
31st Annual International Symposium on Computer Architecture (ISCA), June 2004
Abstract

Transient faults due to neutron and alpha particle strikes pose
a significant obstacle to increasing processor transistor counts in
future technologies. Although fault rates of individual transistors
may not rise significantly, incorporating more transistors into a
device makes that device more likely to encounter a fault. Hence,
maintaining processor error rates at acceptable levels will require
increasing design effort.

This paper proposes two simple approaches to reduce error
rates and evaluates their application to a microprocessor instruc-
tion queue. The first technique reduces the time instructions sit in
vulnerable storage structures by selectively squashing instructions
when long delays are encountered. A fault is less likely to cause an
error if the structure it affects does not contain valid instructions.
We introduce a new metric, MITF (Mean Instructions To Failure),
to capture the trade-off between performance and reliability intro-
duced by this approach.

The second technique addresses false detected errors. In the
absence of a fault detection mechanism, such errors would not
have affected the final outcome of a program. For example, a fault
affecting the result of a dynamically dead instruction would not
change the final program output, but could still be flagged by the
hardware as an error. To avoid signalling such false errors, we
modify a pipeline's error detection logic to mark affected instruc-
tions and data as possibly incorrect rather than immediately sig-
naling an error. Then, we signal an error only if we determine later
that the possibly incorrect value could have affected the program’s
output.

1. Introduction

Single bit upsets from transient faults have emerged as a
key challenge in microprocessor design. These faults arise
from energetic particles—such as neutrons from cosmic rays
and alpha particles from packaging material—generating elec-
tron-hole pairs as they pass through a semiconductor device.
Transistor source and diffusion nodes can collect these charges.
A sufficient amount of accumulated charge may invert the state
of a logic device—such as an SRAM cell, a latch, or a gate—
thereby introducing a logical fault into the circuit’s operation
[32]. Because this type of fault does not reflect a permanent
failure of the device, it is termed soft or transient.

Soft errors will be an increasing burden for microproces-
sor designers as the number of on-chip transistors continues to
grow exponentially. The raw error rate per latch or SRAM bit is
projected to remain roughly constant or decrease slightly for
the next several technology generations [9][11]. Thus, unless

we add error protection mechanisms or use a more robust tech-
nology (such as fully-depleted SOI), a microprocessor’s error
rate will grow in direct proportion to the number of devices we
add to a processor in each succeeding generation.

Figure 1 illustrates the possible outcomes of a single-bit
fault. Outcomes labeled 1-3 indicate non-error conditions. The
most insidious form of error is silent data corruption (SDC)
(outcome 4), where a fault induces the system to generate erro-
neous outputs. To avoid SDC, designers often employ basic
error detection mechanisms, such as parity. With the ability to
detect a fault but not correct it, we avoid generating incorrect
outputs, but cannot recover when an error occurs. In other
words, simple error detection does not reduce the error rate, but
does provide fail-stop behavior and thereby avoids any data
corruption. We call errors in this category detected unrecover-
able errors (DUE).

We subdivide DUE events according to whether the
detected error would affect the final outcome of the execution.
We call benign detected errors false DUE events (outcome 5 in
Figure 1) and others true DUE events (outcome 6). In most sit-
uations, it is impossible for a processor to determine at the time
an error is detected whether it is benign. The conservative
approach is to signal all detected errors as processor failures
(e.g., via a machine-check exception).

A direct approach to reducing error rates involves adding
error correction or recovery mechanisms to a design, eliminat-

Techniques to Reduce the Soft Error Rate of a High-Performance Microprocessor
Christopher Weaver1, Joel Emer1, Shubhendu S. Mukherjee1, and Steven K. Reinhardt1,2

1Massachusetts Microprocessor Design Center
Intel Corporation
77 Reed Road, Hudson MA 01749
{christopher.t.weaver,joel.emer,shubu.mukherjee}@intel.com

2Advanced Computer Architecture Lab
EECS Department, University of Michigan
1301 Beal Avenue, Ann Arbor, MI 48109
stever@eecs.umich.edu

bit has
error protection?

faulty bit is
read?

benign fault;
no error

no yes

benign fault;
no error

fault corrected;
no error

Figure 1. Classification of the possible outcomes of a faulty bit
in a microprocessor. SDC = silent data corruption. DUE =
detected unrecoverable error.

no detection
detection &

no
yes

SDC false DUE true DUE

noyes

affects program out-
come?

correction
only

4

2

1

3 5 6

affects program out-
come?
1

31st Annual International Symposium on Computer Architecture (ISCA), June 2004
ing outcomes 3 through 6 from Figure 1. Unfortunately, these
mechanisms come at a significant cost in power, performance,
and area. Circuit-level recovery mechanisms, such as the DICE
cell [6], can double the number of transistors per storage ele-
ment. Error correction codes in memory have significant stor-
age overhead and incur additional latency in generating and
checking the codes. Recovery with redundant execution
schemes (e.g., [2], [29], [8]) requires duplication of a thread or
processor. Furthermore, these techniques may be overkill for
most of the microprocessor market, which requires good reli-
ability but not bulletproof operation.

This paper focuses on an alternative mechanism to lower-
ing error rates: reducing the likelihood that a transient fault
causes the processor to declare an error condition. We propose
two variations on this theme, with specific application to a
microprocessor instruction queue.

Our first approach reduces the probability that a transient
fault affects valid state (e.g., an instruction) by keeping valid
state out of vulnerable structures. This reduces the exposure of
valid state to radiation and, hence, lowers the soft error rate of
the affected structures. For example, most bits in an invalid
instruction queue entry (other than the valid bit itself) will
never be read; thus a fault in an invalid entry will not result in
an error (outcome 1 from Figure 1). By filling the instruction
queue with invalid entries instead of valid instructions during
lengthy stalls, we reduce the probability of a neutron or alpha
particle strike corrupting a valid instruction. In general, we use
situations that presage long delays as triggers to carry out
actions that reduce the exposure of valid state to potential
faults. In this paper, we examine cache-miss triggers and
squashing actions to remove existing instructions from the
instruction queue. Our results with an Itanium2-like proces-
sor running the SPEC CPU2000 show that these techniques can
reduce the instruction queue’s soft error rate by 18-34% for
only a 2-10% decrease in overall IPC.

Because such stalling operations may reduce performance,
we must determine whether the performance loss is justified for
the corresponding gain in reliability. To quantify this trade-off,
we introduce a new metric, Mean Instructions to Failure
(MITF). We show that as long as the relative decrease in vul-
nerability is larger than the corresponding decrease in IPC
(instructions per cycle), our technique will allow a CPU to
complete more work on average before encountering an error.
Our results show that instruction squashing can increase the
instruction queue’s MITF by 15-39%, possibly justifying the
use of these techniques.

Our second approach addresses the distinction between
false and true DUE events shown in Figure 1. In a micropro-
cessor, false DUE events could arise from strikes on wrong-
path instructions, falsely predicated instructions, and on cor-
rect-path instructions that do not affect the final program state,
including no-ops, prefetches, and dynamically dead instruc-
tions. Mukherjee, et al. [18] and Wang, et al. [30] describe sev-
eral instances of such faults that do not manifest as errors in the
final output of a program. Our analysis shows that false DUE

events account for as much as 52% of the total DUE rate of an
instruction queue protected only with parity.

To track false DUE events, we propose attaching a bit
called the π bit (pi for possibly incorrect) to every instruction
and potentially to various hardware structures. When an error is
detected, the hardware will set the π bit of the affected instruc-
tion instead of signaling the error. Later, by examining the π bit
and identifying the nature of the instruction, the hardware can
decide if indeed a visible error has occurred. Thus, for exam-
ple, the retire unit in a pipeline can ignore the π bit of a wrong-
path instruction and avoid signaling a false error. Among the
different categories of instructions, identifying dynamically
dead instructions is most involved. We propose several mecha-
nisms, including a Post-commit Error Tracking (PET) buffer
and the optional use of π bits on register files, various hard-
ware structures, and in the memory system, to provide good
coverage of false DUE from dynamically dead instructions.
Using the above techniques, we can cover 100% of the false
DUE events. We show that the combination of the exposure
and false DUE reduction techniques reduce the SDC rate of an
unprotected instruction queue by 26% and the DUE rate of an
instruction queue protected with parity by 57%.

Overall this paper makes four contributions. First, we pro-
pose a new approach to reducing soft error rates by reducing
the exposure of valid state to neutron or alpha strikes. Second,
we introduce the term MITF (mean instructions between fail-
ures) to reason about the trade-off between reliability and per-
formance. Third, we identify the existence of false DUE
events. And, fourth and final, we describe several new mecha-
nisms, such as the π bit, to avoid flagging errors on false DUE
events.

