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Abstract—These last years, we have witnessed a dramatic
increase in the number of cores available in computational
platforms. Concurrently, a new coding paradigm dividing tasks
into smaller execution instances called threads, was developed to
take advantage of the inherent parallelism of multiprocessor plat-
forms. However, only few methods were proposed to efficiently
schedule hard real-time multi-threaded tasks on multiprocessor.

In this paper, we propose techniques optimizing the number of
processors needed to schedule such sporadic parallel tasks with
constrained deadlines. We first define an optimization problem
determining, for each thread, an intermediate (artificial) deadline
minimizing the number of processors needed to schedule the
whole task set. The scheduling algorithm can then schedule
threads as if they were independent sequential sporadic tasks.
The second contribution is an efficient and nevertheless optimal
algorithm that can be executed online to determine the thread’s
deadlines. Hence, it can be used in dynamic systems were all tasks
and their characteristics are not known a priori. We finally prove
that our techniques achieve a resource augmentation bound of 2
when the threads are scheduled with algorithms such as U-EDF,
PD2, LLREF, DP-Wrap, etc.

I. INTRODUCTION

These last years, we have witnessed a dramatic increase in
the number of cores available in computational platforms. For
instance, Intel designed a 80 cores platform [1] and Tilera
sells processors with up to 100 identical cores [2]. To take
advantage of this high degree of parallelism, a new coding
paradigm has been introduced using programming languages
and API such as OpenMP [3] or CilkPlus [4]. In this work
we consider multi-threaded tasks, i.e., each task is a sequence
of segments, each segment is a collection of threads and
threads of a same segment can be scheduled simultaneously
(see Fig. 1).

Multi-threaded parallel tasks have been studied in only few
previous works. One may cite [5] in which the authors propose
a sufficient (but pessimistic) schedulability test for such sys-
tems scheduled with global EDF. Interesting approaches were
also proposed in [6] and [7] to optimize the utilization of the
platform when tasks follow the fork-join model.

In this paper, we propose techniques optimizing the number
of processors needed in the computational platform to ensure
that all parallel tasks respect their deadlines. To reach this
goal, we propose two different approaches: an optimization
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problem which must be solved offline; and an efficient (opti-
mal) algorithm which can be executed online. Both techniques
compute, for each thread, an intermediate (artificial) deadline.
Consequently, the online scheduler can manage the execution
of each thread as an independent sequential sporadic task with
constrained deadline.

While being less efficient, the offline approach has the
interest of being easily extensible to more general models
of tasks and is therefore perfectly suited to systems where
task sets are completely defined at design time. On the other
hand, the online algorithm targets dynamic systems where
all tasks and their characteristics are not known a priori.
Furthermore, we prove the optimality of the online algorithm
(amongst the algorithms adding intermediate deadlines) when
the schedulability test is based on task densities, and show that
both approaches achieves a resource augmentation bound2 of
2 when the threads are scheduled using algorithms such as
U-EDF [8], PD2 [9], LLREF [10] or DP-Wrap [11].

II. RELATED WORKS

There are two main models of parallel tasks (i.e., tasks that
may use several processors simultaneously): the Gang [12]–
[15] and the Thread model [6], [7], [16]. With the Gang model,
all parallel instances of a same task start and stop using the
processors synchronously. For instance, if a task is composed
of four parallel instances, then, it needs exactly four available
processors to start its execution. On the other hand, with the
Thread model, there is no such constraint. Hence, once a
thread has been released, it can be executed on the processing
platform independently of the execution of the other threads.
Since our research studies multi-threaded tasks, the following
state-of-the-art review is focused to this particular model of
parallel tasks.

In [16], the authors consider that a task is a succession
of instances composed of a set of (independent) threads.
They define several kinds of real-time schedulers and their
associated schedulability tests. In [6], Lakshmanan et al.
propose a scheduling algorithm for the fork-join model. This
model can be seen as a generalization of the previous work.
Indeed, it considers each task instance as a sequence of
segments, alternating between sequential and parallel phases.

2An algorithm A has a resource augmentation bound of v if any task set
schedulable on a platform with m processors of speed 1 is also schedulable
with algorithm A on m processors of speed v.
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Fig. 1: Parallel task τi composed of ni segments σi,1 to σi,ni
.

A sequential phase executes only one master thread which is
split in multiple parallel threads during the parallel phases.
In [6], all the parallel segments are assumed to have the same
number of parallel threads. This alternation between parallel
and sequential segments has been raised in [7] where each
segment is composed of an arbitrary number of threads. In this
last model, tasks have relative deadlines, but segments do not.
In order to provide a schedulability test, the authors proposed
to create an artificial deadline for each segment. Once those
deadlines have been defined, the scheduling of the task system
is equivalent to the scheduling of a set of sequential (sporadic)
tasks, each thread being considered as an independent job [7]3.

The research presented in our paper strictly dominates the
work in [7] in the sense that if the method in [7] needs m′

processors to schedule a task set τ , then, we need m ≤ m′

processors to schedule the same set τ . Actually, we prove that,
compared to any solution imposing intermediate deadlines for
the segment executions, our technique is optimal when the
schedulability test is based on the task densities. During our
experiments we even found examples where the method of [7]
requires up to three times more processors than our approach.

III. MODEL

We assume a set τ def
= {τ1, ..., τn} of n sporadic tasks with

constrained deadlines. Each parallel task τi is a sequence of
ni segments. Each segment σi,j is a set of ni,j threads and
each thread θi,j,k has a worst case execution time (WCET) of
Ci,j,k (see Fig. 1).

A segment σi,j can be characterized by the two quantities
Cmin
i,j

def
= maxk {Ci,j,k} and Ci,j

def
=
∑ni,j

k=1 Ci,j,k. On the one
hand, Cmin

i,j represents the minimum amount of time needed to
complete the execution of all threads belonging to the segment
σi,j assuming that it can use ni,j processors for its execution.
On the other hand, Ci,j is the maximum amount of time
needed to execute all threads in σi,j on a single processor.

