoelectric signal 
identification proposed by Graupe et al. (67) is based on 
an 8080 Intel Corporation microprocessor which is an 8-
bit parallel central processing unit. It is fabricated on a 
single Large Scale Integration (LSI) chip using N-channel 
silicon gates and is furnished in a 40-pin dual in-line 
ceramic package, having a 2 µs instruction time. The 
microprocessor is then interfaced with its input-output 
ports and with a 4K-bytes semiconductor memory. 
Furthermore, to increase speed, the microprocessor is 
interfaced with a hardware multiplier unit based on 
Fairchild 9344 4x2 bit multiplier modules where 
multiplication time is 350 ns versus 1 µs in the 
microprocessor itself. 
 
Analog processor chip can be designed to handle the 
physiological signals. Since EMG signal has the 
characteristics of very low voltage amplitude and carries 
some low-frequency common-mode noise, Yen et al. (68) 
integrated the instrumentation amplifier, gain control 
stage, and filters into the chip for processing the EMG 
signal into the adequate amplitude and limited 
bandwidth. It is divided into three parts: analog signal 
processing unit, wireless data transmission unit, and 
digital processing unit. Their research focused on the 
transmission system design. By the design concept of the 
system on a chip, the chip has achieved goals of low cost, 
low power consumption and minimizing layout area. 

To enhance the lives of people who has lost a hand, 
prosthetic hands have existed for a long time. Evolvable 
hardware (EHW) chip has been implemented for 
myoelectric prosthetic hand application. The EHW chip 
for an autonomous mobile robot and a myoelectric 
artificial hand was also developed in April 1998 to serve 
as an off-the-shelf device for gate-level hardware 
evaluation. The chip consists of three components: 1) a 
PLA; 2) the GA hardware with a 2K word chromosome 
memory and a 2K word training pattern memory; and 3) 
a 16-bit 33 MHz CPU core (NEC V30; 8086 compatible). 
Arbitrary logic circuits can be reconfigured dynamically 
on the PLA component according to the chromosomes 
obtained by the GA hardware. The CPU core interfaces 
with the chip’s environment and supports fitness 
calculations when necessary. The size of the GA 
hardware, excluding memories, is about 16K gates. In 
terms of gate size, this is almost one-tenth of a 32-bit 
CPU core (e.g., NEC V830). However, genetic operations 
carried out by this chip are 62 times faster than on a Sun 
Ultra2 (200 MHz). The chip implemented by Kajitani et 
al. in 1999 (69) consists of GA (genetic algorithm) 
hardware, reconfigurable hardware logic, a chromosome 
memory, a training data memory, and a 16-bit CPU core 
(NEC V30). Myoelectric prosthetic hands are operated by 
signals generated in muscular movement. The proposed 
EHW chip consists of seven functional blocks, GA unit, 
PLA Unit (2 array), CPU, Register File, Random Number 
Generator, Chromosome Memory and Training Data 
Memory. The workflow of the EHW chip can be divided 
in two phases. The first phase is to make the two children 
and evaluate phase and the second is the “select two 
chromosome” phase. The GA adaptively implements the 
circuit on the PLA in the EHW controller. 
 
