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Abstract Bremsstrahlung emission in collisions between charged nuclei is equivalent to nuclear gamma
decay between continuum states. The way the continuum spectrum can be treated is not unique, and
efficiency and accuracy of cross section calculations depend on the chosen method. In this work we
describe, relate, and compare three different methods in practical calculations of inelastic cross sections,
that is, by (i) treating the initial and final states as pure continuum states on the real energy axis,
(ii) discretizing the continuum states on the real energy axis with a box boundary condition, and (iii)
complex rotation of the hamiltonian (complex scaling method). The electric quadrupole transitions,
2+ → 0+ and 4+ → 2+, in α+ α scattering are taken as an illustration.

Keywords First keyword · Second keyword · More

1 Introduction

The emission of bremsstrahlung in a collision between two charged particles constitutes an important
background effect in Coulomb deexcitation processes. In a classical picture, this phenomenon is under-
stood as the energy radiated due to the deceleration of a charged particle when deflected by another
charged particle. The radiated energy is just the kinetic energy lost in the deceleration process. In a
quantum mechanical picture, the process can be seen as the γ-emission due to the decay of a two-body
system from some two-body continuum state into another continuum state of lower energy. A detailed
derivation of the cross section for this kind of processes can be found in [1].

The fact that these transitions involve continuum structures, both in the initial and final states,
introduce technical as well as conceptual difficulties in the calculations. First, the treatment of the
continuum spectrum itself, which can be handled in different ways, but in numerical studies almost
necessarily by some kind of discretization. Second, the unavoidable matrix elements between the con-
tinuum states involved in the calculation are diverging and thus not well defined without some regu-
larization prescription. These two problems, how to treat the continuum and how to obtain converged
results, are possible sources of uncertainty that deserves detailed investigations.

Different methods were previously used to compute the bremsstrahlung cross sections for various
combinations of nuclei. In [2] α−α collisions were investigated in connection with the resonant electric
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quadrupole capture into the unbound ground state of 8Be. The bremsstrahlung cross section was
obtained without any discretization of the continuum spectrum. The two-body states are then pure
continuum structures, which are orthogonal to each other in a continuum sense, through a Dirac delta.

Another possibility is for instance employed in [3], where the bremsstrahlung radiation during α-
decay was computed in a time dependent picture for heavy nuclei. In this case the continuum states
were discretized and treated on the same footing as the discrete part of the spectrum describing
the bound states. The orthogonality condition is now given by a Kronecker delta. In both these two
procedures the energy is a real number, which means that the resonances (if any) are not isolated
as particular continuum states, and their effect on the cross section is diluted into the continuum
spectrum (discretized or not).

In [4] the Coulomb breakup reaction of 11Be was analyzed by use of the complex scaling method.
This method [5] rotates the usual coordinates into the complex plane (x → x exp(iθ)), and permits an
easy separation between resonances and ordinary continuum states. The resonances, defined as poles of
the S-matrix, appear as discrete solutions clearly separated from the (rotated) continuum background,
provided the rotation angle is sufficiently large. This method provides simultaneously the complex
resonance energy with real part and imaginary part equal to minus half the width. The complex
energy of the resonance can also be found by extending the energy into the complex plane without any
complex rotation of the coordinates. The complex scaling method has the enormous advantage that
the resonance wave function falls off exponentially at large distances, exactly as ordinary bound states.
This fact permits to circumvent all the technical difficulties arising from the otherwise exponentially
divergent resonance wave function. However, the continuum background still contributes and must
therefore necessarily be included in calculations of the observable cross sections.

The 8Be nucleus is particularly interesting due to the role it most likely plays in the triple-alpha
radiative capture into 12C, which is one of the most important reactions in stellar nucleosyntheses.
This nucleus is rather well described as an α+α molecular cluster structure, and therefore equally
well treated as a two-body problem. In a recent work [6] the full continuum method was used to
investigate the E2-transitions in 8Be. In particular, the cross section was found to be insensitive to
the α-α interaction used, and it was also shown how a precise definition of the cross section requires
a choice of an energy window for the final states in the scattering process.

The existence and energy sequence of the 0+, 2+, and 4+ resonances suggest the interpretation
of these states as a rotational band. However, these states are located in the continuum with corre-
sponding decay widths. In other words, continuum properties are an integral part of understanding
8Be. Rotational bands in the continuum present conceptual problems arising from substantial decay
widths of these states. This was recently discussed in [7] where the (non-observable) structure de-
pendent electromagnetic transition probabilities approximately were extracted from (observable) cross
sections.

Despite the apparent simplicity of 8Be this nucleus is not yet fully understood, because all prop-
erties are continuum related, since even the ground state is unbound. Furthermore, 8Be is the only
spontaneously fissioning nucleus along the beta-stability line before Uranium. This fission process is
complicated due to both dynamics and delicate balancing of various energy terms. On the other hand,
the simplicity itself makes 8Be an almost perfect as a test case, since it still is complex enough to
maintain essential key features. These should be understood before the properties of more complicated
systems can be fully appreciated and exploited.

The purpose of the present work is to describe and compare the three methods mentioned in the
paragraphs above. We can then pinpoint when a given method is preferable for computation and
interpretation of a given quantity. We can also specifically distinguish between results for the same
quantities computed by different methods for the same nucleus. We shall refer to the three methods
as the full continuum method, the discretized continuum method, and the complex scaling method.
The main aspects of each of them will be given in sections 2, 3, and 4, respectively. The connection
between all the three methods will be shown. Each of the three sections contains a subsection where the
corresponding method is used to describe the electric quadrupole transitions, 2+ → 0+ and 4+ → 2+,
in 8Be, which are taken as an illustration. We close the paper with the summary and the conclusions.
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2 Full continuum method

A detailed derivation of the bremsstrahlung cross section for the collision between two charged particles
can be found in Ref. [1]. To be precise, the final result for the differential cross section is given
in Eq.(II.3.2) of that reference. A summary of the most relevant expressions can also be found in
Ref. [8], where the expressions for the angular integrated cross sections are also given. We first give the
expressions for spin-zero bosons which afterwards is applied to collisions between two alpha-particles

2.1 General formulation for spin-zero bosons

The dominating electromagnetic transitions between states of two spin-zero bosons are necessarily of
quadrupole character. This applies in particular to the two-alpha system, where Eq.(11) in [8] takes
the form:

dσ

dEγ

∣

∣

∣

∣

ℓ→ℓ′
(E) =

4π2e2

15k2

(

Eγ

~c

)5

(2ℓ+ 1)

∣

∣

∣

∣

〈ℓ0; 20|ℓ′0〉
∫ ∞

0

uℓ(E, r)r2uℓ′(E
′, r)dr

∣

∣

∣

∣

2

, (1)

whereE and E′ are the initial and final state energies in the two-body center of mass frame,Eγ = E−E′

is the energy of the emitted photon, ℓ and ℓ′ are the relative angular momenta between the two particles
in the initial and final state, e is the unit charge, and k2 = 2µE/~2, where µ is the reduced mass of
the two-body system. In Eq.(1) we used a charge of 2e for each alpha particle amounting to the factor
of 4e2.