The total WCET Ci of any task τi is equal to the sum of
the WCET of its constituting segments, i.e., Ci

def
=
∑ni

j=1 Ci,j .
Hence, Ci is the maximum amount of time to complete the
execution of the entire task τi on a single core.

3Note that adding artificial deadlines is not a new idea: it was already
proposed in [17] to synchronize the execution of different parts of strictly
periodic tasks running on different processors.

TABLE I: System notations

System characteristics
τ Set of tasks
n Number of tasks in τ
m Number of processors

Task characteristics
τi Task number i
ni Number of segments in τi
Di Relative deadline of τi
Ti Minimal inter-arrival time

Ci Worst-case execution time of τi (Ci
def
=
∑ni
j=1 Ci,j )

δi Density of τi (δi
def
= Ci

Di
)

Segment characteristics
σi,j jth segment of τi
ni,j Number of threads in σi,j
Ci,j Worst-case execution time of σi,j (Ci,j

def
=
∑ni,j

k=1 Ci,j,k)

Cmin
i,j Minimum execution time of σi,j (Cmin

i,j
def
= maxk

{
Ci,j,k

}
)

Thread characteristics
θi,j,k kth thread of σi,j
Ci,j,k Worst case execution time of θi,j,k

In this work, we assume that all threads of a same segment
σi,j are synchronous. That is, all threads of σi,j are released
simultaneously. Furthermore, all threads of a segment σi,j
must have completed their execution before starting to execute
the next segment σi,j+1.

Each task τi is a sporadic task with constrained deadline,
meaning that τi has a relative deadline Di not larger than its
minimal inter-arrival time Ti. This implies that τi has never
more than one active instance at any time t. Therefore, we
define an active job at time t (if any) as an instance of a task
which has been released before or at time t and which has not
reached its deadline yet.

The density of a task τi given by δi
def
= Ci

Di
, represents the

average computing capacity needed for the execution of a job
of τi between its arrival and its deadline occurring Di time
units later.

The notations used in this paper are summarized in Table I.

IV. PROBLEM STATEMENT

As previously explained, our goal is to transform the threads
composing the parallel tasks in a set of sporadic sequential
tasks with constrained deadlines. This approach, already de-
scribed in [6], [7], implies that for each thread, an arrival time
and a relative deadline must be defined.

We assume in our model that all threads of a same segment
σi,j are released simultaneously and the threads of σi,j+1 can
only be released when the execution of threads of σi,j is
completed. We therefore assume that all threads in a segment
σi,j have the same deadline di,j and threads in σi,j+1 are
released when the deadline di,j has been reached. Hence, the
minimum inter-arrival time of any thread of τi is equal to
the minimum inter-arrival time Ti of τi. Consequently, our
problem consists in determining the relative deadlines di,j of



every segment σi,j so that the number of required processors
to respect all deadlines is minimized.

Let the instantaneous total density δ(t) be the sum of the
densities of all the active jobs at time t.

Some existing scheduling algorithms such as U-EDF, PD2,
DP-Wrap or LLREF can schedule any set of sequential spo-
radic tasks as long as the instantaneous total density δ(t)
does not exceed the number m of processors constituting
the processing platform [8]–[11]. This property is expressed
through the following sufficient feasibility test:

Property 1. A task set τ is feasible on a platform of m
identical processors if, at any time t, we have δ(t) ≤ m.

According to Property 1, if we want to minimize the number
of processors needed to schedule τ , then we must minimize
the maximum value reachable by δ(t). Hence, we define
the density of σi,j as δi,j

def
=

Ci,j

di,j
and since two segments

σi,j and σi,` (j 6= `) of the same task τi cannot be active
simultaneously, we have to minimize the following expression:

δmax =
∑
τi∈τ

max
j
{δi,j} =

∑
τi∈τ

max
j

{
Ci,j
di,j

}
(1)

Indeed, since the parallel tasks are sporadic, we do not know
which segment of each task will be active at each instant t.
Therefore, in the worst case, each task has its segment with
the largest density active at time t.

If, after the optimization process, we have m ≥ δmax then
the task set τ is schedulable on the processing platform using
a scheduling algorithm such as those previously cited (i.e.,
U-EDF, PD2, LLREF, DP-Wrap).

V. OFFLINE APPROACH: AN OPTIMIZATION PROBLEM

As stated in the previous section, optimizing the number
of processors m implies to minimize δmax . However, some
constraints on the relative deadlines of each segment must be
respected:
• The total execution time granted to all segments compos-

ing τi must be smaller than the relative deadline of τi.
That is, for each task τi, it must hold that

ni∑
j=1

di,j ≤ Di

In practice, we will impose that
∑ni

j=1 di,j = Di since
the segment densities decrease if their deadlines increase
(remember that δi,j

def
=

Ci,j

di,j
).

• The relative deadline of any segment σi,j cannot be
smaller than its minimum execution time Cmin

i,j . That is,

di,j ≥ Cmin
i,j = max

k
{Ci,j,k}

Indeed, since a thread cannot be executed in parallel
on two (or more) processors, the relative deadline of
the associated segment cannot be smaller than its largest
thread WCET.