In 2001, Torresen described a two-step incremental 
evaluation of a prosthetic hand controller that requires a 
floating point CPU or a neural network chip (70). Using 
gate level EHW, a much more compact implementation 
can be provided making it more feasible to be installed 
inside a prosthetic hand. Such a complex controller could 
probably only be designed by adapting the controller to 
each dedicated user. It consists of AND gates succeeded 
by OR gates. One of the main problems in evolving 
hardware system is that there seems to be limitation in 
the chromosome string length. A long string is normally 
required for representing a complex system. A large 
number of generations are required by genetic 
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algorithms (GA) as the string increases. The main 
advantage of the method is that evolution is not 
performed in one operation on the complete evolvable 
hardware unit; instead it is performed in a bottom-up 
way. The digital gate based architecture of the prosthetic 
hand controller is illustrated in Figure 7. It consists of 
one subsystem for each of the six prosthetic motions. In 
each subsystem, the binary inputs x0 . . . x15 are processed 
by a number of deferent units, starting by the AND-OR 
unit. This is a layer of AND gates followed by a layer of 
OR gates. Each gate has the same number of inputs, and 
the number can be selected to be two, three or four. The 
outputs of the OR gates are routed to the Selector. This 
unit selects which of these outputs those are to be 
counted by the succeeding counter. That is, for each new 
input, the Counter is counting the number of selected 
outputs being “1” from the corresponding AND-OR unit. 
Finally, the Max Detector outputs which counter 
corresponding to one specific motion having the largest 
value. Each output from the Max Detector is connected 
to the corresponding motor in the prosthesis. If the 
Counter having the largest value corresponds to the 
correct hand motion, the input has been correctly 
classified. 
 

 
Fig. 7: The digital gate based architecture of the prosthetic hand 
controller. 

 
Two types of artifacts usually exist in the EMG signal 
from an electrically-stimulated muscle: stimulation 
artifacts and M-wave. In 2000, Peasgood and his 
researchers (71) assumed that the M-wave is stationary 
and therefore used a fixed comb filter. But the M-wave is 
clearly a non-stationary signal in a statistical sense, 
mainly due to the fact that its temporal variation 
depends on many factors, such as stimulation intensity, 
fatigue, the contraction level of the muscle, etc. An 
adaptive prediction error filter (PEF) based on the Gram-
Schmidt (GS) algorithm is presented in 2004 by Yeom et 
al. (72) for the suppression of the M-waves. The 

presented filter is implemented on a field programmable 
gate array (FPGA). Implementation is done using a 6th 

order GS PEF using Xilinx XC2S200pq208-6 FPGA chip. 
The design was synthesized using Xilinx ISE 5.2i and 
verified using ModelSim XE 5.6a. One major advantage 
of separating the correlation computation and filtering 
process in hardware is that the filter system is not 
involved with a complicated state machine. Figure 8 
shows the schematic of the core processing unit 
implemented on FPGA. M-waves must be removed in 
order to use voluntary EMG from electrically stimulated 
muscle. The proposed M-wave cancellation system based 
on the GS PEF is not only efficient to eliminate periodic 
signals like M-waves, but also suitable to FPGA 
implementations than the conventional linear PEF (72). 
 

Fig. 8: Schematics of the core processing unil implemented on FPGA. 

 
Applications of EMG 
 
EMG signals can be used for variety of applications like 
clinical/biomedical applications, EHW chip 
development, human machine interaction, etc. Clinical 
applications of EMG as a diagnostics tool can include 
neuromuscular diseases, low back pain assessment, 
kinesiology and disorders of motor control. EMG signals 
can be used to develop EHW chip for prosthetic hand 
control. Grasp recognition (73) is an advanced 
application of the prosthetic hand control. 
 
EMG can be used to sense isometric muscular activity 
(type of muscular activity that does not translate into 
movement). This feature makes it possible to define a 
class of subtle motionless gestures to control interface 
without being noticed and without disrupting the 
surrounding environment. The device for this purpose 
includes a high input impedance amplifier connected to 
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electrodes, an anti-aliasing filter, a microcontroller to 
sample and process the EMG signal, and a Bluetooth 
communication module to transmit the processing 
results. When activation is detected, the controller sends 
a signal wirelessly to the main wearable processing unit, 
such as a mobile phone or PDA. Using EMG, the user 
can react to the cues in a subtle way, without disrupting 
their environment and without using their hands on the 
interface. The EMG controller does not occupy the user’s 
hands, and does not require them to operate it; hence it is 
“hands free” (74). 
 