The rest of the paper is organized as follows. Section 2
discusses how to compute the SDC and DUE rates of a micro-
processor. Section 3 describes how to reduce the error rate of a
processor by reducing the amount of time an instruction sits in
a vulnerable storage structure. Section 4 describes how to
reduce false DUE rate by marking instructions as possibly
incorrect. Section 5 describes our methodology and Section 6
shows our results. Section 7 discusses related work. Finally,
Section 8 presents our conclusions.

2. Computing the SDC and DUE Rates

This section outlines how to compute a microprocessor’s
SDC and DUE rates, given the raw soft error rate of the under-
lying circuit technology. Vendors typically specify targets for
both SDC and DUE rates of a processor [4]. A chip’s raw soft
error rate arises from neutron and alpha particle strikes, and
depends on both its circuit characteristics and the particle flux
encountered. The neutron flux from cosmic radiation depends
on the environment. For example, at an altitude of 1.5km—
e.g., in Denver, Colorado—the neutron flux is 3 to 5 times
higher than at sea level. The alpha particle flux depends on the
shielding used and on the packaging material. Circuit parame-
ters that influence the error rate include the amount of charge
stored, the vulnerable cross-section area, and charge collection
efficiency [24]. Raw error rates as well as SDC and DUE rates
2

31st Annual International Symposium on Computer Architecture (ISCA), June 2004
are typically expressed in FIT (Failures in Time). One FIT
equals one failure in a billion hours. FIT is inversely related to
MTBF (mean time between failures). An MTBF of one year
equals 114,155 FIT (= 109 / (24 * 365)).

In this paper, we consider only errors caused by single-bit
faults. Multi-bit faults—caused by a single particle strike
affecting multiple cells, or by multiple strikes—can cause SDC
events in structures with single-bit error detection (e.g., parity)
and DUE events in structures with single-bit error correction
(e.g., SECDED ECC). The probability of multi-bit faults is,
however, orders of magnitude lower than that of single bit
faults. Additionally, careful design, such as interleaving cells
from different entries in the physical layout or scrubbing a
structure periodically, can make multi-bit faults in the domain
of a single parity- or ECC-protected block extremely unlikely
[16]. To simplify our analysis, we assume that there is zero
probability of multi-bit faults that can defeat any error detec-
tion or correction scheme.

2.1. Computing the SDC Rate

To compute the SDC rate of a processor, we use the fol-
lowing equation:

That is, the contribution of each device in the system to the
overall SDC rate is the product of that device’s raw error rate
with its SDC architectural vulnerability factor, or AVF. A
device’s SDC AVF expresses the probability that a strike
affecting that device eventually results in an error in a pro-
gram’s output. A device that is protected by an error detection
or correction mechanism cannot cause an SDC event (assuming
single-bit errors), so its SDC AVF—and its contribution to the
overall SDC rate—is zero. The SDC AVF of unprotected
devices varies according to their utilization. For example, an
upset in a branch predictor bit will not result in a user-visible
error; therefore, its SDC AVF is zero. Similarly, an upset in the
program counter will most likely result in executing the wrong
instructions; therefore, the SDC AVF of the program counter is
practically 100%. Computing SDC AVFs for other structures,
such as the instruction queue, is slightly more involved because
in different processor cycles the same bit may contain informa-
tion that may or may not affect the final outcome of a program.
For example, an instruction queue entry containing information
pertaining to a wrong-path instruction will have a zero AVF. At
some other point in time, the same physical entry may contain a
vital correct-path instruction, resulting in a high AVF.

Mukherjee, et al. [18] introduced the concept of architec-
turally correct execution (ACE) to compute the SDC AVF of
such structures. Architecturally correct execution encompasses
any execution that generates results consistent with the correct
operation of the system as observed by a user. Individual
instructions may generate incorrect results without violating
ACE if those results are never observed outside the system

(e.g., they are dead values). Recent work has shown that even
executing the wrong instructions need not violate ACE [30].

A bit is called an ACE bit when it contains information
that will affect the final outcome of the program, and called an
un-ACE bit otherwise. The SDC AVF of a storage cell is the
fraction of cycles that it contains an ACE bit. If a program exe-
cutes for 10 million cycles and a storage cell contains an ACE
bit for 1 million of those cycles (and, hence an un-ACE bit for
the rest of the 9 million cycles), then the SDC AVF of that cell
is 1 / 10 = 10%. The SDC AVF of a structure is the average of
the SDC AVFs of all cells in that structure. Mukherjee, et al.
computed an SDC AVF of 28% for an unprotected instruction
queue in an Itanium2-like microprocessor.

2.2. Computing the DUE Rate

We compute the DUE rate of a microprocessor using an
equation similar to the SDC rate:

The raw soft error rate used in the DUE equation is same
as the one used for SDC. The DUE AVF is the probability that
a strike will result in a detected unrecoverable error. Only
devices that have error detection but not error correction (e.g.,
parity) will have non-zero DUE AVFs. The DUE AVF itself
can be rewritten as:

As the names indicate, true DUE AVF arises from true DUE
events, while false DUE AVF arises from false DUE events.

Interestingly, protecting a structure with an error detection
mechanism increases the overall error contribution from the
structure. A fault that would have been an SDC event now
becomes a true DUE event. Thus, we have:

However, some faults that would have been benign because the
program outcome was unaffected will now be detected, gener-
ating false DUE events. Thus the total DUE AVF of the pro-
tected structure will be at least as large as, and probably greater
than, the SDC AVF of the unprotected version. Furthermore,
error detection schemes generally add extra bits, e.g., parity
bits; the additional area consumed by these bits will raise the
raw error rate of the structure as well.

3. Reducing Exposure to Radiation
This section discusses our first approach to reducing AVF

by reducing the exposure of ACE objects to neutron and alpha
radiation. The basic idea is to keep ACE objects in protected
memory and fetch them to vulnerable storage only when
needed. If the vulnerable storage has no protection, then its
error rate would contribute towards the SDC rate of the proces-
sor. If the vulnerable storage has error detection, but no recov-
ery, then its error rate would contribute towards the DUE rate
of the processor.

SDC rate error rated SDC AVFd×

all devices d
∑=

DUE rate error rated DUE AVFd×

all devices d
∑=

DUE AVF true DUE AVF false DUE AVF+=

True DUE AVF (with error detection)d
SDC AVF (with no error detection or correction) d

=

3

31st Annual International Symposium on Computer Architecture (ISCA), June 2004
4

For example, microprocessors often aggressively fetch
instructions from protected memory, such as main memory
protected with ECC or a read-only instruction cache protected
with parity (but recoverable because instructions can be re-
fetched from main memory on a parity error). However, these
instructions may stall in the instruction queue due to pipeline
hazards, such as lack of functional units or cache misses. The
longer such instructions reside in the instruction queue, the
higher the likelihood that they will get struck by a neutron or
alpha particle. There are many events, such as data cache
misses in in-order pipelines, which always result in pipeline
stalls. In such cases, we could squash (or remove) instructions
from the instruction queue and bring them back when the pipe-
line resumes execution. This reduces an instruction’s exposure
to radiation, thereby lowering the instruction queue’s SDC or
DUE rate, as the case may be.

Section 3.1 discusses the mechanisms we propose to
reduce exposure. These mechanisms will sometimes degrade
performance; Section 3.2 provides an analysis of how to reason
about the trade-off between performance and soft error rates.

3.1. Triggers and Actions

We characterize mechanisms to reduce exposure to radia-
tion using two dimensions: triggers and actions. A trigger is an
event that initiates an action to reduce exposure. In this paper,
we study one trigger and two actions to reduce the instruction
queue’s exposure to radiation.

Our goal is to avoid having instructions sit needlessly in
the instruction queue for long periods of time, so our trigger
must be an event that indicates that queued instructions will
face a long delay. We choose cache misses as our trigger. Spe-
cifically, the in-order Itanium2-like processor we use for our
evaluation has three levels of caches: L0, L1, and L2—each
successively bigger with increasing latency of access. In this
paper we study two triggers: an L0 cache miss, whose latency
is 10 cycles, and L1 cache miss, whose latency is about 25
cycles. Instructions following a cache-miss load cannot make
progress while the miss is outstanding, particularly in an in-
order machine such as ours. The situation is similar, though not
as pronounced, for out-of-order machines in which instructions
dependent on a load miss cannot make progress until the load
returns data. We thus expect that removing instructions from
the pipeline during the miss interval should not degrade perfor-
mance significantly.

Once the processor incurs a cache miss, one possible
action is to remove existing instructions from the instruction
queue to be re-fetched later. Such instruction squashing
attempts to keep instructions from sitting needlessly in the
instruction queue for extended periods. To avoid removing
instructions that could be executed before the miss completes,
the instruction queue should squash only those instructions that
are younger than the load that missed. In this paper, we exam-
ine one such squashing policy, similar to the one proposed by
Tullsen and Brown [28]: following a load miss, squash all
instructions in the instruction queue. Because we examine an
in-order machine in this paper, squashing all instructions after a
load miss should have minimal impact on performance. At the

same time, it should lower the AVF by reducing the exposure
of instructions to neutron and alpha strikes.