An important point refers to the radial two-body wave functions uℓ and uℓ′ . They are the solutions
of the radial two-body Schrödinger equation:

[

− ~
2

2µ

d2

dr2
+

~
2

2µ

ℓ(ℓ+ 1)

r2
+ V (r) − E

]

uℓ(E, r) = 0 (2)

where V (r) is the two-body interaction. These wave functions behave asymptotically as:

uℓ(E, r)
r→∞−→ C [cos δℓFℓ(kr) + sin δℓGℓ(kr)] , (3)

where Fℓ and Gℓ are the regular and irregular Coulomb functions, δℓ is the nuclear phase shift, and the
asymptotic constant C is determined from the energy normalization condition, which requires that:

∫ ∞

0

uℓ(E, r)uℓ(E
′, r)dr = δ(E − E′). (4)

This normalization condition implies that the asymptotic constant C has to be:

C =

√

2µ

π~2k
. (5)

A derivation of the value of the asymptotic constant can be found in appendix A. Note that from
Eqs.(3) and (5) we have that the units of the radial continuum wave functions u are one over square
root of Energy times Length, which is also consistent with the normalization condition (4), and which
leads to the correct units of length squared divided by energy for the energy differential cross section
in Eq.(1).

The total bremsstrahlung cross section, as a function of the incident energy E, is obtained after
integration over the energy of the emitted photon:

σ(E) =

∫

dσ

dEγ

∣

∣

∣

∣

ℓ→ℓ′
(E) dEγ . (6)

As stated in Ref.[6], the computed cross sections should be obtained in close analogy to the experimental
setup, where only a finite range of final relative energies is measured. This means that the integral in
Eq.(6) has to be performed only over this precise energy range. We shall often refer to this range as
the final energy window.
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A delicate point in the calculation of the cross section refers to the procedure employed to obtain the
radial integral in Eq.(1). Due to the fact that the continuum wave functions do not converge towards
zero at infinity (see Eq.(3)), the integrand in Eq.(1) actually diverge with distance by oscillating with
larger and larger amplitude. Some regularization prescription is required to extract the physically
meaningful content. This is possible since the matrix elements physically must be well defined, and
mathematically as well corresponding to cancellation of the large-distance contributions. A convenient
numerical procedure must then be found and applied.

In this work we shall use the Zel’dovich regularization [9], which introduces the regularization

factor e−η2r2 in the diverging radial integrand. Then the desired correct result is obtained in the limit
of zero value for the Zel’dovich parameter η. This removes the unwanted large-distance large-amplitude
oscillations and the uniquely defined limiting result is obtained for sufficiently small, but finite, values
of η. The smaller the value of η the slower the fall off of the radial integrand, and therefore the larger
the upper limit required in the radial integral in Eq.(1). Numerically, this obviously becomes more and
more difficult since the large-amplitude oscillations cancel each other and consequently must be very
accurately computed. The optimum value of η is therefore as large as possible yet sufficiently small to
have reached the limit. A different choice is of course possible for the regularization factor. For instance
one could use a higher power in the exponent, which would produce a faster attenuation of the tail of
the integrand. However, the use a higher power would reduce the range interval of η-values in which the
integral stabilizes at the correct result. The choice made in this work is a sort of compromise between
how fast the unwanted tail in the integrand is killed and the difficulty of finding a range of η-values in
which the integral reaches the η = 0 value with sufficient accuracy.

2.2 Full continuum wave functions: E2-capture in α+ α collisions.

The expressions given in the subsection above provide a summary of the most pertinent formulae for
computations of bremsstrahlung cross sections. They are from Refs. [2; 10], where the 2+ → 0+ and
4+ → 2+ transitions in 8Be were computed. In [2] the Buck α−α potential given in [11] was used, while
in [10] the results obtained with the Buck potential and the Ali-Bodmer potential [12] were compared.
The main difference between these potentials is in the treatment of the Pauli principle. The Buck
potential generates a nodal structure in the two-body wave functions in accordance with microscopic
theories [11]. The immediate consequence is the appearance of two bound 0+-states and one bound 2+-
state in 8Be (with energies −72.79 MeV, −25.88 MeV, and −22.28 MeV, respectively). These spurious
states correspond to Pauli forbidden states. On the other hand the Ali-Bodmer potential contains
a short-distance repulsion that prevents the appearance of such forbidden states. Both potentials
reproduce equally well the ℓ = 0, ℓ = 2, and ℓ = 4 phase shifts (up to E ∼ 20 MeV), and therefore the
corresponding two-body wave functions have the same asymptotic behavior.

Although in [10] the cross section was found to depend quite a lot on the potential used, in subse-
quent calculations [13] this dependence was reduced significantly. In fact, in our recent work [6] we have
shown that the dependence is actually very small, and the cross sections obtained with the Ali-Bodmer
and Buck potentials (and even with the phase equivalent version of the Buck potential) can be hardly
distinguished. For this reason in this work any discussion about the dependence on the potential will
be omitted, and we will show the results obtained with the Buck potential only. In particular, with
this potential the 0+, 2+, and 4+ resonances are found at 0.091 MeV, 2.88 MeV, and 11.78 MeV,
respectively, and their corresponding widths are 3.6 eV, 1.24 MeV, and 3.57 MeV. These values agree
very well with the experimental values given in [14].

Let us first investigate the dependence of the results on the Zel’dovich parameter η. As mentioned

above, this parameter enters in the regularization factor e−η2r2 used to extract the physics from the
wildly oscillating integrand in Eq.(1). In Fig. 1 we show the differential cross section (1) for specific
values of the initial and final energies E and E′ as a function of η. The solid and dashed curves in
the figure correspond to the 2+ → 0+ transition (ℓ = 2, ℓ′ = 0 in Eq.(1)) and the 4+ → 2+ transition
(ℓ = 4, ℓ′ = 2 in Eq.(1)), respectively. The chosen values for E and E′ are 3.0 MeV and 0.092 MeV for
the 2+ → 0+ transition, and 10.0 MeV and 3.0 MeV for the 4+ → 2+ transition. As seen in the figure,
the cross sections are very stable for sufficiently small values of η. This proves that the η → 0 limit is
properly reached. Values of η smaller than about 0.02 fm−1 then provide the converged value of the
cross section in the η → 0 limit.
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Fig. 1 (Color online) Outer part: Differential cross section (Eq.(1)) for given initial and final energies (E and
E′) for the 2+ → 0+ (solid curve) and 4+ → 2+ (dashed curve) transitions in 8Be as a function of the Zel’dovich
parameter η used to regularize the integrand in the radial integral. The values of the initial and final energies
are E = 3.0 MeV and E′ = 0.092 MeV for the 2+ → 0+ transition, and E = 10.0 MeV and E′ = 3.0 MeV
for the 4+ → 2+ transition, respectively. Inner part: Integrand in the radial integral in Eq.(1) corresponding
to the differential cross section for the 4+ → 2+ transition shown in the outer part for η = 0.01 fm−1.

Furthermore, keeping η ∼ 0.01 fm−1 the upper radial limit required in the integral in Eq.(1) stays
within reasonable values, such that the integral is not difficult to handle. As an example, we show in
the inner part of Fig.1 the integrand corresponding to the 4+ → 2+ transition shown in the outer part
for η = 0.01 fm−1. As we can see, an upper limit of about 400∼500 fm is enough. In case of using
for instance η = 0.001 fm−1 the upper limit moves up til about 5000 fm, and integration of such a
highly oscillating function up to that distance becomes a much more delicate task. Of course, the larger
the value of η the more the integrand is killed, and eventually, for sufficiently large values of η the
computed differential cross section approaches zero. All the results shown later on in this work will be
obtained with η = 0.01 fm−1. We emphasize that the strongly oscillating integrand is a result of the
two regularly oscillating continuum wave functions (uℓ, uℓ′). The strong cancellation is a consequence,
and the resulting well-defined value of the integral is orders of magnitude smaller than corresponding
to the amplitude of the oscillations at the moderate distances, see the inset in Fig.1.