Interactive computer gaming offers another interesting 
application of bio-signal based interfaces. The game 
system would have access to heart rate, galvanic skin 
response, and eye movement signals, so the game could 
respond to a player’s emotional state or guess his or her 
level of situation awareness by monitoring eye 
movements. An interactive game character could 
respond to a user who stares or one who looks around, 
depending on the circumstances. This use of eye tracking 
is easier than using the eyes as a precision pointing 
device, which is difficult because the eyes constantly 
explore the environment and do not offer a stable 
reference for a screen pointer. To provide more fun and 
strategies, there are usually two styles of attack possible 
in fighting games. One is the weak attack and the other is 
the strong attack. Common input devices for fighting 
action games are the joypad and joystick. These use a stick 
to move the character and a button to make a certain 
type of attack, for example, a punch or kick. To make a 
strong attack the user has to input a complex key 
sequence that makes that motion difficult to invoke, 
thereby achieving a balance between two types of attack. 
Though those devices are cheap and easy to use, they 
have disadvantages. These interfaces are not intuitive for 
human fighting movement control, and the user has 
much to memorize, such as the meaning of the button 
and the input sequence for a strong attack motion. A 
human-computer interface device designed for a fighting 
action game, “Muscleman,” has been developed by D. G. 
Park and H. C. Kim in Korea. The game characters are 
usually depicted as making an isometric contraction of 
their arms as an expression of power concentration to 
make a strong attack like a fireball (75). 

 
Fig. 9: System block diagram of “Muscleman.” 

 
To measure the force of the isometric muscle contraction, 
a surface EMG was used. Moreover, to obtain more 
precise information about the userʹs forearm movement, 
the gaming system is installed with an accelerometer. By 
analyzing acceleration data record obtained from the 
accelerometer, it is possible to know which direction the 
forearm is moving. Furthermore, the classification of 
attack movement in cases such as whether the motion 
was a straight punch motion or an upper cut motion is 
possible. Wireless transmission is adopted so as not to 
disturb the user’s motion. By adopting wireless 
transmission, the stage of a game can be extended 
virtually with no limits in space. Figure 9 shows the 
system block diagram of “Muscleman.”  
 
At the NASA Arms Research Center at Moffett Field, 
California, the extension of the Human Senses Group 
uses bio-control systems interfaces. They have used 
EMG/EEG signal in their research program on human 
interfaces to flight systems. The group seeks to advance 
man-machine interfaces by directly connecting a person 
to a computer via the human electrical nervous system. 
Based on EMG and EEG signals, this research applies 
pattern recognition system to interpret these signals as 
computer control commands. These NASA researchers 
have used EMG signal to substitute for mechanical 
joysticks and keyboards. As an example, they developed 
a method for flying a high-fidelity flight simulator of a 
transport aircraft using EMG based joystick. Figure 4 
shows the flight control using EMG technology. The 
virtual joystick was actuated through an armband 
implanted with eight electrodes connected to sensors as 
the pilot gestures to land the aircraft. The pilot could also 
make emergency landings of a simulated aircraft that 
had been damaged. Charles Jorgensen, head of NASA’s 
Ames neuroengineering lab, states that this is a 
fundamentally new way to communicate with machines. 
His research group is moving away from the idea of 
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controlling machines with levers and knobs. Instead, 
they plan to have machines respond directly to human 
gestures. In addition to aircraft control, the technology 
might also help astronauts in bulky space suits to control 
power tools used to work outside the space vehicle, such 
as in repair activities or construction. A more ambitious 
idea for reconfigurable airplanes and other 
transportation machinery is a virtual wearable cockpit or 
command center. The US Air Force and other military 
branches increasingly use unmanned vehicles for 
surveillance missions. One way to control these systems 
from the field is a wearable cockpit. One could use a 
wearable computer with a wireless link and display 
goggles, and then employs EMG-based gestures to 
manipulate the switches and control sticks necessary for 
flight. Noncontact EMG sensors sewn into the field 
uniform could then sense movements as the acting pilot 
pretended to manipulate control inputs. A space-based 
application could let astronauts’ type into a computer 
despite being restricted by a spacesuit. If a 
depressurization accident occurred on a long-term space 
mission and astronauts needed to access onboard 
computers, they could use EMG electrodes in their 
spacesuits to replicate a computer interface (76). 
 