TABLE II: Problem notations

Variables
di,j Relative deadline of segment σi,j
δi,j Density of segment σi,j (δi,j

def
=

Ci,j

di,j
)

δmax
i Maximum instantaneous density of τi (δmax

i
def
= max

σi,j∈τi
{δi,j})

δmax Maximum instantaneous density of τ (δmax def
=
∑
τi∈τ δ

max
i )

Properties
δ̂i,j Upper bound on δi,j (δ̂i,j

def
=

Ci,j

Cmin
i,j

)

Optimisation problem
S`i Set of segments of τi that remain to consider at the

`th step of the algorithm
L`i Amount of time that has still to be dispatched among

the segments of S`i
C`i Worst-case execution time of S`i (C`i

def
=

∑
σi,j∈S`

i

Ci,j)

δ`i Average density of S`i on L`i time units (δ`i
def
=

C`
i

L`
i

)

d∗i,j Optimal value of di,j

δ∗i,j Density of σi,j in the optimal solution (δ∗i,j
def
=

Ci,j

d∗i,j
)

δ`max
i Maximum density of the segments in S`i

(δ`max
i

def
= max σi,j∈S`

i
{δi,j})

δ`max ∗
i Maximum density of the segments in S`i in the optimal solution

δ`max ∗
i

def
= maxσi,j∈S

{
δ∗i,j

}

Hence, the optimization problem can be written as

Minimize: δmax =
∑
τi∈τ

max
j

{
Ci,j
di,j

}

Subject to: ∀τi ∈ τ ,
ni∑
j=1

di,j = Di

∀σi,j , di,j ≥ Cmin
i,j

Nevertheless, since the constraints on the relative deadlines
of any segment σi,j of a task τi are independent of the
constraints on any other segment σa,b (a 6= i) of another
task τa, we can subdivide this optimization problem in n sub-
problems consisting, for every task τi, in the minimization
of maxj

{
Ci,j

di,j

}
. Indeed, the minimization of a sum with

independent terms, is equivalent to the minimization of every
term. We therefore get ∀τi ∈ τ ,

Minimize: max
j

{
Ci,j
di,j

}
= max

j
{δi,j} (2)

Subject to:
ni∑
j=1

di,j = Di (3)

∀σi,j ∈ τi , di,j ≥ Cmin
i,j (4)

This new formulation has three different interests:
1) We now see that this optimization problem finds the

optimal solution for any schedulability test that can
be expressed in terms of system and/or task densities.



Indeed, in addition to minimize the maximum instan-
taneous density of the system, it also minimizes the
maximum density of each task independently. Hence,
we also find an optimal solution for the schedulability
tests of many algorithms proposed in [18] for instance.

2) It allows to determine the relative deadlines of each task
independently. Therefore, if the task set is modified, we
do not have to recompute the properties of every task,
but only for the new and altered tasks in τ .

3) It highly reduces the solution research space visited
by the optimization algorithm. Notice that for each
task τi, both the number of variables and the number
of constraints in the optimization problem, increases
linearly with the number of segments ni in τi.

This optimization problem can be linearized as shown
in [19], and can therefore be solved with linear programming
techniques such as those presented in [20].

Notice that by Equations 3 and 4, a solution exists if and
only if

∑ni

j=1 C
min
i,j ≤ Di. This condition is generalized in the

following lemma:

Lemma 1. Let S be a set of segments. There exists a solution
to the problem of dispatching L time units between segments
in S, under the constraints

∑
σi,j∈S di,j ≤ L and ∀σi,j ∈

S , di,j ≥ Cmin
i,j , if and only if∑

σi,j∈S
Cmin
i,j ≤ L

VI. ONLINE APPROACH: AN EFFICIENT ALGORITHM

We just showed that, if the condition expressed by Lemma 1
is respected, a linear programming technique can be used to
optimally solve the problem of finding intermediate deadlines
for a parallel task τi. Usually, a scheduler cannot afford
to solve a linear optimization problem online. However, in
this specific case, the problem studied allows to provide a
solution with a low time complexity (see Theorem 2 for more
details). Due to the low complexity of this algorithm, segment
deadlines can now be determined online. Hence, this algorithm
can be used in dynamic systems where tasks may arrive or
leave the application at any moment, and where the number
of threads in each segment is not always defined at design
time. Therefore, when a new task τi releases a job in the
system, we can compute the segment intermediate deadlines
minimizing the number of processors needed to the execution
of τi. Furthermore, we can verify at any new task arrival if
the system is overloaded. In the case of an affirmative answer,
the operating system can take appropriate decisions such as
stopping some tasks, re-dispatching the workload between
different clusters, switching a processor on, etc.

In this section, we explain how we can derive from the
optimization problem presented in the previous section, an
algorithm that optimally determines the segment intermediate
deadlines. This algorithm is greedy. That is, it iteratively builds
the optimal solution by fixing one intermediate deadline at
each step. Whenever an intermediate deadline is determined, it
will never be updated. By smartly choosing the order in which

segments are considered, we can guarantee that the optimality
of the global solution will not be affected by the local decision
taken for a particular segment.

Our algorithm must therefore determine the optimal inter-
mediate deadlines d∗i,j for the set of segments σi,j ∈ τi (i.e.,
the intermediate deadlines minimizing the maximal segment
density), while respecting the constraints (3) and (4) described
in the previous section.

Similarly to the definition of d∗i,j , the optimal density δ∗i,j

of a segment σi,j is defined as
Ci,j
d∗i,j

.

In the following, we denote by S`i the set of segments we
still need to consider at the `th step of the greedy algorithm
(i.e., the segments σi,j that do not have an associated deadline
yet). Hence, it initially holds that S1

i
def
= {σi,j ∈ τi}. Similarly,

L`i denotes the amount of time that may be distributed among
the segments in S`i , assuming that L1

i
def
= Di. Therefore, at the

`th iteration, there is a segment σi,j such that S`+1
i = S`i \σi,j ,

and L`+1
i = L`i − d∗i,j .

We define the WCET of the remaining segments at iteration
` as

C`i
def
=

∑
σi,j∈S`

i

Ci,j (5)

and the average density at iteration ` as δ`i
def
=

C`i
L`i

.