We have then computed the total bremsstrahlung cross section for the 2+ → 0+ and 4+ → 2+

transitions according to Eqs.(1) and (6). The 0+, 2+, and 4+ continuum wave functions are computed
numerically by solving Eq.(2) for an arbitrarily small grid of energies E and E′ (Eγ = E − E′ > 0).
The computed wave functions are scaled such that the asymptotic behavior is given by Eqs.(3) and
(5). Another important ingredient in the calculation is the final energy window for the integral in
Eq.(6). For the 2+ → 0+ transition it was shown in Ref.[6] that, due to the very small width of the 0+

resonance in 8Be, a final energy window for the 0+ states of 0.5 keV around the 0+ resonance energy
is enough to reach convergence for the cross section. This width for the window is far smaller than the
best experimental resolution of about 10 keV. For the 4+ → 2+ transition the cross section is much
more sensitive to the size of the final energy window chosen in Ref.[6]. In the present work we shall
use the same window as in [10; 13; 15], namely, 2 MeV < E′ < 4 MeV, which roughly corresponds to
the 2+-resonance energy ±1 MeV and also is comparable to its widths of 1.24 MeV.

In Fig. 2 the solid lines show the computed total bremsstrahlung cross section integrated over the
corresponding energy windows (Eq.(6)) for the 2+ → 0+ (Fig.2a) and 4+ → 2+ (Fig.2b) transitions in
8Be. In both figures the open circles are the results obtained with the Buck potential used in Refs.[2]
and [10]. The procedure described in this section is very similar to the one used in these two references,
and therefore it is not surprising to find the good agreement between our results and the ones in [2; 10].
However, it is important to keep in mind that when using a different α−α potential (for instance the



6

10
E (MeV)

0

50

100

150
PLB174 (1986) 27
This work

0 1 2 3 4 5
E (MeV)

0

5

10

15

σ(
E

) 
(n

b)

PRC33 (1986) 790
This work

2
+
 --> 0

+ 4
+
 --> 2

+

(a) (b)

Fig. 2 (Color online) Integrated bremsstrahlung cross section (Eq.(6)) for the (a) 2+ → 0+ and (b) 4+ → 2+

transitions in 8Be as a function of the incident energy E. The integral in Eq.(6) has been performed over the
final energy windows specified in the text. The open circles in parts (a) and (b) correspond to the cross section
obtained with the Buck potential in Refs. [2] and [10], respectively.

Ali-Bodmer potential), we obtain a very similar cross section, while in [10; 13] a big discrepancy was
found for the 4+ → 2+ transitions (see [6] for details). The peak at low energies observed in Fig.2b is
due to the known 1/Eγ dependence of the bremsstrahlung cross section at small photon energies [16].
This is the so called infrared catastrophe. However, as explained in [16], this divergence is not physical.
A transition with Eγ = 0 is nothing but an elastic process. A relativistic treatment of the elastic
reaction up to the same order will produce a similar 1/Eγ divergence in the cross section but with
opposite sign that precisely cancels the one obtained in the calculation of the bremsstrahlung cross
section. As shown in [6], removal of the soft-photon contributions removes as well the nonphysical peak
in the cross section.

3 Discretized continuum method

Instead of using continuum wave functions with the energy normalization in Eq.(4), a quite common
procedure is to discretize the continuum spectrum into an orthogonal set of basis functions, and treat
them similarly to bound states. One option, rather often used, is to average the continuum states over
narrow range of energies. For each of these energy bins a discrete bin wave function is constructed
[18; 19]. These wave functions are automatically normalized to 1 provided that the radius of the bin
wave function is large enough. In this work we shall employ the much simpler procedure of imposing a
box boundary condition. In this way the spectrum is automatically discretized, and each state is then
normalized to 1. We first give the general expressions in some details, and then apply to collisions of
two alpha-particles.

3.1 General formulation

The connection between the continuum wave functions used in the previous section and the discrete
ones can be seen rather easily. To do it, let us assume that we have discretized the continuum spectrum

in a box of size L. We then get a family of discrete states
{

u
(i)
ℓ (Ei, r)

}

satisfying that

∫ L

0

u
(i)
ℓ (Ei, r)u

(j)
ℓ (Ej , r)dr = δij . (7)
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Each state i corresponds to some discrete energy value Ei, and it satisfies the box boundary condition

u
(i)
ℓ (Ei, L) = 0. The set of energy values {Ei} is then not arbitrary, but dictated by the size of the

box. The number of discrete states grows linearly with L, and therefore, the larger L the smaller the
energy separation between the discrete states.

Asymptotically each function u
(i)
ℓ (Ei, r) behaves as ∼ sin(kir + δ), where δ is the phase shift and

k2i = 2µEi/~
2. (8)

Imposing now that u
(i)
ℓ (Ei, L) = 0, we get that the discrete values of the momentum ki take the form:

ki ≈ iπ/L; (i = 1, 2, · · ·), (9)

from which, and making use of Eq.(8), it is not difficult to see that the energy separation between two
consecutive discrete states is given by:

∆E = Ei − Ei−1 = (k2i − k2i−1)
~
2

2µ
≈ 2π

L

~
2ki
2µ

=
2π

L

Ei

ki
, (10)

where we have assumed that i is large enough such that (i2− (i−1)2) ≈ 2i. From the expression above
it is now evident that the energy distance between two consecutive energies decreases linearly with L.

Let us now use the relation between the Dirac and Kronecker deltas:

δ(Ei − Ej) = lim
∆E→0

δij
∆E

, (11)

where∆E is the separation between the two energies. From this expression the normalization conditions
(7) and (4) can be easily related:

∫ ∞

0

uℓ(Ei, r)uℓ(Ej , r)dr = lim
L→∞

∫ L

0

u
(i)
ℓ (Ei, r)√

∆E

u
(j)
ℓ (Ej , r)√

∆E
dr, (12)

where the wave functions uℓ(E, r) are continuum functions in the sense of section 2, and where we
have used that, as seen in Eq.(10), to impose ∆E → 0 amounts to imposing L → ∞.

Making use again of Eq.(10), we can relate the pure continuum wave functions and the discrete
wave functions. This relation is given by:

uℓ(Ei, r) = lim
∆E→0

u
(i)
ℓ (Ei, r)√

∆E
= lim

L→∞

√

L

2

√

2µ

π~2ki
u
(i)
ℓ (Ei, r). (13)

From this expression one can see that while the units of the continuum wave functions uℓ are one over

square root of Energy times Length, (consistent with (4)), the discrete states u
(i)
ℓ have units of one

over square root of length (consistent with (7)).
Furthermore, taking into account the asymptotic behavior of the continuum wave functions, which

is given by Eqs.(3) and (5), it is now evident that the discretized continuum states satisfy:

u
(i)
ℓ (Ei, r)

r→∞−→
√

2

L
[cos δℓFℓ(kir) + sin δℓGℓ(kir)] . (14)

Now, in order to compute the bremsstrahlung cross section Eq.(1), the only remaining point is to
translate the radial integral in this equation into the discrete continuum spectrum language. To do so,
let us first write the square of the radial integral in a more compact way as:

∣

∣

∣

∣

∫ ∞

0

uℓ(E, r)r2uℓ′(E
′, r)dr

∣

∣

∣

∣

2

= 〈uℓ(E, r)|r2|uℓ′(E
′, r)〉〈uℓ′(E

′, r)|r2|uℓ(E, r)〉. (15)

Since the discrete continuum states form a complete basis, we can now exploit the completeness
relation

1 =
∑

i

|u(i)
ℓ (Ei, r)〉〈u(i)

ℓ (Ei, r)|, (16)
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which of course applies also to the final states with relative orbital angular momentum ℓ′. If we now
insert the initial state unity operator in between the uℓ functions and r2, and similarly, the final state
unity operator in between the uℓ′ functions and r2, we can then rewrite Eq.(15) as:

∣

∣

∣

∣

∫ ∞

0

uℓ(E, r)r2uℓ′(E
′, r)dr

∣

∣

∣

∣

2

=
∑

ij

〈uℓ(E, r)|u(i)
ℓ (Ei, r)〉〈u(i)

ℓ (Ei, r)|r2|u(j)
ℓ′ (E′

j , r)〉〈u
(j)
ℓ′ (E′

j , r)|uℓ′(E
′, r)〉

×
∑

i′j′

〈uℓ′(E
′, r)|u(j′)

ℓ′ (E′
j′ , r)〉〈u

(j′)
ℓ′ (E′

j′ , r)|r2|u
(i′)
ℓ (Ei′ , r)〉〈u(i′)

ℓ (Ei′ , r)|uℓ(E, r)〉, (17)

where the energies with and without primes refer, respectively, to energies in the initial and final states.
Since Eq.(13) can also be written as:

u
(i)
ℓ (Ei, r) = lim

∆E→0

√
∆Euℓ(Ei, r), (18)

we then have that
〈uℓ(E, r)|u(i)

ℓ (Ei, r)〉 = lim
∆E→0

√
∆E δ(E − Ei), (19)

and Eq.(17) becomes:

∣

∣

∣

∣

∫ ∞

0

uℓ(E, r)r2uℓ′(E
′, r)dr

∣

∣

∣

∣

2

= lim
∆E→0

∑

ij

∆Eδ(E − Ei)δ(E
′ − E′

j)〈u
(i)
ℓ (Ei, r)|r2|u(j)

ℓ′ (E′
j , r)〉

×
∑

i′j′

∆Eδ(E′ − E′
j′ )δ(E − Ei′ )〈u(j′)

ℓ′ (E′
j′ , r)|r2|u

(i′)
ℓ (Ei′ , r)〉. (20)

Finally, from Eq.(11) we have that

lim
∆E→0

∆Eδ(E − Ei)δ(E − Ei′ ) = lim
∆E→0

∆Eδ(E − Ei)δ(Ei − Ei′ ) = δ(E − Ei)δii′ , (21)

and two of the summations in Eq.(20) can be trivially made, which leads to the final result:

∣

∣

∣

∣

∫ ∞

0

uℓ(E, r)r2uℓ′(E
′, r)dr

∣

∣

∣

∣

2

=
∑

ij

δ(E − Ei)δ(E
′ − E′

j)
∣

∣

∣
〈u(i)

ℓ (Ei, r)|r2|u(j)
ℓ′ (E′

j , r)〉
∣

∣

∣

2

, (22)

where

〈u(i)
ℓ (Ei, r)|r2|u(j)

ℓ′ (E′
j , r)〉 =

∫ L

0

u
(i)
ℓ (Ei, r)r

2u
(j)
ℓ′ (E′

j , r)dr. (23)

Therefore, in the discretized continuum picture, the differential bremsstrahlung cross section is
given by Eq.(1), where the square of the radial integral is given by (22). Thanks to the delta functions
the integral (6) can be trivially made, and we get for the integrated cross section:

σ(E) =
4π2e2

15k2
(2ℓ+ 1)〈ℓ0; 20|ℓ′0〉2

∑

i,j

(

Eγ

~c

)5

δ(E − Ei)
∣

∣

∣
〈u(i)

ℓ (Ei, r)|r2|u(j)
ℓ′ (E′

j , r)〉
∣

∣

∣

2

(24)

In practice, the total cross section above is computed by making use of Eq.(11) and replacing the
δ-function by δE,Ei

/∆E, which by use of Eq.(10), permits finally to write the total cross section Eq.(24)
as:

σ(Ei) =
4π2e2

15k2i
(2ℓ+ 1)〈ℓ0; 20|ℓ′0〉2 L

2π

ki
Ei

∑

j

(

Eγ

~c

)5
∣

∣

∣
〈u(i)

ℓ (Ei, r)|r2|u(j)
ℓ′ (E′

j , r)〉
∣

∣

∣

2

(25)

with Eγ = Ei−E′
j . Since Eγ > 0 it is then obvious that the summation in j involves all the continuum

final states with energy E′
j smaller than the energy Ei of the initial state.

Also, in the same way that the integration Eq.(6) is restricted to final energies within a chosen
final energy window, in Eq.(25) the summation over j is also restricted to those discrete final states
whose energy E′

j is contained is that energy window. It is important to note that to reach a sufficient
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accuracy in the calculation it is necessary to have a significant amount of discrete final energies within
that window. This is because the relation Eq.(11), thoroughly used in the description of the discretized
continuum procedure, requires a sufficiently small value of ∆E (or equivalently, a sufficiently large
value of the box size L) to be valid. In fact, the summation over j in Eq.(25) is actually taking care in
the discretized picture of the integral Eq.(6), and it is reasonable to think that too few terms in this
summation can not reproduce properly the value of the integral.

Another issue to note is that, as it has to be, the total cross section Eq.(25) is independent of
the size of the box L, of course provided L is sufficiently large. This is because the number of states
in the summation over j increases linearly with L, which together with the L factor that explicitly
appears in Eq.(25) gives a total L2-dependence. This L2-factor cancels with the 1/L2 dependence of
the square of the matrix element in Eq.(25). This 1/L2 dependence is evident from the normalization
of the asymptotic wave function Eq.(14).

As a final remark, let us mention that Eq.(24), and therefore also Eq.(25), is consistent with the
standard expression for the γ-decay cross section, as given for instance in Eq.(4) of Ref. [20]. The
details about this consistency are given in appendix B.

3.2 Discrete continuum states in a box: E2-capture in α+ α collisions.

As done in the previous section, we shall now compute the E2-bremsstrahlung cross sections in α+ α
collisions using the procedure described above.

As already mentioned, use of Eq.(25) requires a sufficiently small energy separation ∆E between
the discrete continuum states, such that the number of terms involved in the summation over j is
large enough to reproduce the correct value of the integral Eq.(6). Typically, for a reasonably smooth
function, about 20− 30 terms can be taken as a lower limit for the number of states to be included in
the summation. Therefore, given a final energy window, use of Eq.(10) permits to estimate the size of
the box L needed for a reasonable description of the process.

For instance, for the 4+ → 2+ transition considered in Fig.2b, where the final energy window is
2 MeV < E′ < 4 MeV, an energy separation between states of about 0.1 MeV would give rise to
around 20 discrete states within the window. According to Eq.(10), for two alpha-particles and Ei = 3
MeV, we get that in order obtain ∆E ∼ 0.1 MeV we need the size of the box to be L ∼ 350 fm. For
the 2+ → 0+ reaction (Fig.2a) the energy window has a width of only 1 keV, which means that the
required separation energy between the discrete 0+ states should be of at most of about 0.1 keV. If
we again use Eq.(10) with Ei = 0.1 MeV (∼ 0+ resonance energy) we obtain that to get such a small
energy separation we would need L ∼ 65000 fm. This value would be even three orders of magnitude
bigger in case of looking for separation energies of the order of 0.1 eV, which would be actually more
reasonable, since the width of the 0+ resonance in 8Be is of just a few eV.

The huge size of the box estimated for the 2+ → 0+ transition is far beyond our numerical capability,
and makes the discretization method completely useless in this particular case. This is due to the fact
that the width of the window is orders of magnitude smaller than the energy in the center of the
window. Only when these two values are comparable we can say that the use of the discretization
method really makes sense. For this reason, in this section we shall consider only the case of the
4+ → 2+ transition.