We also studied fetch throttling as a second action. Fetch
throttling prevents new instructions from being added to the
pipeline by stalling the front end of the machine. However, in
our machine model, from this mechanism we did not observe
significant reduction in AVF beyond what instruction squash-
ing already provides. Hence, we do not report fetch throttling
numbers in this paper.

3.2. Impact on Performance

Traditionally, the fault tolerance community has used the
terms MTBF (mean time between failures) and MTTF (mean
time to failure) to reason about error rates in processors and
systems. These are usually expressed in years. Typically,
MTTF corresponds to system uptime and is related to MTBF as
follows: MTBF = MTTF + MTTR, where MTTR is the mean
time to repair. Because MTTF is usually orders of magnitude
greater than MTTR, people often use MTBF and MTTF synon-
ymously. Nevertheless, MTTF is a more appropriate term for
processor vendors, such as Intel or AMD, because such ven-
dors do not have control over system-level MTTR-related fea-
tures, which typically reside outside the processor chip. In this
paper, we use SDC MTTF and DUE MTTF to denote the sepa-
rate MTTFs from the two different error components.

While MTTF provides a metric for error rates, it does not
allow us to reason about the trade-off between error rates and
the performance of a processor. We introduce the concept of
MITF or Mean Instructions To Failure as one approach to rea-
son about this trade-off. MITF tells us how many instructions a
processor will commit, on average, between two errors. MITF
is related to MTTF as follow:

As with SDC and DUE MTTFs, we have corresponding
SDC and DUE MITFs. Hence, for example, a processor run-
ning at 2 GHz with an average IPC of 2 and DUE MTTF of
10 years [4] would have a DUE MITF of instruc-
tions.

A higher MITF implies a greater amount of work done
between errors. Assuming that, within certain bounds, increas-
ing MITF is desirable, then we can use MITF to reason about
the trade-off between performance and reliability. Since

, we have:

Thus, at a fixed frequency and raw error rate, MITF is pro-
portional to the ratio of IPC to AVF. More specifically, SDC
MITF is proportional to IPC / (SDC AVF) and DUE MITF is
proportional to IPC / (DUE AVF). It can be argued that mecha-
nisms that reduce both the AVF and the IPC, such as the one
proposed in the previous section, may be worthwhile only if

MITF number of committed instructions
number of errors encountered---

number of committed instructions
total execution time in cycles

frequency MTTF×
--

IPC frequency× MTTF ×

=

=

=

1.3 18
×10

MTTF 1 raw error rate AVF×〈 〉⁄=

MITF IPC frequency×
raw error rate AVF×
-- frequency

raw error rate-------------------------------- IPC
AVF------------×= =

31st Annual International Symposium on Computer Architecture (ISCA), June 2004
they increase the MITF; that is, if they increase the IPC-to-AVF
ratio by reducing AVF relative to the base case to a greater
degree than they reduce IPC.

Although we can use MITF to reason about performance
versus AVF for incremental changes, we need to be cautious
not to misapply it. For example, it could be argued that dou-
bling processor performance while reducing the MTTF by 50%
is a reasonable trade-off, as the MITF would remain constant.
However, this explanation may not be adequate for customers
who see their equipment fail twice as often.

4. Reducing False DUE via Tracking
False DUE events arise from detected unrecoverable

errors that would not have affected the system’s final output in
the absence of any error detection. For example, a fault in a
wrong-path instruction in the instruction queue would not
affect any user-visible state. However, the processor is unlikely
to know in the issue stage whether or not an instruction is on
the correct path, and thus may be forced to raise a machine
check exception on detecting any instruction-queue parity
error. Figure 1 relates false DUE events to other possible fault
outcomes.

This section examines techniques to track false errors and
thereby reduce the false DUE AVF. The rest of this section is
organized as follows. Section 4.1 discusses the sources of false
errors. Section 4.2 discusses the propagation of false error
information along with instructions and other objects in a pro-
cessor, so that later mechanisms (described in Section 4.3) can
be used to identify if the error was indeed a false error.

4.1. Sources of False DUE events

Similar to our earlier evaluation [18], we computed an
average SDC AVF of 29% for an unprotected instruction queue
using an Itanium2-like microprocessor and dynamic slices of
the CPU2000 benchmarks. Thus, on average, a bit in the queue
is ACE 29% of the time. The remaining 71% consisted of 30%
idle time, 8% Ex-ACE state, and 33% valid un-ACE state. Ex-
ACE state denotes bits that were formerly ACE but have been
read for the last time; e.g., an ACE instruction in the instruction
queue that has been issued for the last time but has not yet been
evicted. The instruction may persist in Ex-ACE state just in
case it has to be replayed. Un-ACE state is state that is valid
(non-idle) from the microarchitecture’s perspective, but is
unnecessary for correct execution.

Using the above numbers and the analysis from
Section 2.2, we can compute the effect of adding an error
detection mechanism such as parity on the DUE AVF of the
instruction queue, assuming that any detected parity error is
declared as a processor error. The true DUE AVF would be the
same as SDC AVF without error detection, i.e., 29%. Entries
with idle state or Ex-ACE state do not contribute towards either
the SDC AVF or the DUE AVF because the hardware never
reads such entries (outcome 1 in Figure 1). Faults in un-ACE
state correspond to false DUE events, leading to a false DUE
AVF of 33%. Thus, adding error detection to the instruction
queue changes the SDC AVF from 29% to 0% and the DUE

AVF from 0% to 29% + 33% = 62%. Adding parity not only
changes the error classification from SDC to DUE, but
increases the overall error rate by more than a factor of two.

To eliminate such false errors from the instruction queue
and other structures, we need to identify the sources of the
errors. Our earlier classification [18] identifies three sources of
false errors for the instruction queue:
• Instructions whose results the microarchitecture will never

commit. Examples of such instructions are wrong-path
instructions and predicated-false instructions.

• Instruction types that are neutral to errors. No-ops,
prefetches, and branch prediction hint instructions, for
example, do not affect correctness. Consequently, faults in
bits other than the opcode bits will not affect a program’s
final outcome.

• Dynamically dead instructions. These instructions gener-
ate values that ultimately do not affect the result. We clas-
sify dynamically dead instructions as first-level or
transitive. First-level dynamically dead (FDD) instructions
are those whose results are not read by any other instruc-
tion. Transitively dynamically dead (TDD) instructions are
those whose results are used only by first-level dynami-
cally dead instructions or other transitively dynamically
dead instructions. Depending on whether the instruction
writes a register or a memory location, we classify the
dynamically dead instructions as being tracked via register
or memory, respectively. A strike on any bit on a dynami-
cally dead instruction, except the destination register spec-
ifier bits, will not change the final outcome of a program.
Similarly, a strike on the result (e.g., register or memory
value) of a dynamically dead instruction will also not
affect the program’s outcome. On average, dynamically
dead instructions account for 20% of all instructions in our
binaries. Our earlier paper [18] provides a detailed break-
down of FDD and TDD instructions tracked via both reg-
isters and memory.

In the next two subsections we describe techniques to avoid
raising a machine check exception on these classes of false
errors.

Wang, et al. [30] have identified an additional source of
false errors arising from conditional branches. They found that
in 40% of the dynamically executed conditional branches in
CPU2000 benchmarks, it did not matter which direction the
branch went. The techniques described in this paper do not
track such false errors. Hence, in this paper, we group these
under true DUE AVF when the instruction queue is protected
with parity. Back-of-the-envelope calculations show that such
conditional branch instructions would reduce the AVF by not
more than a few percentage points.

4.2. Mechanism to Propagate Error Information

The key challenge in distinguishing false errors from true
errors is that the processor may not have enough information to
make this distinction at the point it detects the error. For exam-
ple, when the instruction queue detects an error on an instruc-
tion, it may not be able to tell whether the instruction was a
5

31st Annual International Symposium on Computer Architecture (ISCA), June 2004
wrong-path instruction or not. Consequently, we need to propa-
gate the error information down the pipeline and raise the error
when we have enough information to make this distinction. In
this section, we discuss how to propagate this error information
for later use. In the next section we will discuss what informa-
tion we would need to identify false errors.

To propagate error information between different parts of
the microprocessor hardware we introduce a new bit called the
π bit, which stands for the possibly incorrect bit. A π bit is log-
ically associated with each instruction as it flows down the
pipeline from decode to retirement. We initially clear the π bit
to indicate the absence of any error. When the instruction queue
receives the instruction it stores the π bit along with the
instruction. On detecting an error (possibly via parity), the
instruction queue sets the affected instruction’s π bit instead of
raising a machine check exception. Subsequently, the instruc-
tion issues and flows down the pipeline. When the instruction
reaches commit point, we can determine if the instruction was
on the wrong path. If so, we can ignore the π bit, avoiding a
false DUE event if the bit was set. If not, we have the option to
raise the machine check error at the commit point of the
instruction. Note that a strike on the π bit itself will result in a
false DUE event.