Similarly, the maximum instantaneous density of the set of
segments S`i is defined as

δ`max
i

def
= max

σi,j∈S`
i

{δi,j}

Notice that C1
i = Ci, δ1i = δi and δ1max

i = δmax
i , where

δmax
i

def
= max σi,j∈τi {δi,j}. Table II summarizes the notations

used in the problem presented in this section.

The algorithm presented in this section is based on a simple
property that can be expressed as follows:

Property 2. Let L`i be the time that must be distributed among
the segments belonging to S`i . The maximum instantaneous
density δ`max

i of any solution (i.e., even suboptimal) cannot
be smaller than the average density δ`i . (i.e., δ`max

i ≥ δ`i , ∀`).

This property is directly derived from the fact that the
maximum value of a set is never lower than the average
value of the same set. Another interesting property is presented
through Lemma 2 and its corollary.

Lemma 2. If the time L`i that must be distributed among
the segments belonging to a set S`i increases, then, the
optimal maximum instantaneous density δ`max ∗

i of S`i can only
decrease.

Proof: If the time L`i increases by ∆ time units, we can
distribute ∆ among the segments with the largest densities δ∗i,j .
The densities δ∗i,j of these segments are then reduced which

in turn implies that δ`max ∗
i

def
= max

σi,j∈S`
i

{
δ∗i,j
}

decreases.



Corollary 1. If the time L`i that must be distributed among
the segments belonging to a set S`i decreases, then, the
optimal maximum instantaneous density δ`max ∗

i of S`i can only
increase.

Thanks to these properties, we can now construct our
algorithm.

According to Equation 4, the relative deadline di,j of a
segment σi,j cannot be smaller than Cmin

i,j . Since Cmin
i,j is a

lower bound on the relative deadline of σi,j , we define the
density upper bound of σi,j as

δ̂i,j
def
=

Ci,j
Cmin
i,j

(6)

Two situations can be encountered at any step ` of our al-
gorithm. Either the density upper bound δ̂i,j of every segment
σi,j ∈ S`i is not smaller than the average density δ`i

def
=

C`
i

L`
i

, or

there is a segment σi,j ∈ S`i such that δ̂i,j < δ`i . These two
cases must be considered independently.

Lemma 3. If, for every segment σi,j ∈ S`i , we have δ̂i,j ≥ δ`i ,
then, in order to minimize the maximum instantaneous density
δ`max
i of S`i , we must impose δi,j = δ`i to every segment
σi,j ∈ S`i (i.e., δ∗i,j = δ`i , ∀σi,j ∈ S`i ). Furthermore, we get
δ`max ∗
i = δ`i .

Proof: Let us assume that every segment σi,j in S`i has
a density δi,j equal to δ`i . Since δ`max

i = maxσi,j∈S`
i
{δi,j},

we get that δ`max
i = δ`i .

Furthermore, by Property 2, the maximum instantaneous
density δ`max

i cannot be smaller than δ`i . Therefore, δ`max
i

is minimum when δi,j = δ`i for every segment σi,j in S`i .

Lemma 4. Let S`i be a set of segments and δ`i be its average
density on L`i . If there is a segment σi,j ∈ S`i such that δ̂i,j <
δ`i , then, in order to minimize the maximum density δ`max

i of
S`i on L`i , we must impose δi,j = δ̂i,j (i.e., δ∗i,j = δ̂i,j).

Proof: Let C`i be the total worst-case execution time of
S`i . Let us assume that σi,j has a worst-case execution time
Ci,j . We must determine the relative-deadline di,j for σi,j so
that the maximum density of S`i is minimized on L`i . Let S`+1

i

denote the set S`i r σi,j . We have C`+1
i

def
= C`i −Ci,j and the

resolution of the optimization problem implies the resolution
of the subproblem of dispatching L`+1

i time units on the set
of segments S`+1

i .
The density of σi,j can be expressed as δi,j

def
=

Ci,j

di,j
.

Therefore, it holds that δi,j × di,j = Ci,j . Since Ci,j is
constant, if δi,j decreases then di,j increases. Hence, the
time L`i − di,j that must be distributed among the segments
belonging to S`+1

i decreases.
Consequently, by Corollary 1, δ`+1max ∗

i , the maximum
density of S`+1

i can only increase.
Furthermore, by Property 2, δ`max

i cannot be smaller than
δ`i . Since, by assumption, the maximum density δ̂i,j reachable
by σi,j is smaller than δ`i , then, δ`max

i = δ`+1max ∗
i .

Algorithm 1: Deadlines assignment algorithm.
Input: τi;

1 S1
i := {σi,j ∈ τi}; // Ordered by δ̂i,j

2 C1
i := Ci;

3 L1
i := Di;

4 for ` : 1→ ni do
5 δ`i :=

C`
i

L`
i

;

6 σi,j := first segment of S`i (i.e., with the minimal δ̂i,j) ;
7 if δ̂i,j < δ`i then
8 d∗i,j := Cmin

i,j ; // Rule 2
9 else

10 ∀σi,j ∈ S`i : d∗i,j :=
Ci,j

δ`i
; // Rule 1

11 break;
12 end
13 S`+1

i := S`i \ σi,j ;
14 C`+1

i := C`i − Ci,j ;
15 L`+1

i := L`i − d∗i,j ;
16 end

Hence, δi,j must be maximized to minimize δ`max
i . There-

fore, we have to impose δi,j = δ̂i,j which states the lemma.

Since δi,j =
Ci,j

di,j
, we derive from Lemmas 3 and 4, the

two following rules to minimize the maximum instantaneous
density δ`max

i of any problem of dispatching L`i time units
among the set of segments S`i .

Rule 1. If, for every segment σi,j ∈ S`i we have δ̂i,j ≥ δ`i
then d∗i,j =

Ci,j

δ`i
for all segments in S`i .