Unvoiced speech recognition - Mime Speech Recognition - 
recognizes speech by observing the muscle associated 
with speech. It is not based on voice signals but EMG. It 
will realize unvoiced communication, which is a new 
communication style. Because voice signals are not used, 
it can be applied in noisy environments; it can support 
people without vocal cords and aphasics (77).  
 
Communication with a computer by certain muscle 
contractions would make it possible to perform all sorts 
of computer-controllable actions using EMG. The muscle 
contractions can be detected in a robust way, almost 
insensitive to any kind of noise, so an interface device 
based on muscle tone could also be used to control 
moving objects, such as mobile robots or an electrical 
wheel chair which can be great help for persons with 
disabilities. Of course, this might offer an alternative for 
able-bodied persons as well for controlling home 
entertainment appliances. The constant stream of EMG 
signals associated with any arbitrary muscle of the 
wheelchair driver is monitored and reduced to a stream 
of contraction events. The reduced stream affects an 
internal program state which is translated into 

appropriate commands understood by the wheelchair 
electronics. The standard way of steering an electrical 
wheelchair involves the use of one hand to operate some 
sort of two dimensional joystick. 

 
DISCUSSION 

 
The study shows that double-threshold detectors are 
better than single-threshold detectors because of their 
higher detection probability. They also allow the user to 
adopt the link between false alarm and detection 
probability with a higher degree of freedom than single-
threshold ones. Decomposition of EMG signal by 
wavelet spectrum matching shows that the technique is 
accurate, reliable, and fast. The technique is very useful 
in the study of motor control mechanisms at the SMU 
level. On the other hand, the nonlinear LMS optimization 
decomposition method based on HOS is also reliable in a 
noiseless case. Testing in different levels of additive 
Gaussian noise found that the well-known HOS 
robustness leads to satisfactory results also in noisy 
environments. For EMG signal processing, the WT is an 
alternative to other time frequency representations. WT 
has the advantage of being linear, yielding a 
multiresolution representation. Crossterms do not affect 
WT when dealing with multicomponent signals. We see 
that a major drawback of SFT is that stationary signal is 
assumed. The joint density spectrum produced by 
Wigner-Ville distribution displays very good localization 
properties and it is generally concentrated around the 
instantaneous frequency of the signal. The disadvantage 
of WVD is that it is very noisy. Although the Choi-
Williams reduces the interference but it does not satisfy 
all the other desired properties for a time frequency 
distribution. While reviewing the properties of fuzzy 
logic systems, we find that contradictions in the data can 
be tolerated, which is an advantage. It is also clear that 
using trainable fuzzy systems, it is possible to discover 
patterns in data which are not easily detected by other 
methods, as can also be done with neural network. As a 
result, Fuzzy logic systems emulate human decision-
making more closely then the ANN. Higher-order 
statistical (HOS) methods are used for analyzing the 
EMG signal. This is possible due to the unique properties 
of HOS that can be applied to random time series. The 
study shows that Gaussian noise can be suppressed 
using bispectrum or third-order spectrum. Moreover, it 
carries both the magnitude and phase information, 
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which can be used to recover the system impulse 
function and input impulse sequence from the linear 
time-invariant (LTI) system output signal. The main 
advantage of HOS over SOS is that HOS can suppress 
Gaussian noise in detection, parameter estimate and  
 

classification problem. As HOS is blind to any kind of 
Gaussian process, a non-zero HOS measurement can 
provide a test of the extent of non-Gaussianity in a 
signal. A summary of the major methods is given in 
Table 4. 

Table 4: Summary of major methods. 
Method Advantage/Disadvantage 
Double-threshold detection • Double-threshold detectors are better than single-threshold ones because of their higher 

detection probability. 
• Allow the user to adopt the link between false alarm and detection probability with a 

higher degree of freedom than single-threshold ones. 
Wavelet Transform • An alternative to other time frequency representations. 