We can easily generalize the π bit mechanism and attach
the π bit to different objects flowing through the pipeline, as
long as the π bits are propagated correctly from object to
object. For example, modern microprocessors typically fetch
instructions in multiples, sometimes called chunks [17].
Chunks flow through the front end of the pipeline until they are
decoded. We can attach a π bit to each fetch chunk. If the
chunk encounters an error, we can set the π bit of the chunk.
Subsequently, when the chunk is decoded into multiple instruc-
tions, we can copy the π bit value of the chunk to initialize the
π bit of each instruction. Thus, we can use the π bit to avoid
false DUE events on structures in the front end of the pipeline
before individual instructions are decoded.

We can also transfer π bit information from instructions to
registers, and thereby avoid false DUE events resulting from
dynamically dead instructions on the register file. Instead of
raising an error if an instruction’s π bit is set, we can transfer
the instruction’s π bit to the destination register it writes. If no
subsequent instruction reads this register, then obviously the π
bit of the register will not be examined and, therefore, we will
avoid raising an error on an FDD (first-level dynamically dead)
instruction that wrote the register. However, when a subsequent
instruction reads a register with the π bit set, we can signal an
error. This mechanism is similar to Rogers and Li’s poison bit
[21], where a load destination register was poisoned if the load
would have caused a page fault and Mahlke, et al.’s speculative
modifier bit [15], which helped avoid exceptions on code
scheduled speculatively by the compiler. The Itanium2 archi-
tecture has a similar mechanism with its NaT (Not a Thing) bit,
which is used to track deferred speculative executions. The
proposed, but eventually cancelled, Alpha 21464 microarchi-
tecture had a similar mechanism to replay instructions depen-
dent on a load miss.

Alternatively, instead of raising the error if a register’s π
bit is set, an instruction reading the register could OR the π bits
of all its source registers with its own π bit and carry it along
the pipeline. This approach would propagate the π bit along
dependence chains and allow a processor to track TDD (transi-
tively dynamically dead) instructions as well. Eventually, we
can signal an error when the π bit (set to one) propagates to a
store or I/O instruction that writes memory or I/O devices. This
propagation would not only avoid false DUE for TDD instruc-
tions on the register file, but also other structures along the
pipeline through which the instructions and values flow.

Similarly, we can transfer the π bit from an instruction or
a register to memory values to track false DUE events in mem-
ory structures, such as store buffers and caches. We can attach a
π bit to each cache block and when a store instruction writes an
address, we can transfer the store instruction’s π bit to the
cache block. Subsequently, when a load reads the cache block it
could either examine the π bit or transfer the π bit to the regis-
ter it is loading. If the π bit is transferred to the register, then
we can also avoid signalling false DUE events arising out of
dynamically dead memory values.

In general, a π bit can be attached to any object flowing
through the pipeline or to any hardware structure, but the gran-
ularity of the π bit depends on the implementation. For exam-
ple, if we attach a π bit to a 64-bit register value, then a single
π bit can only tell us that there may have been an error in one
of the 64 bits. Alternatively, if we had a π bit per byte, then we
can identify which byte among the 64 bits may have had an
error. This may be important to instruction sets that allow byte-
level writes. More generally, the granularity of the π bit can be
refined to isolate the location of errors in the hardware.

We do not, however, expect all hardware structures in a
processor or an entire system to be populated with π bits. For
example, an implementation may choose to have π bits in
caches, but not in main memory. Consequently, when we write-
back cache blocks from a cache to main memory, we would
lose the π bit information. In such a case, the π bit will go out
of scope. When the π bit goes out of scope, an implementation
should flag an error if the π bit is set because the system can no
longer track the error.

4.3. Distinguishing False Errors from True Errors

As discussed in Section 4.1, false errors arise in the
instruction queue from three categories of instructions. In this
section we discuss how we can use the π bit information to
avoid false errors on these three instruction categories and,
thereby, reduce the false DUE rate of the instruction queue.

4.3.1. False Errors on Uncommitted Instructions

Given the π bit, it is relatively straightforward to avoid
false errors on instructions that will never commit their results.
As explained earlier, the retire unit can ignore the π bit for the
wrong-path and falsely predicated instructions, thereby avoid-
ing false errors on such instructions. The retire unit must, how-
ever, examine the π bit of instructions on the correct path and
flag an error if the π bit is set. In the next two subsections, we
6

31st Annual International Symposium on Computer Architecture (ISCA), June 2004
will see how to avoid false errors on instructions on the correct
path.

4.3.2. False Errors on Neutral Instruction Types

Many instructions, such as the no-ops, prefetches, or
branch predict hints, will never affect the final outcome of a
program and, therefore, the hardware need not raise an error on
non-opcode bits of such instructions. However, to identify such
instructions the hardware must decode the instruction at every
place it wants to avoid a false error. Instead, we propose using
another bit called the anti-π bit, which is associated with every
instruction when we decode it. We set the anti-π bit for neutral
instruction types and clear it for others. Then, when the instruc-
tion queue gets a parity error on non-opcode bits of an entry, it
identifies neutral instructions using the anti-π bit, and does not
set the π bit on that instruction. In other words, the anti-π bit
neutralizes the π bit for those entries. Alternatively, the instruc-
tion queue could set the π bit, but carry both the anti-π bit and
π bit to the retire unit and take the appropriate decision there.

Note that the hardware could also avoid the anti-π bit on
every instruction if it decoded the instruction again at the retire
unit. Unfortunately, this means that an instruction must be read
after it has been issued and completed. This would force us to
include the Ex-ACE time as part of the False AVF calculation,
thereby raising the false DUE AVF from 33% to 41%
(Section 4.1).

Interestingly, the anti-π bit can be generalized to hardware
activities that do not affect the correctness of a program. For
example, we could attach an anti-π bit to the command and
address generated by a hardware data prefetcher. Any soft error
on such an activity can be ignored. The anti-π bit provides a
concise mechanism to identify such activities.

4.3.3. False Errors on Dynamically Dead Instructions

Avoiding false errors on dynamically dead instructions is
slightly more complex compared to the techniques described in
the last two subsections. There are two reasons for this com-
plexity. First, to determine whether an instruction is dynami-
cally dead, we must know whether the instruction’s result will
ever be used in future by an instruction that is not a first-level
dynamically dead (FDD) or a transitively dynamically dead
(TDD) instruction (Section 4.1). To determine this, we need to
keep information about instructions even after they commit.
Current processors usually do not support such a mechanism.

Second, dynamically dead instructions present a trade-off
between coverage of false errors versus our ability to precisely
point to which instruction encountered a true error and pro-
duced the incorrect result. We illustrate this trade-off better
using the four designs we outline below.
(1) The Post-commit Error Tracking (PET) Buffer. The PET
buffer mechanism avoids signalling errors on a subset of FDD
instructions, but can precisely determine the offending instruc-
tion that may have encountered a true error. The PET buffer is
basically a log of all instructions after they retire. Specifically,
a PET buffer entry contains an instruction along with its π bit.
When an instruction retires, the retire unit enters the instruction

into the PET buffer. If the PET buffer is full, it must evict the
oldest instruction from the PET buffer. At this point, it exam-
ines the π bit of the instruction to be evicted. If the π bit is
clear, then it simply evicts the instruction. However, if the π bit
is set, the hardware scans the instructions in the PET buffer to
determine if the result produced by the instruction was over-
written by a subsequent instruction in the PET buffer before
any intervening read. If so, the instruction is an FDD instruc-
tion and consequently the error was a false error. Hence, the
processor need not signal the error. However, if the PET buffer
cannot verify that the instruction was an FDD instruction—
because of an intervening read or the absence of an overwriting
instruction in the buffer—then it must signal an error on this
instruction.

Obviously, the PET buffer’s coverage of false errors on
FDD instructions depends on the number of instructions logged
in the PET buffer. Across dynamic slices of the CPU 2000
benchmarks, we find that a PET buffer with 512 entries can
cover about 32% of the FDD instructions. In Section 6 we dis-
cuss the impact of the size of the PET buffer on its coverage of
false errors.

In a sense, the PET buffer allows the system to defer com-
mitting an instruction’s error state past the point where it has
committed its result value. Thus, in its design, the PET buffer is
similar to the history buffer described by Smith and Plezkun
[27]. Nevertheless, the PET buffer is a much simpler structure
because it is FIFO and needs to be scanned only when a π bit is
set for an instruction being evicted. Such scans should not
affect performance because errors in an individual system
occur infrequently (on the order of days).