Rule 2. Let σi,j be a segment in S`i . If δ̂i,j < δ`i then we have
d∗i,j = Cmin

i,j .

These two rules lead to Algorithm 1 which is used to
determine the segment relative deadlines of a task τi.

First, the algorithm computes the maximum reachable den-
sity δ̂i,j of every segment σi,j belonging to τi and sorts the
segments in an increasing δ̂i,j order (Line 1). Then, at the
step ` of Algorithm 1, it selects the segment σi,j with the
smallest density upper bound among the remaining segments,
and compares δ̂i,j with the average density δ`i of S`i (Line 6).
If δ̂i,j < δ`i then we apply Rule 2 (Line 8). Otherwise, we
can use Rule 1 to compute the segment deadline (Line 10).
Finally, whenever the optimal deadline d∗i,j of a segment σi,j
has been determined, σi,j is removed from the problem, and
the values S`+1

i , C`+1
i and L`+1

i are computed accordingly
(Lines 13 to 15).

Theorem 1. If, ∀i,
∑
j C

min
i,j ≤ Di, Algorithm 1 provides an

optimal solution to the problem of dispatching Di time units
amongst the ni segments of τi.

Proof: To prove the optimality of the solution proposed
by Algorithm 1, we must prove that δmax

i is minimum and all
constraints expressed by Equations 3 and 4 are respected.

1) Since the segments are ordered in an increasing δ̂i,j



order, we first compute the relative deadlines of the
segments with the smallest δ̂i,j values. Therefore, if
δ̂i,j ≥ δ`i , then all the remaining segments in S`i have
δ̂i,j ≥ δ`i . Hence, we can apply Lemma 3 to determine
the optimal deadline of σi,j while minimizing δ`max

i . It
is exactly what is done at line 10 of Algorithm 1. On the
other hand, if δ̂i,j < δ`i , then, according to Lemma 4 we
must maximize the density of σi,j in order to minimize
δmax
i . Consequently, Line 8 in Algorithm 1 applies

Rule 2 which is the direct consequence of Lemma 4.
Hence, in both cases, Algorithm 1 applies the correct
rule to minimize δmax

i .
2) Proving that

∑
j d
∗
i,j = Di is straightforward if the

algorithms enters the “else” bloc (Line 10). Indeed, by
applying Rule 2, the algorithm dispatches the remaining
L`i times units between all the remaining segments in
S`i . Then,

∑
σi,j∈S`

i
d∗i,j = L`i . As, by construction

(see Line 15), L`i = Di −
∑
σi,j /∈S`

i
d∗i,j , we have that∑

σi,j∈τi d
∗
i,j = Di.

We still need to prove that Algorithm 1 eventually enters
the “else” bloc. By contradiction, let us assume that we
always have δ̂i,j < δ`i . It means that for the very last
segment in S`i (say, σi,a ; then C`i = Ci,a), we have
δ̂i,a =

Ci,a

Cmin
i,a

< δ`i =
C`

i

L`
i

=
Ci,a

L`
i

. Then, Cmin
i,a > L`i .

As, by Lines 8 and 15 (and we never enter the “else”),
L`i = Di −

∑
j 6=a C

min
i,j , we have that

∑
j C

min
i,j > Di,

which contradicts with the hypothesis of the theorem.
3) For every segment σi,j belonging to τi, Algorithm 1

determines d∗i,j according to Rules 1 and 2. These
rules are based on Lemmas 3 and 4, respectively. Since
Lemmas 3 and 4 impose that δi,j ≤ δ̂i,j , it yields
d∗i,j ≥ Cmin

i,j from Equation 6. Hence, the constraint
formulated by Equation 4 is respected.

Consequently, Algorithm 1 optimally resolves the optimiza-
tion problem described in Section V.

Theorem 2. The computational complexity to determine the
optimal segment deadlines for a task τi with Algorithm 1 is
O(ni × log ni).

Proof: Algorithm 1 starts by sorting the ni segments
belonging to τi in an increasing δ̂i,j order (Line 1). This ma-
nipulation has a computational complexity of O(ni × log ni).
Then, the for loop executed at Lines 6 to 15, iterates at most
ni times (once for each segment of τi). Since the computation
time of d∗i,j is constant, the computational complexity of the
loop is O(ni). Therefore, the total computational complexity
of Algorithm 1 is dominated by the sorting algorithm, and is
then O(ni × log ni).

VII. RESOURCE AUGMENTATION BOUND

Let τ∗ denote the task set τ when intermediate deadlines
have been allocated to segments using one of the two tech-
niques proposed in Sections V and VI. We first prove in
Lemma 5 that every segment σi,j of any task in τ∗ has a
density δi,j <

Ci

Di−
∑ni

k=1 C
min
i,k

. This property is then used to

prove that both the offline and the online technique presented
in Sections V and VI, achieve a resource augmentation bound
of 2 when threads in τ∗ are scheduled using algorithms such
as U-EDF, PD2, LLREF or DP-Wrap.

Lemma 5. Every segment σi,j of every task in τ∗ has a density

δi,j <
Ci

Di −
∑ni

k=1 C
min
i,k

Proof: According to Algorithm 1, we have δ`i =
C`

i

L`
i

. Fur-
thermore, Algorithm 1 implies that L`i = Di−

∑
σi,k /∈S`

i
Cmin
i,k

(as, as soon as the condition of line 7 is not valid anymore,
the loop ends) and using Expression 5, we get

δ`i =

∑
σi,q∈S`

i
Ci,q

Di −
∑
σi,k /∈S`

i
Cmin
i,k

Furthermore, since
∑
σi,q∈S`

i
Ci,q ≤

∑
σi,q∈τi Ci,q = Ci and

because,
∑
σi,k /∈S`

i
Cmin
i,k <

∑
σi,k∈τi C

min
i,k , it holds that

δ`i <
Ci

Di −
∑ni

k=1 C
min
i,k

Because at every step `, Algorithm 1 imposes:
• δi,j = δ̂i,j if δ̂i,j < δ`i
• δi,j = δ`i otherwise.