• WT is linear, yielding a multiresolution representation. 
• Crossterms do not affect WT when dealing with multicomponent signals. 
• A major drawback of SFT is that stationary signal is assumed. 

Wigner-Ville distribution • The joint density spectrum produced by WV distribution displays very good 
localization properties. 

• It is generally concentrated around the instantaneous frequency of the signal. 
• The disadvantage is that it is very noisy.  

Choi-Williams method • Reduces interference. 
• Does not satisfy all the desired properties for a time frequency distribution. 

Artificial Neural Networks 
(ANN) 

• The network can learn to map a set of inputs to a set of outputs. It is possible to 
discover patterns in data which are not easily detected by other methods.  

• ANN is not only an advance on MES signal recognition in real-time but also, it curtails 
subjects training to a minimum. 

Fuzzy Logic • Contradictions in the data can be tolerated. 
• It is possible to discover patterns in data which are not easily detected by other 

methods. 
• Fuzzy logic systems emulate human decision-making more closely then the ANN.  

Higher-order Statistics (HOS) • (HOS) methods may be used for analyzing the EMG signal due to its unique properties 
applied to random time series. 

• The bispectrum or third order spectrum has the advantage of suppressing Gaussian 
noise. 

• It carries both the magnitude and phase information, which can be used to recover the 
system impulse function and input impulse sequence from the linear time-invariant 
(LTI) system output signal. 

• HOS is blind to any kind of Gaussian process, a non-zero HOS measurement can 
provide a test of the extent of non-Gaussianity in a signal. 

 
If a quantitative relationship between the EMG signal 
and force is required, then the contraction must be 
isometric. However, even under this constraint the 
relationship between force and EMG signal remains 
problematic. It is generally agreed that when the EMG 
signal is sufficiently smoothed, the relationship is 
monotonic, but the linearity appears to differ amongst 
muscles (assuming that there are no technical and other 

confounding factors such as crosstalk). However, 
because the amplitude of the surface EMG signal is a 
random variable, the instantaneous value of the 
amplitude is not monotonic with respect to the force 
value. Furthermore, the estimate of the signal amplitude 
will vary as a function of force due to intrinsic 
anatomical and physiological factors. Figure 10 shows 
the force / EMG signal relationship. 
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Fig. 10: Normalized Force / EMG signal relationship for three different 
muscles. The data have been greatly smoothed, with a window width of 2 
s. Note the difference in the linearity of the relationship among the 
muscles (78). 

 
Physiologists have become accustomed in using the force 
output of a muscle as the index of muscle fatigue. In 
particular, the point at which a contraction can no longer 
be maintained (the failure point) has been generally 
designated as the point at which the muscle is said to 
fatigue. This approach implies that fatigue occurs at a 
specific point in time; a notion that is inconsistent with 
the concept of fatigue accepted by engineers and 
physical scientists. Figure 11 shows the EMG signal as a 
fatigue index. 

 

 
Fig. 11: A diagrammatic explanation of the spectral modification which 
occurs in the EMG signal during sustained contractions. The muscle 
fatigue index is represented by the median frequency of the spectrum 
(78). 

 
While reviewing the hardware implementations we 
understand that, although reconfigurable hardware 
devices, such as FPGA and PLD are spreading rapidly 

and the usefulness of reconfigurable hardware is being 
more widely recognized, reconfiguration in FPGA’s is 
not autonomous and requires human intervention. Thus, 
EHW indicates a new direction in reconfigurable 
hardware beyond FPGA’s.  
 

CONCLUSION 
 

EMG signal carries valuable information regarding the 
nerve system. So the aim of this paper was to give brief 
information about EMG and reveal the various 
methodologies to analyze the signal. Techniques for 
EMG signal detection, decomposition, process and 
classification were discussed along with their advantages 
and disadvantages. Discovery of a problem or 
disadvantage in one method leads to other improved 
methods. This study clearly points up the various types 
of EMG signal analysis techniques so that right methods 
can be applied during any clinical diagnosis, biomedical 
research, hardware implementations and end user 
applications. 
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