Note that the PET buffer differs significantly from Butts
and Sohi’s dynamically dead instruction predictor [5]. The lat-
ter predicts whether an instruction is dynamically dead before
the instruction executes. The PET buffer proves for certain that
an instruction is dynamically dead long after it commits.
(2) π bit per register. Instead using the PET buffer, we can
allocate a π bit for every register. An instruction’s π bit is
propagated to its destination register. An error is signalled
when an instruction reads a source register with a set π bit. If
no instruction reads the register before it is overwritten, the
instruction is FDD, and no error is signalled. This mechanism
provides 100% coverage on all FDD instructions. However,
unlike the PET buffer, when we signal an error, we cannot
determine which instruction originally caused the error. This
lack of information may complicate some recovery schemes.
(3) π bits on every structure inside the chip, except the
memory system. Although the above two mechanisms avoid
false errors on FDD instructions tracked via registers, they do
not cover instructions that are transitively dead (TDD) via reg-
isters. One easy way to track TDD instructions is to declare the
error only when a processor interacts with the memory system
or I/O devices. Thus, if we have π bits on every structure in a
processor—except caches and main memory—and follow the
same propagation rule for π bits as described earlier, then we
can avoid false errors on TDD instructions as well. This would
mean signalling errors only when a store instruction or an I/O
7

31st Annual International Symposium on Computer Architecture (ISCA), June 2004
access is about to commit its data to the caches, memory sys-
tem, or I/O device. In this case, we get complete coverage of
false errors on TDD instructions tracked via registers, but like
the previous mechanism lose our ability to precisely determine
which instruction originally encountered the error.

(4) π bit on caches and memory. Finally, if we have π bits on
the entire chip and memory system, then we can track false
errors on both FDD and TDD instructions tracked via memory
as well. In such a case, we would only raise an error when the
processor makes an I/O access (e.g., uncached load or store)
that has its π bit set. This technique would also allow us to
track errors across multiple processors in a shared-memory
multiprocessor system.

As the above discussions suggest, the π bit is a powerful mech-
anism to propagate error information, so that the error can be
raised at a later point in time when we can determine whether
the error was actually a false or true error. Thus, it decouples
the detection of an error from the signalling of the error. This
allows a microprocessor designer the choice to raise the error
either on the use of a value or when the π bit for a value goes
out of scope.

5. Methodology

For our evaluation, we use an Itanium2-like IA64 pro-
cessor [13] scaled to current technology. The processor we
modeled has a 25-cycle pipeline, runs at 2.5 GHz, and has an
issue width of six instructions. It has three levels of cache: an
8KByte L0 cache with 2-cycle hit latency, a 256KB L1 cache
with 10-cycle hit latency, and a 10MB L2 cache with a 25-
cycle hit latency.

The processor is modeled in detail in the Asim framework
[7]. The benchmarks are run on Red Hat Linux 7.2 via an OS
simulation front-end. For wrong paths, we fetch the mis-specu-
lated instructions, but do not have the correct memory
addresses that a load or store may access.

Table 2 lists the skip interval and input set selected for
each of the SPEC CPU2000 programs used for our analysis.
The benchmarks were compiled with Intel’s electron compiler
(version 7.0) with the highest level of optimization. We
obtained the number of instructions to skip using Sherwood, et
al.,’s [23] SimPoint analysis modified for the IA64 instruction
set architecture. For each benchmark we obtained a number of

SimPoints, but here we present numbers only for the first Sim-
Point of each benchmark. We ran each SimPoint for 100 mil-
lion instructions, which included no-ops.

Note that binaries used in this paper are slightly different
from the ones used for our earlier paper [18] and, hence, some
of the results are different from our earlier evaluation.

6. Results
This section discusses our results from reducing exposure

to radiation (Section 6.1) and tracking false DUE events
(Section 6.2). Section 6.3 shows the impact of combining the
above two techniques.

6.1. Reducing Exposure to Radiation

In this section we show how we can reduce the AVF for
our 64-entry instruction queue using squashing and fetch throt-
tling. Table 1 shows how the average IPC and average AVFs
change when we squash all instructions in the instruction queue
after a load miss in the L1 and the L0 caches. When we squash
instructions on load misses in the L1 cache, the IPC decreases
only by 1.7% (from 1.21 to 1.19) for a corresponding reduction
in SDC and DUE AVFs by 26% (from 29% to 22%) and 18%
(from 29% to 1.09%), respectively. However, when we squash
instructions on L0 misses, the IPC decreases by 10% for a cor-
responding reduction in SDC and DUE AVFs of only 35% and
23%, respectively.

Overall, squashing on L1 misses appear more profitable
because the SDC MITF (proportional to IPC / SDC AVF) and
DUE MITF (proportional to IPC / DUE AVF) go up 37% and

Table 1: Impact of squashing on IPC and our instruction queue’s SDC and DUE AVFs. Numbers are averaged across all benchmarks.

Design Point IPC SDC AVF DUE AVF IPC / SDC AVF IPC / DUE AVF

No squashing 1.21 29% 62% 4.1 2.0
Squash on L1 load misses 1.19 22% 51% 5.6 2.3
Squash on L0 load misses 1.09 19% 48% 5.7 2.3

Table 2: SPEC2000 benchmarks in this paper. M = 1 million.
Integer

Benchmarks
Instructions

Skipped
Floating Point
Benchmarks

Instructions
Skipped

bzip2-source 48,900 M ammp 50,900 M
cc-200 16,600 M applu 500 M
crafty 120,600 M apsi 100 M
eon-kajiya 73,000 M art-110 36,400 M
gap 18,800 M equake 1,500 M
gzip-graphic 29,000 M facerec 64,100 M
mcf 26,200 M fma3d 23,600 M
parser 71,400 M galgel 5,000 M
perlbmk-makerand 0 M lucas 123,500 M
twolf 185,400 M mesa 73,300 M
vortex-lendian3 59,300 M mgrid 200 M
vpr-route 49,200 M sixtrack 4,100 M

swim 78,100 M
wupwise 23,800 M
8

31st Annual International Symposium on Computer Architecture (ISCA), June 2004
15%, respectively. In contrast, squashing on L0 misses add
very little MITF gain over what squashing on L1 misses
achieve.

6.2. Tracking False DUE Events

This section shows the impact of avoiding false errors on
an instruction queue protected with parity. Our techniques to
avoid false errors could apply to other structures, such as regis-
ter files and caches, as well. As described in Section 4.3, we
use the π bit mechanism to propagate error information and a
variety of other information (e.g., anti-π bit) and structures
(e.g., PET buffer) to avoid signalling errors on false DUE
events.

Figure 2 quantifies how these techniques can avoid false
errors and, thereby lower the false DUE AVF of the instruction
queue. Propagating the π bit to the commit point allows us to
avoid false errors on wrong-path and falsely predicated instruc-
tions. On average, this reduces the false DUE AVF for the
instruction queue by 18%. However, as the figure shows, the
impact is greater for integer benchmarks, which have a higher
fraction of such instructions.

In contrast, the anti-π bit has a bigger impact on the float-
ing-point benchmarks than on the integer ones. On average, for
floating point benchmarks, the anti-π bit reduces the false DUE
AVF by 60% compared to 35% for the integer ones. Across all
benchmarks, the anti-π bit reduces the false DUE AVF by
49%. Both no-ops and prefetches have a bigger impact on the
false DUE AVF for floating point benchmarks.

Figure 2 also shows the effects of a 512-entry PET buffer.
A relatively small PET buffer works because in majority of
cases, instructions that write the same register without an inter-
vening read occur within a few hundred committed instruc-
tions. On average, the 512-entry PET buffer reduces another
3% of the false DUE AVF. This accounts for about 32% of the
FDD (first-level dynamically dead) instructions tracked

through registers. Figure 3 shows that two other things can fur-
ther increase the coverage of the PET buffer: instructions con-
sidered for false errors and larger number of entries. FDD
instructions tracked via registers can be classified into two cat-
egories: ones that are FDD because of a procedure return, so
that registers written in the procedure but never used are dead,
and the rest of the FDD registers tracked via registers. Finally,
we have the third category of FDD instructions tracked via
memory. Figure 3 shows the results of all of these with increas-
ing number of entries for the PET buffer. As this figure shows,
increasing the number of entries to about 10,000 and including
FDD instructions tracked by returns could cover most of the
FDD instructions. Of course, a 10,000-entry PET buffer may
not be implementable.

The next set of results are for techniques that do not allow
the precise determination of the corrupted instruction, but
allows a processor to reduce its overall DUE rates. Adding the
π bit to the register file allows us to track all FDD instructions.
This allows us to reduce the false DUE AVF of the instruction
queue by an additional 11% beyond what the PET buffer offers.

We can further enhance the coverage of false errors by
tracking TDD (transitively dynamically dead) instructions and
the registers they write. If we carry the π bit information
throughout the pipeline till the store buffer and examine the π
bit only when a store commits its data or a load attempts to get
its data from the store buffer, then we can avoid false errors
resulting from TDD instructions tracked via registers. This, on
average, reduces the instruction queue’s false DUE AVF by
another 8%.