We have in both cases: δi,j ≤ δ`i <
Ci

Di −
∑ni

k=1 C
min
i,k

.

Hence, the lemma is proven for Algorithm 1.
Since the resolution of the optimization problem presented

in Section V, minimizes the maximum density reachable by
every segment in τi, and because Algorithm 1 get δi,j <

Ci

Di−
∑ni

k=1 C
min
i,k

for every segment σi,j , it must hold that

δi,j <
Ci

Di−
∑ni

k=1 C
min
i,k

with the optimization algorithm.
This states the lemma.

Theorem 3. If a periodic multi-threaded task set τ is schedu-
lable on m unit-speed identical processors using any optimal
algorithm, then the task set τ∗ is schedulable on m identical
processors of speed 2, using any algorithm respecting Prop-
erty 1.

Proof: According to Lemma 5 any segment of any
task in τ∗ has a density δi,j < Ci

Di−
∑ni

k=1 C
min
i,k

on a unit-
speed processor. Hence, the maximum instantaneous density
achievable in τ∗ is given by

δmax =
∑
τi∈τ

max
j
{δi,j} <

∑
τi∈τ

{
Ci

Di −
∑ni

k=1 C
min
i,k

}
Furthermore, if the processors in the platform are v times
faster, then all the worst-case execution times are divided by
v. Hence, the maximum instantaneous density becomes

δmax ,v <
∑
τi∈τ

 Ci

v

Di −
∑ni

k=1 C
min
i,k

v
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Fig. 2: (a) Generalized task model where threads can run
in parallel with several successive segments. (b) General
representation of the same problem where a segment σi,` is
simultaneously active with segments σi,`+1 to σi,`+p.

Applying Lemma 1 to this expression (with L, the available
time, being replaced by Di), implies that

δmax ,v <
∑
τi∈τ

{
Ci

v

Di − Di

v

}
=

1

v − 1

∑
τi∈τ

Ci
Di

A periodic task set is schedulable by any optimal algorithm
on m unit-speed processors if

∑
τi∈τ

Ci

Di
≤ m. Hence,

δmax ,v <
1

v − 1
m

Furthermore, any algorithm respecting Property 1 imposes that
δmax ,v ≤ m. This condition is therefore respected if

1

v − 1
m ≤ m

thereby, by imposing a processor speed v of 2, we guarantee
no task will ever miss any deadline.

Note that the same approach can be used to derive an
augmentation bound for other algorithms such as global EDF,
as long as the schedulability test is based on densities. Hence,
it can be proven that global EDF has an augmentation bound of
2.62 using the schedulability test (Test 10) proposed in [18].

VIII. TASK MODEL GENERALIZATION

In the model considered so far, we assumed that threads of
a same segment can be executed in parallel, but segments of a
same task cannot. Although this task representation is realistic
for many applications, it is also simplistic. For instance, let us
consider the task τi represented on Figure 2(a). Its execution
starts with a single thread (numbered 1). Then, the first thread

forks in three threads indexed 2, 3 and 4. However, contrarily
to threads 2 and 3, at a certain point of its execution the thread
4 can be parallelized in two other threads numbered 5 and
6. Finally, all active threads must complete their execution
before executing the last thread 7. In this example, we have
one segment composed of threads 2 and 3 which is running
concurrently with two other segments containing thread 4 and
threads 5 and 6, respectively.

Therefore, in this section we generalize the task model,
allowing several segments of the same task to run in parallel.
Then, we propose some variations of the offline approach to
minimize the number of processors needed to schedule such
parallel tasks.

A. One Parallel Segment

Let us first consider a task τi (pictured on Fig. 2(b))
containing one (and only one) segment σi,` running in parallel
with p consecutive segments σi,`+1 to σi,`+p. We remind the
reader that each segment is composed of several threads (as
illustrated in the example of Fig. 2(a)).

From the segment point of view, we say that the segments
σi,` to σi,`+p belong to a parallel phase. This parallel phase is
composed of two branches: a first branch containing only one
segment σi,`, and a second branch constituted of p successive
segments σi,`+1 to σi,`+p. For the sake of clarity, we assume
that there is only one parallel phase. However, the solution
presented in this section is straightforwardly applicable to
tasks containing several parallel phases.

The technique computing the segment intermediate dead-
lines is similar to the approach proposed in Section V. Since
the instantaneous density of a task at time t is equal to the
sum of the densities of its segments running at time t, we
define an optimization problem considering that the densities
of segments σi,`+1 to σi,`+p, are increased by the density δi,`
of the segment σi,`. Furthermore, as we can see on Fig. 2(b),
the deadline di,` of the segment σi,` must be equal the sum
of the deadlines allocated to segments σi,`+1 to σi,`+p.

Therefore, the optimization problem can be expressed as
follows: ∀τi ∈ τ ,

Minimize: max
j 6=`

{
δ′i,j
}

(7)

Subject to:
∑
j 6=`

di,j = Di (8)

∀σi,j ∈ τi , di,j ≥ Cmin
i,j (9)

p∑
q=1

di,`+q = di,` (10)

where δ′i,j
def
=

{
δi,j + δi,` if j ∈ [`+ 1, . . . , `+ p]
δi,j otherwise

This new optimization problem is non-linear. However, the
constraints and objective functions are convex. Hence, a non-
linear programming technique such as [21] can be used to
efficiently solve this new problem.
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Fig. 3: Work of segment σi,` being dispatched amongst the p
successive segments σi,`+1 to σi,`+p. Each thread of σi,` is
split in p parts.