As before, the 4+ and 2+ wave functions have been obtained by solving Eq.(2) with the Buck α-α
potential [11]. They have been computed by imposing a box boundary condition, where normalization
automatically is ensured. However, the matrix elements are still strongly oscillating, and the physical
meaning has to be extracted as by using the full continuum method as described in Section 2. Again
we use the Zel’dovich prescription where each of the oscillating wave functions are multiplied by the

Zel’dovich factor, e−η2r2/2. This changes the normalization to be a function of η and the matrix
elements should be correspondingly computed with this η-dependent normalization. In the limit of
η → 0 the original box-normalization is recovered and the radial integral is obtained precisely as
for continuum wave functions. The convergence properties and the range of acceptable parameters
are therefore unchanged. In the numerical results we use the value η = 0.01 fm−1 for the Zel’dovich
parameter. This implies that the minimum size of the box should be of about L = 500 fm, since this
value of L guarantees that the integral in Eq.(25) has already converged (see inset of Fig.1). Finally,
the corresponding cross section has been computed according to Eq.(25).
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Fig. 3 The same as in Fig. 2b but using continuum states discretized with a box boundary condition. The
dotted, dashed, and solid curves have been obtained with a box size of L = 500, 600, and 1000 fm, respectively.
The inset compares the result obtained with L = 1000 fm (solid curve) and the cross section shown in Fig.2b
obtained with the full continuum calculation (dotted curve).

To test the dependence on the size of the box, we have performed the calculation for different values
of L. In Fig.3 the dotted curve is the cross section obtained with L = 500 fm. We can see that, specially
for high energies, the curve does not show a smooth behavior. This is due to numerical inaccuracies
produced by a still not large enough number of discrete 2+ states in the final energy window (30
states). In fact, if we reduce L down to 400 fm (only 23 discrete states in the window), the non-smooth
behavior is much more pronounced (although not shown in the figure for the sake of clearness). On the
other hand, an increase of L up to 600 fm (36 discrete states within the window), permits already to
get a smooth cross section, as shown by the dashed curve in the figure. When increasing the value of
L, and therefore increasing as well the number of states inside the energy window, a small correction is
found for the cross section. This is shown by the solid curve, which has been obtained with L = 1000
fm (60 discrete 2+ states in the energy window). Further increase of L does not produce any visible
change when compared to the solid curve in the figure. Finally, in the inset we compare the converged
cross section obtained with L = 1000 fm (solid curve) and the one shown in Fig.2b, obtained with
the full continuum method, and plotted in the inset of Fig.3 by the dotted curve. As we can see the
agreement is perfect.

4 Complex Scaling Method

It is well known that when the energy in Eq.(2) is allowed to be complex, bound states and resonances
can be identified as poles of the S-matrix in the complex momentum plane. In particular, bound states
are located in the positive side of the imaginary axis, and the resonances appear in the fourth quadrant
of the plane. The asymptotic behavior Eq.(14) for complex values of the momentum k implies that
while the bound states are falling off exponentially at large distances, the resonance wave functions do
actually diverge also exponentially.

The numerical difficulties arising from this divergence can however be easily solved by use of the
complex scaling method [5; 22]. Its application requires only rotation of the radial coordinate into
the complex plane by some arbitrary angle θ (r → reiθ). Under this simple transformation, and
provided that θ is larger than the argument of the resonance, the complex rotated resonance wave
function behaves asymptotically as a bound state, i.e., it falls off exponentially. The same behavior is
maintained for bound states. Therefore, after complex scaling, resonances appear formally as “bound
states” with complex energy.
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Fig. 4 Outer part: Complex rotated spectrum, in the complex energy plane, of the 2+ states in 8Be after solving
the complex rotated Schrödinger equation (2) with the Buck potential [11], and a box boundary condition.
The spectrum is shown for scaling angles θ = 0.05 rads. (stars), θ = 0.25 rads. (squares), and θ = 0.35 rads.
(circles). Inner part: The corresponding complex rotated radial wave function (with θ = 0.25 rads.) for to the
2+ resonance in 8Be.

A complex scaling transformation permits then an easy distinction between continuum states, which
are rotated in the complex energy plane by an angle 2θ [5], and resonances, which show up as isolated
points whose position is independent of the complex scaling angle used in the calculation. Therefore,
this procedure appears as a simple tool allowing separation between different types of contributions:
Resonance to resonance, continuum to resonance, resonance to continuum, or continuum to continuum.

In the following, we shall discuss the general properties of the method and its applicability to
describe bremsstrahlung processes. Again, we shall apply the method to our test case of two alpha-
particles.

4.1 General formulation

As an illustration of the discussion above, we show in the outer part of Fig. 4 the 2+ spectrum in
8Be after solving the complex rotated Schrödinger equation Eq.(2) with the Buck potential [11], and
imposing a box boundary condition to the solutions. The results for three different scaling angles (0.05,
0.25, and 0.35 rads.) are shown by the stars, squares, and circles, respectively. As seen in the figure,
the spurious Pauli forbidden bound 2+ state at about −22.5 MeV is found in all the three calculations.
The 2+ resonance at the complex energy 2.9− i0.6 MeV is found as an isolated pole independent of the
scaling angle, but only for the two cases where the scaling angle is larger than 0.10 rads, which is the
argument of the resonance. The remaining points correspond to the original real energies of continuum
2+ states rotated in the complex energy plane by an angle 2θ. In the case of θ = 0.05 rads (stars in the
figure), the 2+ resonance is not explicitly found, and its effect on the cross section is then distributed
among all the discrete continuum states, as in section 3.

The inner part of the figure shows the complex rotated radial wave function of the 2+ resonance
in 8Be for a complex scaling angle of 0.25 rads. As we can see, for a distance of 75 fm the radial
wave function is already pretty small. It is then evident from the figure that after a complex scaling
transformation, the integral in Eq.(15) does not diverge anymore, provided that at least one of the states
involved in the calculation is a resonance (or a bound state). For transitions between pure continuum
states the divergence problem remains, and some regularization (like the Zel’dovich regularization used
in this work) would still be necessary.

In order to compute the bremsstrahlung cross section it is then very tempting to make a complex
scaling transformation and impose a box boundary condition, which discretizes the spectrum as shown



12

in Fig. 4. Doing like this, it is also tempting to use the complex scaled version of the method shown in
Section 3, which is based on Eqs.(10) and (11), which give the energy separation between the different
discrete continuum states and the relation between the Dirac and Kronecker deltas, respectively. In
this way the cross section could again be computed as given in Eq.(25), but where the radial wave
functions and the r2 operator have been complex rotated.

However, as shown in Ref.[21], the density of states in the complex rotated continuum does not
show the expected behavior. In fact, the simple expression Eq.(9), and therefore also Eq.(10), is found
to be valid only in the limit of large rotation angle and large size of the box. This is related to the fact
that after complex scaling the resonance states are separated from the other states in the continuum,
and therefore one may expect to observe holes in the density of states in the rotating continuum [21] (as
actually seen in Fig.4 for the continuum states shown by the squares and the circles, which correspond
to complex scaling angles such that the resonance is taken out from the continuum spectrum). In other
words, the fact that resonances are isolated in the complex energy plane precludes the use of Eq.(10)
in order to transform Eq.(24) into Eq.(25).