Finally, if we carry the π bit through the entire processor
and memory system, then we have to signal an error only when
the processor interacts with an I/O device (e.g., send the final
output of a program to the console). This would entirely
remove the rest of the false errors by avoiding signalling errors

Figure 2. Coverage of the instruction queue’s false DUE AVF using various tracking techniques. π = PI.

0%

20%

40%

60%

80%

100%

am
m

p
ap

pl
u

ap
si ar
t

bz
ip

2_
so

ur
ce

cc
_2

00
cr

af
ty

eo
n_

ka
jiy

a
eq

ua
ke

fa
ce

re
c

fm
a3

d
ga

lg
el

ga
p

gz
ip

_g
ra

ph
ic

lu
ca

s
m

cf
m

es
a

m
gr

id
pa

rs
er

pe
rlb

m
k_

m
a

si
xt

ra
ck

sw
im

tw
ol

f
vo

rte
x_

le
nd

ia
vp

r_
ro

ut
e

w
up

w
is

e
av

er
ag

e%
 o

f F
al

se
 D

UE
 A

VF
 c

ov
er

ed

PI bit till I/0 Commit
PI bit till store commit
PI bit on register file
PET Buffer (512 entries)
anti-PI bit
PI bit till commit
9

31st Annual International Symposium on Computer Architecture (ISCA), June 2004
on FDD and TDD instructions tracked via memory. This would
further reduce the instruction queue’s false DUE AVF by 12%.

6.3. Combining Both Techniques

This section summarizes and combines the results from
the two prior subsections to show how our techniques can
reduce the overall SDC AVF of an unprotected instruction
queue and DUE AVF of a parity-protected instruction queue.

To reduce exposure, we choose to squash instructions on
an L1 cache miss. This action is triggered as soon as the
instruction queue receives a signal from the memory system
indicating that an L1 cache miss has occurred. This design
decreases IPC by about 2% relative to no squashing. For the
parity-protected queue only, we add the π-bit implementation
that carries the π bit until the store commit point (option 3 in
Section 4.3.3). The π bit does not degrade performance.

As Figure 4 shows, we get an average improvement of
26% in SDC AVF on the unprotected queue from squashing
alone. The effect squashing is particularly pronounced in
ammp, which gets a 90% reduction in the SDC AVF for only a
7% decrease in IPC. This happens because instructions get
queued behind a few critical misses. Hence, squashing and
refetching the instructions in the shadow of those misses
reduces the AVF dramatically without reducing the IPC signifi-
cantly.

Combining both squashing and π-bit tracking mechanisms
on a parity-protected queue gives a 57% reduction in DUE
AVF. In both cases, the IPC impact is 2% on average due to
squashing.

7. Related Work
This work is related to four broad areas of research in

computer architecture. The first area relates to computing
AVFs. We use our own methodology [18] to compute AVFs
using ACE analysis with a performance model. Kim and
Somani [12] and Wang, et al. [31] describe alternate ways to
compute AVFs using statistical fault injection into RTL mod-
els. This paper extends the AVF framework by showing how to

compute DUE rates and how the DUE AVF is the sum of false
and true DUE AVFs.

The second area relates to fault detection and correction
strategies. We rely on parity to protect against DUE events and
ECC in memory to provide protection against single bit upsets
[25]. At the processor level, industrial designs have typically
used lockstepping [26][25]. Recently, researchers proposed
numerous cost-effective techniques to both detect and recover
from transient faults at the thread or processor level (e.g., [3],
[22], [20], [29], [17], [8], [19], [14]). However, this paper does
not propose any new error detection or correction strategy.
Instead, this paper examines strategies to reduce the overall
soft error rate of a processor by reducing the amount of time
unprotected state is exposed to radiation and by avoiding false
errors.

To reduce exposure to radiation we borrow the fetch throt-
tling and instruction squashing schemes used by Tullsen and
Brown [28] to improve the performance of a simultaneous mul-
tithreaded processor. Fetch throttling has also been proposed by
numerous researchers to reduce power consumption of a micro-
processor (e.g., [3]).

The fourth area relates to how we avoid signalling false
DUE events via the use of the π bit, anti-π bit, PET buffer, and
the π bit on a variety of structures, such as the register file,
pipeline structures, caches, and main memory. The π bit propa-
gation is most similar to the propagation of the parity bit along
the pipeline in the Fujitsu’s recent SPARC processor [1]. How-
ever, instead of tracking false DUE events, Fujitsu’s SPARC
uses the parity bit to restart the processor from the instruction
that received the parity error. Also, unlike the π bit, the parity
bit in the Fujitsu machine is not propagated from instructions to
other structures, such as the register file or caches.

Our transfer of the π bit from an instruction to a register is
similar to Rogers and Li’s poison bit [21], Mahlke, et al.’s spec-
ulative modifier bit [15], and the Itanium2 architecture’s NaT
(Not a Thing) bit [10]. Unlike the π bit, Rogers and Li used the
poison bit mechanism to avoid raising page faults on specula-
tive loads, but did not propagate the poison bit from registers to
instructions. Similarly, Mahlke, et al. used the speculate modi-
fier bit to avoid raising exceptions on code speculatively sched-
uled by the compiler, but did not propagate the speculative
modifier bit from registers back to instructions. The Itanium2
architecture uses the NaT bit to track deferred speculative exe-
cutions. However, unlike Rogers and Li’s poison bit, but like
the π bit, the NaT bit can be propagated between registers.
Nevertheless, the NaT bit is restricted to registers and are not
transferred to other microarchitectural structures, unlike the π
bit. Additionally, the NaT bit is visible to the programmer, but
the π bit is not.

Finally, although we examined the concepts of false DUE
AVF in the context of micro-level error detection schemes,
such as parity, they also apply to macro-level fault detection
schemes, such as lockstepping [26] and Redundant Multi-
threading (RMT) [17] as well. For example, two lockstepped
processors may get a false error when a branch predictor bit is
struck with a neutron or alpha particle. The strike on the branch

Figure 3. Coverage of FDD (First-Level Dynamically Dead)
Instructions from PET buffers of varying size.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 10 100 1000 10000

Entries in PET Buffer

%
 o

f F
D

D
 in

st
ru

ct
io

ns
 c

ov
er

ed

Registers + Return

Registers + Return + Memory

Registers
10

31st Annual International Symposium on Computer Architecture (ISCA), June 2004
predictor of one of the processors will not result in incorrect
execution, but it may cause a divergence in what each proces-
sor produces in subsequent cycles. Because cycle-by-cycle
lockstepping expects the same outputs from both processors in
every cycle, such a divergence will create a mismatch and,
hence, a false error. In contrast, RMT will not produce a false
error on a branch predictor strike because it compares commit-
ted instructions, which are not affected by branch mispredic-
tions. Nevertheless, in the absence of any special mechanism,
some implementations of RMT may produce a false error (e.g.,
when comparing every instruction) if a dynamically dead
instruction gets corrupted.

8. Conclusions
Soft errors induced by neutron or alpha particle strikes are

emerging as a significant obstacle to increasing processor tran-
sistor counts in future process technologies. Although fault
rates of individual transistors are not projected to rise, incorpo-
rating more transistors into a device makes that device more
likely to encounter a fault. As a result, we expect that maintain-
ing processor error rates at acceptable levels will require
increasing design effort.

Soft errors in microprocessors can be classified as silent
data corruption (SDC), where a fault induces the system to gen-
erate erroneous outputs, and detected unrecoverable error
(DUE), where the hardware detects the error, but cannot
recover from it. The SDC rate of a processor can be computed
as the sum over the product of the raw error rate per device and
a device’s SDC AVF, or architectural vulnerability factor. SDC
AVF expresses the probability that a strike affecting the device
eventually results in an error in a program’s output. Similarly,
the DUE rate of a processor can be computed as the sum over
the product of the raw error rate per device and a device’s DUE
AVF, where DUE AVF is the probability that a strike will result
in a DUE event. The DUE AVF can be expressed as the sum of
the true DUE AVF and false DUE AVF. False DUE AVF arises
from false errors in a microprocessor, such as a strike affecting
a wrong-path instruction.

This paper proposed two simple approaches to reduce the
SDC and DUE AVFs, and hence the soft error rates, of a micro-
processor. We evaluated the application of these approaches
using a microprocessor instruction queue. The first approach
reduced the amount of time instructions sit in vulnerable stor-
age structures by selectively squashing instructions when long
delays are encountered. A fault is less likely to cause an error if
the structure it affects does not contain valid instructions. We
introduced a new metric, MITF (Mean Instructions To Failure),
to capture the trade-off between performance and reliability
introduced by this approach. We found that instruction squash-
ing on L1 cache misses could reduce the SDC AVF for an
unprotected instruction queue by 28% or DUE AVF of a parity-
protected instruction queue by 18% for only a 2% decrease in
IPC. This increases the SDC MITF by 37% or the DUE MITF
by 15%, thereby allowing more work to be done between two
soft errors.