B. Splitting the Parallel Segment

The approach proposed above is rather pessimistic. Indeed,
it assumes that the segment σi,` is uniformly executed in
parallel with the segments σi,`+1 to σi,`+p, meaning that it
increases the densities of all segments σi,`+1 to σi,`+p by the
same value δi,`. A better technique consists in dispatching
σi,`’s workload so that more work is executed in parallel
with segments with low densities and less work on densest
segments. Hence, every thread θi,`,k belonging to σi,` is
divided in p parts associated with the p segments σi,`+1 to
σi,`+p (see Fig. 3). Each part has a worst-case execution time
cqi,`,k representing the portion of Ci,`,k executed in parallel
with segment σi,`+q (q ∈ [1, . . . , p]). This quantity is a new
variable in our optimization problem. We therefore re-define
the optimization problem as follows: ∀τi ∈ τ ,

Minimize: max
j 6=`

{
δ′i,j
}

(11)

Subject to:
∑
j 6=`

di,j = Di (12)

∀σi,j ∈ τi , di,j ≥ Cmin
i,j (13)

∀θi,`,k ∈ σi,` ,
p∑
q=1

cqi,`,k = Ci,`,k (14)

∀j ∈ [`+ 1, . . . , `+ p],∀k, di,j ≥ cj−`i,`,k(15)

where δ′i,j
def
=

{
Ci,j+

∑ni,`
k=1 c

j−`
i,`,k

di,j
if j ∈ [`+ 1, . . . , `+ p]

δi,j otherwise.

Constraint (14) ensures that the entire workload of σi,` is
dispatched amongst the segments σi,`+1 to σi,`+p. On the
other hand, constraint (15) makes sure that the work allocated
in each segment is not greater than its deadline. As in the
previous case, the problem is non linear, but is still convex,
and can therefore be solved efficiently [21].

C. General Problem

The model defined in the previous section can still be further
generalized. Instead of considering one branch containing only
one segment and another branch containing several segments,
we may consider that the parallel phase is composed of
several branches with, respectively, p1, p2, p3, . . . segments.

1

2 3

4 5 6 8

7

(a)

4
5 6

7 8

9

2 3

101

(b)

Fig. 4: Two examples of more general models. (a) A task
containing a parallel phase composed of several branches of
various size. (b) A task described by a DAG.

Figure 4(a) shows an example where p1 = 2, p2 = 3 and
p3 = 1. In this case, finding the maximal density of a
task requires to consider all combinations of segments that
may run concurrently. For instance, in Figure 4(a), segment
number 1 will never run in parallel with any other seg-
ment, but segments {2, 4, 7} may run in parallel, as well
as {2, 5, 7}, {2, 6, 7}, {3, 4, 7}, {3, 5, 7} or {3, 6, 7}. Then, in
order to minimize the maximum density of task τi, we now
have to minimize the following expression in place of (7):

max{δi,1, δi,2 + δi,4 + δi,7, δi,2 + δi,5 + δi,7, . . . , δi,8}

The number of terms in the objective function is then p1 ×
p2 × p3 × . . . , plus the number of segments in the sequential
phases. Furthermore, as we did with constraints (8) and (10),
we need to make sure that

Di = di,1 + di,2 + di,3 + di,8

= di,1 + di,4 + di,5 + di,6 + di,8

= di,1 + di,7 + di,8

There is then as many such constraints as there are branches in
task τi. Of course, we still need to make sure that ∀σi,j , di,j ≥
Cmin
i,j (constraint (9)). The method described in Section VIII-A

can then be easily extended to this new problem.
More generally, we may consider any Directed Acyclic

Graph (DAG) to represent the dependencies between seg-
ments, as in Figure 4(b). Our objective function needs now to
consider any set of segments that could possibly run in parallel.
Note that such segment combination is called a maximal anti-
chain in the graph community4. In our example, we have
{1}, {2, 4}, {2, 5, 7}, {2, 5, 8}, {2, 6, 7}, . . . , {3, 9}, {10}.

4Algorithms enumerating all the maximal anti-chains in a graph can be
found in [22]
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Fig. 5: Simulation results comparing the number of processors needed to schedule a task set τ , when using Algorithm 1, the
algorithm proposed in [7] and the “over-optimal” schedulability bound (m =

∑
τi∈τ δi).

Therefore, the objective function that must be minimized is:

max{δi,1, δi,2 + δi,4, δi,2 + δi,5 + δi,7, . . . , δi,3 + δi,9, δi,10}

In our example, there are 14 possible segment combinations.
Note that, in some particular cases, the number of anti-
chains could grow exponentially with the number of seg-
ments. Furthermore, the number of constraints depends on
the structure of the DAG: for any possible “path” going
through the graph (called a maximal chain in the literature),
the sum of intermediate deadlines has to be equal to Di. In our
example, we have only 3 paths ({1, 2, 3, 10}, {1, 4, 5, 6, 9, 10}
or {1, 4, 7, 8, 9, 10}). Hence, for each path we get one more
constraint. Note that the number of paths could also grow ex-
ponentially with the number of segments in some pathological
cases.

IX. SIMULATION RESULTS

We evaluated the performances of Algorithm 1 through
three different experiments. Note that Algorithm 1 provides
an optimal solution for the optimization problem presented
in Section V. Hence, the simulation results discussed in
this section also hold for the offline technique. Furthermore,
the generalization of the offline technique presented in Sec-
tion VIII cannot be compared with any other solution since
such a solution did not yet exist. Usually, the offline approach
finds a solution in a few seconds for the general task model.
This is more than reasonable for an algorithm executed offline.