The alternative is the method described in [4; 23], where the complex scaling method is used to
investigate the transition from the continuum into a bound state. The starting point is the partic-
ularization of the transition strength given in appendix B, Eq.(40), where the continuum spectra is
assumed to be discretized, to the case of a transition into a bound state. This particularization reads:

dB(λ)

dE
(J ′ → J) =

∑

i

〈Φ(bound)
J′ |Ô†

λ|Φi
J 〉〈Φi

J |Ôλ|Φ(bound)
J′ 〉δ(E − Ei), (26)

where for simplicity we have suppressed the indices referring to the projections of the angular momenta,
the summation i runs over all the discrete states whose wave function is given by Φi

J (the continuum

states among them), and where Φ
(bound)
J′ is the wave function of the bound state.

In appendix C we have summarized the Green’s function formalism used in [4], which permits to
relate the transition strength Eq.(26) to the imaginary part of the so called response function given
by Eq. (63). This connection is given by Eq.(65), which for the case of discrete continuum states takes
the form:

dB(λ)

dE
(J ′ → J) = − 1

π
Im

[

∑

i

〈Φ(bound)
J′ |Ô†

λ|Φi
J 〉〈Φi

J |Ôλ|Φ(bound)
J′ 〉

E − Ei

]

. (27)

The calculation of Eq.(27) is particularly simple when performing a complex scaling transformation,
in such a way that the wave functions, the operator, and the eigenvalues in Eq.(27) become complex
quantities. In fact, after complex scaling the discrete complex scaled states, for instance the ones shown
in Fig.4, still form a complete basis [25]. The advantage of this method is that all the Ei-values are
now complex and the initial energy E is still real. This means that the summation in Eq.(27) can now
be easily made for all values of E > 0 (only the energies of the bound states, if any, are still real, but
negative).

Therefore, after complex scaling of the α − α potential, and imposing a box boundary condition,
one gets the family of discrete eigenvalues shown in Fig.4, each of them associated to a complex rotated
wave function. These functions are the complex rotated version of Eqs.(45) and (46). Using also the
complex scaled version of the electromagnetic operator Eq.(44) one can compute the matrix elements
in Eq.(27) and thereby the transition strength and the cross section.

In the case of transitions from continuum to continuum the response function Eq.(63) has to be
written as:

Rλ(E,E′) =
∑

j

1

E′ − E′
j

∑

i

〈Φ(j)
J′ (E′

j)|Ô†
λ|Φi

J (Ei)〉〈Φi
J (Ei)|Ôλ|Φ(j)

J′ (E′
j)〉

E − Ei
, (28)

where i and j run over the initial and final (discrete) continuum spectrum, where we have written
explicitly the dependence of each wave function on the (complex) discrete energies Ei and E′

j , and
where E and E′ are the (real) initial and final energies.
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Making use now twice of Eq.(64) we get the analogous to Eq.(27) for continuum to continuum
transitions:

Rλ(E,E′) =

P.V.

[

∑

j

1

E′ − E′
j

P.V.

[

∑

i

〈Φ(j)
J′ (E′

j)|Ô†
λ|Φi

J (Ei)〉〈Φi
J (Ei)|Ôλ|Φ(j)

J′ (E′
j)〉

E − Ei

]]

−

−π2
∑

ij

〈Φ(j)
J′ (E

′
j)|Ô†

λ|Φi
J (Ei)〉〈Φi

J (Ei)|Ôλ|Φ(j)
J′ (E

′
j)〉δ(E − Ei)δ(E

′ − E′
j) (29)

−iπP.V.

[

∑

j

∑

i〈Φ
(j)
J′ (E′

j)|Ô†
λ|Φi

J(Ei)〉〈Φi
J (Ei)|Ôλ|Φ(j)

J′ (E′
j)〉δ(E − Ei)

E′ − E′
j

]

−iπ
∑

j

P.V.

[

∑

i

〈Φ(j)
J′ (E′

j)|Ô†
λ|Φi

J(Ei)〉〈Φi
J (Ei)|Ôλ|Φ(j)

J′ (E′
j)〉

E − Ei

]

δ(E′ − E′
j),

where P.V. means the Principal Value of the corresponding integral.
As we can see from the expression above, the transition strength Eq.(40) is contained in the real part

of the response function Eq.(28). Unfortunately, this real part is contaminated by a double Principal
Value, which is also real. Use of a complex scaling transformation permits an easy calculation of
the response function Eq.(28), and in particular of its real part. However, to eliminate from it the
double principal value given in Eq.(29) can be a rather complicated task. For this reason, the use
of the complex scaling method to compute bremsstrahlung cross sections appears to be complicate.
The exception can be those cases where a very well defined and narrow resonance is present in the
final state. This happens for instance in the 2+ → 0+ transition in 8Be, where the very low-lying 0+

resonance is so narrow that it can be treated as a bound state, and therefore Eq.(27) can still be used.

4.2 Complex scaling: E2-capture in the 2+ → 0+ transition in 8Be.

We shall start this section by making the s-wave α-α interaction (in principle described by the Buck
potential [11]) slightly more attractive, such that the low-lying 0+ resonance becomes a true bound
state. Under these conditions, after a complex scaling calculation of the initial and final states, Eq.(27)
can be used safely. With the radial matrix elements computed in this way, the cross section is then
obtained from Eq.(1), where Eγ = E−EB, with EB being the binding energy of the artificially bound
0+ state.

The dashed line in Fig.5 shows the computed cross section when the 0+ state has a binding energy
of EB = −25 keV. The calculation has been done with a complex scaling angle θ = 0.25 rads., but the
result is of course independent of the angle used. For comparison, we also show in the figure the cross
section given in Fig.2a (dotted curve), corresponding to a calculation on the real energy axis with the
true Buck potential. As we can see, the increase in the 0+ binding energy produces an increase in the
cross section, with a maximum value that goes up from about 14 nb to about 19 nb. In fact, for a
smaller binding like EB = −3 keV (dot-dashed curve in the figure) the maximum of the cross section
goes down to 18 nb.

If we still reduce the attraction in the s-wave α-α potential the bound 0+ state becomes a true
resonance. Still using Eq.(27), we then get the cross sections shown by the dot-dot-dashed curve, which
corresponds to a 0+ resonance energy of 34 keV, and the dashed-dashed-dot curve, which corresponds
to a 0+ resonance energy of 57 keV. As we can see, the more the resonance energy approaches the
experimental value of 92 keV, the more the cross section approaches the result obtained on the real
energy axis. However, for a resonance energy of 57 keV, we observe that at some point, in the vicinity
of E = 4 MeV, the cross section is negative, which is already an indication that use of Eq.(27) is
not fully correct for all energies. First, the energy of the final state is not fully real, and the square
of the radial matrix element Eq.(15) would be in general complex. Therefore it can not be the real
quantity given by Eq.(27). And second, the contributions not included in the calculation (transitions
to the continuum 0+ states) have already some role to play. In fact, when the correct Buck potential
is used for the s-wave interaction (0+ resonance at 92 keV), the cross section obtained from Eq.(27),
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Fig. 5 Cross section for the 2+ → 0+ transition into the ground state of 8Be for different energies (EB) of the
0+ state. The complex scaling calculation has been made with a complex scaling angle of 0.25 rads. The result
given in Fig.2a (dotted curve) is shown for comparison.
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Fig. 6 Contributions of the different transitions to the bremsstrahlung cross section for the 2+ → 0+ transition
in 8Be. The scaling angle θ has been taken equal to 0.25 rads. The solid line gives the total cross section obtained
from Eq.(27) assuming transitions to the 0+ resonance only (which is treated as a bound state). The dotted line
is the cross section obtained with a full continuum calculation on the real energy axis (Fig.2a). The difference
between these two curves is given by the dashed curve. The contributions from the resonance-resonance and
continuum-resonance transitions given by Eq.(27) are shown by the dot-dashed and the dot-dot-dashed curves,
respectively.

solid curve in the figure, becomes very negative for initial energies higher than about 3 MeV. Also, the
maximum of the cross section is 1.5 nb below the result shown in Fig.2a.