The second approach reduces the false DUE AVF by
reducing false errors. In the absence of a fault detection mecha-
nism, such errors would not have affected the final outcome of
a program. For example, a fault affecting the result of a dynam-
ically dead instruction would not change the final program out-
put, but could still be flagged by the hardware as an error. To
avoid signalling such false errors, we modified a pipeline's
error detection logic to mark affected instructions and data as
possibly incorrect—via the use of the π bit—rather than imme-
diately signaling an error. Then, we signal an error only if we
determined later that the possibly incorrect value could have
affected the program’s output. We proposed several alterna-
tives, such as the anti-π bit, the post-commit error tracking
(PET) buffer, and incorporation of the π bits in register files,
caches, and main memory, to detect false errors arising out of
different kinds of instructions. Our results showed that using
these mechanisms we can cover 100% of such false DUE
events without any performance degradation.

Overall, our mechanisms reduced the SDC AVF of an
unprotected instruction queue by 26% and the DUE AVF a par-
ity-protected instruction queue by 57% for only a 2% decrease

Figure 4. Impact of exposure and false DUE reduction techniques on an instruction queue’s SDC and DUE AVFs. Relative SDC AVF
= SDC AVF with optimizations / SDC AVF with no optimizations. Relative DUE AVF is defined similarly.

0%

20%
40%

60%
80%

100%

am
m

p
ap

pl
u

ap
si ar

t

bz
ip

2_
so

ur
ce

cc
_2

00

cr
af

ty
eo

n_
ka

jiy
a

eq
ua

ke
fa

ce
re

c

fm
a3

d
ga

lg
el

ga
p

gz
ip

_g
ra

ph
ic

lu
ca

s

m
cf

m
es

a

m
gr

id
pa

rs
er

pe
rlb

m
k_

m
ak

er
an

d
si

xt
ra

ck

sw
im

tw
ol

f

vo
rte

x_
le

nd
ia

n3
vp

r_
ro

ut
e

w
up

w
is

e
av

er
ag

e

R
el

at
iv

e
A

VF

SDC

DUE
11

31st Annual International Symposium on Computer Architecture (ISCA), June 2004
in overall IPC. Once these mechanisms are in place, they can
also reduce the AVF of other structures, such as the register
file.

Acknowledgments
We would like to thank Mike Smith for inspiring the con-

cept of false errors and Tryggve Fossum for the MITF metric,
Sudhanva Gurumurthi, Geoff Lowney, and Paul Racunas for
their helpful comments on early drafts of this paper, Intel’s
Softsdv and Asim groups for help with the simulation system,
and Robert Cohn and Harish Patil for helping to reproduce the
SimPoint analysis on IA64.

References
[1] H. Ando, et al., “A 13 GHz Fifth Generation SPARC64 Micropro-

cessor,” International Solid-State Circuits Conference (ISSCC),
2003.

[2] T. Austin, "DIVA: A Reliable Substrate for Deep Submicron
Microarchitecture Design," ACM/IEEE 32nd Annual Symposium
on Microarchitecture (MICRO-32), November 1999.

[3] A. Baniasadi and A. Moshovos, “Instruction Flow-Based Front-
end Throttling for Power-Aware High-Performance Processors,”
International Symposium on Low Power Electronics and Design,
2001.

[4] D. Bossen, "CMOS Soft Errors and Server Design," 2002 IRPS
Tutorial Notes - Reliability Fundamentals," April 7, 2002.

[5] J. Adam Butts and G.S. Sohi, “Dynamic Dead-Instruction Detec-
tion and Elimination,” 10th International Conference on Architec-
tural Support for Programming Languages and Operating
Systems (ASPLOS), October 2002.

[6] T. Calin, et al., “Topology-Related Upset Mechanisms in Design
Hardened Storage Cells,” Radiation and Its Effects on Compo-
nents and Systems, 1997. RADECS 97. Fourth European Confer-
ence on , 15-19 Sept. 1997.

[7] J. Emer, P. Ahuja, N. Binkert, E. Borch, R. Espasa, T. Juan,
A. Klauser, C.-K. Luk, S. Manne, S. S. Mukherjee, H. Patil, and
S. Wallace, “Asim: A Performance Model Framework,” IEEE
Computer, 35(2):68-76, Feb. 2002.

[8] M. Gomaa, C. Scarbrough, T.N. Vijaykumar, and I. Pomeranz,
"Transient Fault Recovery for Chip Multiprocessors," Interna-
tional Symposium on Computer Architecture (ISCA), 2003

[9] S. Hareland, J. Maiz, M. Alavi, K. Mistry, S. Walstra, and C. Dai,
"Impact of CMOS Scaling and SOI on soft error rates of logic
processes," VLSI Technology Digest of Technical Papers, 2001.

[10] Intel, “Intel Itanium Architecture Software Developer’s Man-
ual,” Intel Corporation, 2002.

[11] T. Karnik, B. Bloechel, K. Soumyanath, V. De, and S. Borkar,
"Scaling trends of Cosmic Rays induced Soft Errors in static
latches beyond 0.18µ," Symposium on VLSI Circuits Digest of
Technical Papers, 2001.

[12] S. Kim and A.K. Somani, “Soft Error Sensitivity Characterization
for Microprocessor Dependability Enhancement Strategy,” Inter-
national Conference on Dependable Systems and Networks
(DSN), 2002.

[13] K. Krewell, “Intel’s McKinley Comes Into View,” Microproces-
sor Report, Volume 15, Archive 10, October 2001.

[14] S.-C. Lai, S.-L. Lu, K. Lai and J.-K. Peir, “Ditto Processor,”
International Conference on Dependable Systems and Networks
(DSN), 2002.

[15] S. A. Mahlke, W. Y. Chen, W. W. Hwu, B. R. Rau, and M. S.
Schlansker, “Sentinel Scheduling for VLIW and Superscalar Pro-

cessors,” 5th International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS),
Oct. 1992.

[16] S. S. Mukherjee, T. Fossum, J. Emer, and S. K. Reinhardt, “Cache
Scrubbing in Microprocessors: Myth or Necessity?” 10th Interna-
tional Symposium on Pacific Rim Dependable Computing
(PRDC), Papeete, Tahiti, March 2004.

[17] S. S. Mukherjee, M. Kontz, and S. K. Reinhardt, “Detailed
Design and Evaluation of Redundant Multithreading Alterna-
tives,” 29th Annual International Symposium on Computer
Architecture (ISCA), 2002.

[18] S. S. Mukherjee, C. T. Weaver, J. Emer, S. K. Reinhardt, and
T. Austin, “A Systematic Methodology to Compute the Architec-
tural Vulnerability Factors for a High-Performance Microproces-
sor,” 36th Annual International Symposium on Microarchitecture
(MICRO), December 2003.

[19] J. Ray, J. Hoe, and B. Falsafi, “Dual Use of Superscalar Datapath
for Transient-Fault Detection and Recovery,” International Sym-
posium on Microarchitecture (MICRO), December 2001.

[20] S. K. Reinhardt and S. S. Mukherjee, “Transient Fault Detection
via Simultaneous Multithreading,” 27th Annual International
Symposium on Computer Architecture (ISCA), June 2000.

[21] A. Rogers and K. Li, “Software Support for Speculative Loads,”
5th International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS), pp. 38-
50, Oct. 1992.

[22] E. Rotenberg, “AR-SMT: A Microarchitectural Approach to Fault
Tolerance in Microprocessors,” Proceedings of the Fault-Tolerant
Computing Systems (FTCS), 1999.

[23] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder, “Automat-
ically Characterizing Large Scale Program Behavior,” 10th Inter-
national Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), October 2002.

[24] P. Shivakumar, M. Kistler, S.W. Keckler, D. Burger, and
L. Alvisi, “Modeling the Effect of Technology Trends on the Soft
Error Rate of Combinatorial Logic,” Dependable Systems and
Networks (DSN), 2002.

[25] D. R. Siewiorek and R. S. Swarz, “Reliable Computer Systems
Design and Evaluation,” Published by A.K.Peters, Ltd., 1998.

[26] T.J. Slegel, et al., “IBM’s S/390 G5 Microprocessor Design,”
IEEE Micro, pp 12-23, Mach/April 1999.

[27] J.E. Smith and A.R. Plezkun, “Implementing Precise Interrupts in
Pipelined Processors,” IEEE Transactions On Computers, 37:5
(May), pp. 562-573, 1988.

[28] D. Tullsen and J. A. Brown, “Handling Long-Latency Loads in a
Simultaneous Multithreaded Processor,” 34th Annual Interna-
tional Symposium on Microarchitecture (MICRO), Dec. 2001.

[29] T.N. Vijaykumar, I. Pomeranz, and K. Cheng., "Transient Fault
Recovery via Simultaneous Multithreading," International Sym-
posium on Computer Architecture (ISCA), 2002

[30] N. Wang, M. Fertig, and S. Patel, “Y-Branches: When You Come
to a Fork in the Road, Take It,” 12th International Conference on
Parallel Architectures and Compilation Techniques (PACT),
2003.