In the first experiment, we randomly generated 100, 000
task sets and computed the number of processors needed to
ensure that all tasks respect their deadlines. We compared
our method with the methodology proposed in [7]. We also
compared both solutions with a lower bound on this number of
processors, obtained by summing up the density δi of all tasks
(i.e., m =

∑
τi∈τ δi). We named this bound “over-optimal”, as

even an optimal algorithm cannot always reach this bound [6].
Nevertheless, it gives a good idea on the quality of the solution
found with Algorithm 1.

In our tests, each task set is composed of 50 tasks. Each task
has a number of segments ni randomly chosen in a uniform
distribution within [1, 30]. To be coherent with the model
presented in [7], we assume that all threads in a segment σi,j

have an identical worst-case execution time Cmin
i,j randomly

chosen within [1, 100]5. The number of threads ni,j belonging
to a segment σi,j is randomly chosen within [1, 50]. The
deadline Di of the task τi belongs to the interval extend-
ing from

∑
σi,j∈τi C

min
i,j to

∑
σi,j∈τi ni,j × C

min
i,j . Indeed, as

stated in Lemma 1, the task set is not feasible if Di <∑
σi,j∈τi C

min
i,j . On the other hand, all threads in τi can be

executed consecutively (without any kind of parallelism) and
still respect the task deadline when Di >

∑
σi,j∈τi ni,j×C

min
i,j .

Hence the solution would have been trivial and identical for
both Algorithm 1 and the method proposed in [7]. In all
experiments, we assume that the tasks are scheduled with an
optimal algorithm such as U-EDF, LLREF or PD2.

The results are presented in Fig. 5(a). The curve
“ [7] vs Algorithm 1” in Fig. 5(a) for instance, represents the
distribution of the task sets regarding the difference between
the number of processors needed with Algorithm 1 and the
solution provided by [7]. We can observe that our algorithm
performs quite well against the “over-optimal” bound. Indeed,
in average, it needs less than 5% more processors than the
“over-optimal” bound (which may not be reachable). The me-
dian value is even under 4%. On the other hand, the algorithm
proposed in [7] needs in average 25.5% processors more than
the over-optimal bound. Furthermore, its distribution is widely
spread leading to a standard deviation greater than 11.5%.
Therefore, the algorithm in [7] logically needs almost 20%
more processors than our methodology (in average). Even
worst, we detected in some particular cases, a difference of
210% between the number of processors needed with our
solution and the algorithm proposed in [7]. That is, the method
presented in [7] may need three times more processors than
ours for some specific task sets.

The second experiment gives the average value of the
relative difference between the number of processors needed
with the three techniques, when the number of tasks in τ
varies within [1, 100]. Each point in Fig. 5(b) is the result of
10, 000 simulations. We can observe that the average value is

5Notice that the fact that all threads have the same worst-case execution
time will not impact the quality of the simulation results. Indeed, the only
parameters actually used in Algorithm 1 are Ci,j and Cmin

i,j . The solution is
therefore independent of the particular Ci,j,k values.



small when there are few tasks in the system, but increases
when the number of tasks grows. Inversely, the standard
deviation is high for small task systems but decreases when
the system grows. We note that the average difference between
the number of processors needed with [7] and our solution
seems to stabilize around 20% when the number of tasks
is greater than 20. On the other hand, the average relative
difference on m when we compare our algorithm with the
over-optimal solution, never exceeds 6%. This means that even
if we constrain the system by imposing deadlines to the task
segments, the number of processors needed when using our
methodology in conjunction with a scheduling algorithm such
as U-EDF, LLREF or PD2, remains close to the minimum
number of processors which could ever be reached.

Finally, the third experiment shows the sensitivity of the
solution produced by the algorithm proposed in [7], to the
maximum number of threads ni,j composing each segment
σi,j (see Fig. 5(c)). Again, each point is the result of 10, 000
simulations. The variation of the average value of the relative
difference between our solution and the algorithm in [7] is
due to the fact that the methodology presented in [7] divides
the segments in two groups: the light and the heavy segments.
The distinction between these two kinds of segments is based
on the number of threads ni,j composing each segment σi,j .
When all segments are considered as being heavy, the solution
proposed by [7] is optimal and identical to ours. On the other
hand, when all segments are light, the solution proposed by [7]
is almost systematically suboptimal. Since there are more and
more task sets with only heavy segments when the maximum
value of ni,j increases, and since there are more and more task
sets with only light segments when the maximum value of ni,j
decreases, the trend of Fig. 5(c) can easily be explained.

X. CONCLUSION AND FUTURE WORKS

In this paper, we propose two new techniques determining
the relative deadlines that must be applied to each segment
belonging to a parallel task τi in order to optimize the number
of processors needed to schedule the task set. The first ap-
proach consists in an optimization problem that can be solved
offline. The second approach is a greedy algorithm which
optimally solves the optimization problem with a complexity
of O(ni × log(ni)). The advantage of the first technique is
that it can be easily extended to very general and realistic
models of tasks, where segments, instead of being sequential,
are organized in a DAG. However, this generalization is at
the expense of an increasing complexity of the optimization
problem. The advantage of the second model lies in his very
low complexity, allowing to execute this algorithm online.
Hence, this second solution is particularly well suited for
dynamic task systems where all task informations are not
known at design time.

We proved that both techniques achieve a resource augmen-
tation bound of 2 when threads are scheduled with algorithms
such as U-EDF, PD2, LLREF or DP-Wrap, in comparison with
algorithms that do not impose intermediate deadlines. We also
showed through simulations that our methodology to compute

the segment deadlines may drastically improve the number
of processors needed in the processing platform compared to
previous works (up to three times less).

As future works, we aim at proposing an algorithm with
a low run-time complexity, determining the optimal segment
deadlines for the generalized parallel task model presented in
this paper. Furthermore, we will study how both approaches
could be extended to ensure the schedulability of task sets
constituted of parallel tasks with dependencies. Finally, we
would like to extend this approach to partitioned and semi-
partitioned algorithms.
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