In any case, even if Eq.(27) does not contain the full information about the cross section, it can be
used to extract some of the contributions to it. In particular, the summation in the r.h.s. of the equation
permits to separate the contribution of transitions from the continuum 2+ states to the resonant 0+

state (continuum-resonance contribution), and the contribution corresponding to a resonance-resonance
transition. Of course, for this separation to be possible, a complex scaling angle larger than the argu-
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ment of the 2+ resonance is required. This is already indicating that this separation between different
types of contributions depends on the complex scaling angle.

The different contributions are shown in Fig.6, where we plot again the solid and dotted curves
already shown in Fig.5, which correspond to the cross section obtained from Eq.(27) assuming transi-
tions to the 0+ resonance only (and treated as a bound state), and the full cross section computed on
the real energy axis. The difference between these two curves (dashed curve in the figure) represents
the effect of, first, the transitions to continuum 0+ states not included in Eq.(27), and, second, the
fact that Eq.(27) is not really valid for unbound final states (Eq.(29) should be used instead). Due
to very small width of the 0+ resonance, the effect shown by the dashed curve in Fig.6 is expected
to come mainly from the missing transitions to the continuum 0+ states. The resonance-resonance
and continuum-resonance contributions obtained from Eq.(27) are shown by the dot-dashed and dot-
dot-dashed curves, respectively. As we can see, the resonance-resonance contribution shows a peak at
about the 2+ resonance energy, but right after the peak goes sharply down and it actually becomes
very negative. This very negative contribution has to be compensated by the remaining ones, espe-
cially by the continuum-resonance contribution. However, even this is not enough, and the transitions
to continuum final states play an important role.

5 Summary and conclusions

In this work we have revisited the problem of bremsstrahlung radiation in two-body collisions, which
is equivalent to a gamma decay process between continuum states. The case of the E2 transitions in
α+α collisions is taken as an example, and used to test the methods.

We have given the details, related, and compared three different procedures. In two of them the
energies of the initial and final states are kept on the real energy axis. The main difference between
them is in the way how the continuum states are treated. In the first method they are obtained with the
correct asymptotic behavior, which implies an orthogonality between states in the continuum sense,
with a Dirac delta. In the second method the continuum is discretized by imposing a box boundary
condition. The continuum states are zero outside the box, and they are treated as bound states, and
therefore normalized to 1 inside the box. Both procedures are of course consistent, and they have been
shown to be fully equivalent in the limit of an infinitely big box. However, when very narrow resonances
are involved in the reaction under investigation, a correct description of such resonance with the second
method requires a huge discretization box, making this second procedure impractical for these cases
(like the 2+ → 0+ process in 8Be). Although formally it is not needed, the numerical implementation
of these two methods is very much simplified after regularization of the radial integrals involved in the
calculation. In this work the Zel’dovich prescription has been used.

The third procedure is based on the complex scaling method. After complex scaling the resonances
appear formally as bound states with complex energy, and they are then well identified and differen-
tiated from ordinary continuum states. Once this is done, it is then, at least in principle, possible to
separate the contribution from the different types of transition, namely, from resonance to resonance,
from continuum states to resonance, from resonance to continuum, and from continuum to continuum.
However, although the method works well for transitions into bound states, we have shown that when
the final state is unbound the extraction of the radial integrals requires knowledge of a double Princi-
pal Value, which makes the whole procedure not easy to implement. For sufficiently low-lying narrow
resonances in the final state the complex scaling procedure still provides a rather good approximation
of the bremsstrahlung radiation cross section, making possible to estimate the different contributions.
In any case, even if the separation into different contributions is made, only the sum of all of them is
an observable physics quantity.
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A Energy normalization of the continuum wave functions

Let us start with a partial wave expansion of a two-body wave function:

Ψ(k, r) =
1

C

√

2

π

1

kr

∑

ℓ

iℓuℓ(k, r)
∑

m

Yℓm(Ωr)Y
∗
ℓm(Ωk). (30)

In the expression above the constant C can in principle be anything. The only requirement is that the radial
wave functions uℓ have to be normalized in such a way that Ψ reduces to a plane wave in the limit of no
interaction between particles. In other words, Ψ has to fulfill that:

Ψ(k, r)
free case

→
1

(2π)3/2
eik·r

=

√

2

π

∑

ℓ

iℓjℓ(kr)
∑

m

Yℓm(Ωr)Y
∗
ℓm(Ωk), (31)

from where it is obvious that uℓ must satisfy:

uℓ(k, r)
free case

→ Ckrjℓ(kr). (32)

If we now make use of the fact that:
∫ ∞

0

krjℓ(kr)k
′rjℓ(k

′r)dr =
π

2
δ(k − k′), (33)

we then immediately see that the radial wave functions uℓ satisfy the normalization condition:
∫ ∞

0

uℓ(k, r)uℓ(k
′, r)dr = C2 π

2
δ(k − k′). (34)

Therefore, if we choose C =
√

2/π the radial wave functions would satisfy the so-called momentum normaliza-
tion.

Since k =
√

2µE/~2, it is not difficult to see that:

δ(k − k′) = δ(

√

2µE

~2
−

√

2µE′

~2
) =

~
2k

µ
δ(E −E′), (35)

which leads to:
∫ ∞

0

uℓ(k, r)uℓ(k
′, r)dr = C2 π

2

~
2k

µ
δ(E − E′), (36)

which implies that, as given in Eq.(5), by choosing

C =

√

2µ

π~2k
(37)

the energy normalization condition
∫ ∞

0

uℓ(k, r)uℓ(k
′, r)dr = δ(E − E′) (38)

is then satisfied.

B Radiative capture cross section.

Let us consider the photodissociation reaction A+γ → a+b, and let us denote by J ′ and J the angular momenta
of the system A and the continuum two-body system ab, respectively. The corresponding photodissociation
cross section (with multipolarity λ) can be found in Ref.[20] for the case in which A represents a bound state.
When the state A corresponds also to a two-body continuum state (made of particles a and b) the expression
in Ref.[20] can be generalized to:

dσ
(λ)
γ

dE′
(E) =

(2π)3(λ+ 1)

λ [(2λ+ 1)!!]2

(

Eγ

~c

)2λ−1 dB(λ)

dEdE′
(J ′ → J), (39)

where E and E′ are the energies of the final and initial states, and Eγ is the photon energy.



17

We shall assume the initial and final continuum spectra to be discretized, in such a way that the transition
strength dB(λ)/dEdE′ can be written as [20]:

dB(λ)

dEdE′
(J ′ → J) =

1

2J ′ + 1

∑

i,j

|〈Φi
J ||Ôλ||Φ

j
J′〉|

2δ(E − Ei)δ(E
′ −E′

j)

=
∑

i,j

∑

m,µ

|〈Φi
Jµ|Ôλm|Φj

J′µ′〉|
2δ(E − Ei)δ(E

′ − E′
j), (40)

where |Φj
J′µ′〉 and |Φi

Jµ〉 are the wave functions describing the continuum state A (with energy E′
j and angular

momentum and projection J ′µ′), and of the continuum final ab-system (with energy Ei and angular momentum

and projection Jµ), respectively. The operator Ôλ is the electromagnetic transition operator with rank λ, and
the indices i and j run over all the (discrete) initial and final continuum states.