[31] N. Wang, J. Quek, T. M. Rafacz, and S. Patel, “Characterizing the
Effects of Transient Faults on a High-Performance Processor
Pipeline,” International Conference on Dependable Systems and
Networks, June 2004.

[32] J.F. Ziegler, et al., “IBM experiments in soft fails in computer
electronics (1978 – 1994),” IBM Journal of Research and Devel-
opment, pp. 3 – 18, Volume 40, Number 1, January 1996.
12

	Abstract
	Techniques to Reduce the Soft Error Rate of a High-Performance Microprocessor
	Christopher Weaver1, Joel Emer1, Shubhendu S. Mukherjee1, and Steven K. Reinhardt1,2
	1. Introduction
	Figure 1. Classification of the possible outcomes of a faulty bit in a microprocessor. SDC = silent data corruption. DUE = detected unrecoverable error.

	2. Computing the SDC and DUE Rates
	2.1. Computing the SDC Rate
	2.2. Computing the DUE Rate

	3. Reducing Exposure to Radiation
	3.1. Triggers and Actions
	3.2. Impact on Performance

	4. Reducing False DUE via Tracking
	4.1. Sources of False DUE events
	4.2. Mechanism to Propagate Error Information
	4.3. Distinguishing False Errors from True Errors
	4.3.1. False Errors on Uncommitted Instructions
	4.3.2. False Errors on Neutral Instruction Types
	4.3.3. False Errors on Dynamically Dead Instructions

	5. Methodology
	Table 1: Impact of squashing on IPC and our instruction queue’s SDC and DUE AVFs. Numbers are averaged across all benchmarks.
	Table 2: SPEC2000 benchmarks in this paper. M = 1 million.

	6. Results
	6.1. Reducing Exposure to Radiation
	6.2. Tracking False DUE Events
	Figure 2. Coverage of the instruction queue’s false DUE AVF using various tracking techniques. p = PI.

	6.3. Combining Both Techniques
	Figure 3. Coverage of FDD (First-Level Dynamically Dead) Instructions from PET buffers of varying size.

	7. Related Work
	8. Conclusions
	Figure 4. Impact of exposure and false DUE reduction techniques on an instruction queue’s SDC and DUE AVFs. Relative SDC AVF = SDC AVF with optimizations / SDC AVF with no optimizations. Relative DUE AVF is defined similarly.
	Acknowledgments
	References
	[1] H. Ando, et al., “A 13 GHz Fifth Generation SPARC64 Microprocessor,” International Solid-State Circuits Conference (ISSCC), 2003.
	[2] T. Austin, "DIVA: A Reliable Substrate for Deep Submicron Microarchitecture Design," ACM/IEEE 32nd Annual Symposium on Microarchitecture (MICRO-32), November 1999.
	[3] A. Baniasadi and A. Moshovos, “Instruction Flow-Based Front- end Throttling for Power-Aware High-Performance Processors,” International Symposium on Low Power Electronics and Design, 2001.
	[4] D. Bossen, "CMOS Soft Errors and Server Design," 2002 IRPS Tutorial Notes - Reliability Fundamentals," April 7, 2002.
	[5] J. Adam Butts and G.S. Sohi, “Dynamic Dead-Instruction Detection and Elimination,” 10th International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS), October 2002.
	[6] T. Calin, et al., “Topology-Related Upset Mechanisms in Design Hardened Storage Cells,” Radiation and Its Effects on Components and Systems, 1997. RADECS 97. Fourth European Conference on , 15-19 Sept. 1997.
	[7] J. Emer, P. Ahuja, N. Binkert, E. Borch, R. Espasa, T. Juan, A. Klauser, C.-K. Luk, S. Manne, S. S. Mukherjee, H. Patil, and S. Wallace, “Asim: A Performance Model Framework,” IEEE Computer, 35(2):68-76, Feb. 2002.
	[8] M. Gomaa, C. Scarbrough, T.N. Vijaykumar, and I. Pomeranz, "Transient Fault Recovery for Chip Multiprocessors," International Symposium on Computer Architecture (ISCA), 2003
	[9] S. Hareland, J. Maiz, M. Alavi, K. Mistry, S. Walstra, and C. Dai, "Impact of CMOS Scaling and SOI on soft error rates of logic processes," VLSI Technology Digest of Technical Papers, 2001.
	[10] Intel, “Intel Itanium“ Architecture Software Developer’s Manual,” Intel Corporation, 2002.
	[11] T. Karnik, B. Bloechel, K. Soumyanath, V. De, and S. Borkar, "Scaling trends of Cosmic Rays induced Soft Errors in static latches beyond 0.18µ," Symposium on VLSI Circuits Digest of Technical Papers, 2001.
	[12] S. Kim and A.K. Somani, “Soft Error Sensitivity Characterization for Microprocessor Dependability Enhancement Strategy,” International Conference on Dependable Systems and Networks (DSN), 2002.
	[13] K. Krewell, “Intel’s McKinley Comes Into View,” Microprocessor Report, Volume 15, Archive 10, October 2001.
	[14] S.-C. Lai, S.-L. Lu, K. Lai and J.-K. Peir, “Ditto Processor,” International Conference on Dependable Systems and Networks (DSN), 2002.
	[15] S. A. Mahlke, W. Y. Chen, W. W. Hwu, B. R. Rau, and M. S. Schlansker, “Sentinel Scheduling for VLIW and Superscalar Process...
	[16] S. S. Mukherjee, T. Fossum, J. Emer, and S. K. Reinhardt, “Cache Scrubbing in Microprocessors: Myth or Necessity?” 10th International Symposium on Pacific Rim Dependable Computing (PRDC), Papeete, Tahiti, March 2004.
	[17] S. S. Mukherjee, M. Kontz, and S. K. Reinhardt, “Detailed Design and Evaluation of Redundant Multithreading Alternatives,” 29th Annual International Symposium on Computer Architecture (ISCA), 2002.
	[18] S. S. Mukherjee, C. T. Weaver, J. Emer, S. K. Reinhardt, and T. Austin, “A Systematic Methodology to Compute the Architectu...
	[19] J. Ray, J. Hoe, and B. Falsafi, “Dual Use of Superscalar Datapath for Transient-Fault Detection and Recovery,” International Symposium on Microarchitecture (MICRO), December 2001.
	[20] S. K. Reinhardt and S. S. Mukherjee, “Transient Fault Detection via Simultaneous Multithreading,” 27th Annual International Symposium on Computer Architecture (ISCA), June 2000.
	[21] A. Rogers and K. Li, “Software Support for Speculative Loads,” 5th International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS), pp. 38- 50, Oct. 1992.
	[22] E. Rotenberg, “AR-SMT: A Microarchitectural Approach to Fault Tolerance in Microprocessors,” Proceedings of the Fault-Tolerant Computing Systems (FTCS), 1999.
	[23] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder, “Automatically Characterizing Large Scale Program Behavior,” 10th International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS), October 2002.
	[24] P. Shivakumar, M. Kistler, S.W. Keckler, D. Burger, and L. Alvisi, “Modeling the Effect of Technology Trends on the Soft Error Rate of Combinatorial Logic,” Dependable Systems and Networks (DSN), 2002.
	[25] D. R. Siewiorek and R. S. Swarz, “Reliable Computer Systems Design and Evaluation,” Published by A.K.Peters, Ltd., 1998.
	[26] T.J. Slegel, et al., “IBM’s S/390 G5 Microprocessor Design,” IEEE Micro, pp 12-23, Mach/April 1999.
	[27] J.E. Smith and A.R. Plezkun, “Implementing Precise Interrupts in Pipelined Processors,” IEEE Transactions On Computers, 37:5 (May), pp. 562-573, 1988.
	[28] D. Tullsen and J. A. Brown, “Handling Long-Latency Loads in a Simultaneous Multithreaded Processor,” 34th Annual International Symposium on Microarchitecture (MICRO), Dec. 2001.
	[29] T.N. Vijaykumar, I. Pomeranz, and K. Cheng., "Transient Fault Recovery via Simultaneous Multithreading," International Symposium on Computer Architecture (ISCA), 2002
	[30] N. Wang, M. Fertig, and S. Patel, “Y-Branches: When You Come to a Fork in the Road, Take It,” 12th International Conference on Parallel Architectures and Compilation Techniques (PACT), 2003.
	[31] N. Wang, J. Quek, T. M. Rafacz, and S. Patel, “Characterizing the Effects of Transient Faults on a High-Performance Processor Pipeline,” International Conference on Dependable Systems and Networks, June 2004.
	[32] J.F. Ziegler, et al., “IBM experiments in soft fails in computer electronics (1978 - 1994),” IBM Journal of Research and Development, pp. 3 - 18, Volume 40, Number 1, January 1996.