From this expression it is easy to connect the transition strength for a given reaction and the inverse one:

dB(λ)

dEdE′
(J ′ → J) =

2J + 1

2J ′ + 1

dB(λ)

dEdE′
(J → J ′). (41)

The photoabsorption cross section in Eq.(39) and the one corresponding to the inverse process, i.e., the

radiative capture cross section σ(λ)(E) for the process a + b → A + γ, are related by the detailed balance
principle, which is given in Eq.(3) of [20]:

dσ(λ)

dE′
(E) =

2(2J ′ + 1)

(2Ja + 1)(2Jb + 1)

1

k2

(

Eγ

~c

)2 dσ
(λ)
γ

dE′
(E), (42)

where Ja and Jb are the angular momenta of particles a and b, respectively, and k2 = 2µabE/~2. Thanks to
this relation, and making use of Eqs.(39) and (41) we find the following general expression for the radiative
capture cross section a+ b → A+ γ:

dσ(λ)

dE′
(E) =

(2π)3(λ+ 1)

λ [(2λ+ 1)!!]2
1

k2

2(2J + 1)

(2Ja + 1)(2Jb + 1)

(

Eγ

~c

)2λ+1 dB(λ)

dEdE′
(J → J ′). (43)

Let us consider now that particles a and b are identical, with spin zero, and with charge Ze (with e the
electron charge). For the case of an electric transition process of order λ the electromagnetic transition operator
reads:

Ôλm = e
2

∑

n=1

Znr
λ
nYλm(Ωr) =

Ze

2λ−1
rλYλm(Ωr), (44)

where r = r1 − r2 and rn is the center of mass coordinate of particle n.
Assuming now a central interaction between the two particles, the two-body wave functions involved in

Eq.(40) can be written as:

Φj
J′µ′(r) =

u
(j)
J′ (E

′
j , r)

r
YJ′µ′(Ωr) (45)

Φi
Jµ(r) =

u
(i)
J (Ei, r)

r
YJµ(Ωr), (46)

Inserting the expressions above and Eq.(44) into Eq.(40), and after analytical integration over the angular
coordinates, we get that:

dB(λ)

dEdE′
(J → J ′) =

(Ze)2

22λ−2

1

4π

∑

i,j

δ(E−Ei)δ(E
′−E′

j)(2λ+1)

∣

∣

∣

∣

〈J0; λ0|J ′0〉

∫

dru
(i)
J (Ei, r)r

λu
(j)
J′ (E

′
j , r)

∣

∣

∣

∣

2

, (47)

from which Eq.(43), corresponding to the Eλ radiative capture process a+ b → A+ γ, takes the final form:

dσ(λ)

dE′
(E) =

(Ze)2

22λ−2

2π2(λ+ 1)

λ [(2λ+ 1)!!]2
1

k2

2(2J + 1)

(2Ja + 1)(2Jb + 1)

×
∑

i,j

(

Eγ

~c

)2λ+1

δ(E − Ei)δ(E
′ −E′

j)(2λ+ 1)

∣

∣

∣

∣

〈J0; λ0|J ′0〉

∫

dru
(i)
J (Ei, r)r

λu
(j)
J′ (E

′
j , r)

∣

∣

∣

∣

2

. (48)

In the particular case of two α particles (Ja = Jb = 0, Z = 2) and an electric quadrupole transition (λ = 2),
and after integration over E′, we get for the total cross section:

σ(λ)(E) =
2π2e2

15k2
(2ℓ+ 1)〈ℓ0; 20|ℓ′0〉2

∑

i,j

(

Eγ

~c

)5

δ(E − Ei)

∣

∣

∣

∣

∫

dru
(i)
ℓ (Ei, r)r

2u
(j)
ℓ′ (E′

j , r)

∣

∣

∣

∣

2

, (49)
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where we have replaced J by ℓ and J ′ by ℓ′.
This result agrees with the one given in Eq.(24), which in turns comes from the general expression Eq.(1),

except for a factor of 2. This difference comes from the factor of 2 introduced in [1; 8] due to the fact that we
are dealing with two identical particles (see for instance Eq.(9) in Ref. [8]).

C Green’s function formalism

In this section we summarize the aspects of the Green’s function formalism that are relevant for this work. All
the details can be found in [24].

Let us consider a system whose hamiltonian operator is given by Ĥ, and such that its spectrum is formed
by a set of discrete states {|Φn〉} and the continuum states |Φc〉. The eigenfunctions form a complete basis,
and the unity operator takes the form:

1 =
∑

n

|Φn〉〈Φn|+

∫

dEc|Φc〉〈Φc|. (50)

If |r〉 denotes the eigenvector of the position operator, we have that 〈r|r′〉 = δ(r − r
′), the unity operator

can also be written as

1 =

∫

dr|r〉〈r|, (51)

and the Schrödinger equation Ĥ|Φn〉 = En|Φn〉 can be written in coordinate space as:

∫

drdr′|r〉〈r|Ĥ|r′〉〈r′|Φn〉 =

∫

drEn|r〉〈r|Φn〉. (52)

The functions 〈r|Φn〉 = Φn(r) are the eigenfunctions of the hamiltonian in coordinate space, H(r)Φn(r) =
EnΦn(r), is such a way the equation above can be written also as:

∫

drdr′|r〉〈r|Ĥ|r′〉Φn(r
′) =

∫

dr|r〉H(r)Φn(r), (53)

from which we can immediately get that:

〈r|Ĥ|r′〉 = H(r)δ(r − r
′). (54)

The Green’s function for a given energy E is defined as the function G(E; r, r′) satisfying that:

(E −H(r))G(E; r, r′) = δ(r − r
′). (55)

The Green’s function can also be defined in terms of the operator Ĝ(E), such that:

G(E;r, r′) = 〈r|Ĝ(E)|r′〉. (56)

The form of the Ĝ(E) operator can be obtained by noting that:

〈r|(E − Ĥ)Ĝ(E)|r′〉 =

∫

dr′′〈r|E − Ĥ|r′′〉〈r′′|Ĝ(E)|r′〉, (57)

where we have made use of Eq.(51). Having now in mind Eqs.(54) and (56), the expression above then reads:

〈r|(E − Ĥ)Ĝ(E)|r′〉 =

∫

dr′′δ(r − r
′′)(E −H(r))G(E; r, r′), (58)

which due to Eq.(55) leads to:

〈r|(E − Ĥ)Ĝ(E)|r′〉 = δ(r − r
′), (59)

or, in other words:

Ĝ(E) =
1

E − Ĥ
. (60)

Application of the operator (60) on the unity operator (50) permits to write:

Ĝ(E) =
∑

n

|Φn〉〈Φn|

E − En
+

∫

dEc
|Φc〉〈Φc|

E −Ec
, (61)
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or, by the definition (56):

G(E; r, r′) =
∑

n

Φn(r)Φ
∗
n(r

′)

E − En
+

∫

dEc
Φc(r)Φ

∗
c (r

′)

E − Ec
. (62)

Let us consider now some operator Ô, and let us consider the matrix element 〈Φn|Ô
†Ĝ(E)Ô|Φn〉, which

thanks to Eq.(61) can be written as:

〈Φn|Ô
†Ĝ(E)Ô|Φn〉 =

∑

m

〈Φn|Ô
†|Φm〉〈Φm|Ô|Φn〉

E − Em
+

∫

dEc
〈Φn|Ô

†|Φc〉〈Φc|Ô|Φn〉

E − Ec
. (63)

If the hamiltonian Ĥ is hermitian all the eigenvalues are real, and the function above has a series of poles
on the real energy axis. The expression above has to be computed making use of:

lim
y→0+

∫ B

A

f(x)

x± iy
dx =

lim
α→0+

[
∫ −α

A

f(x)

x
dx+

∫ B

α

f(x)

x
dx

]

∓ iπ

∫

dxf(x)δ(x) = P.V.

[
∫ B

A

f(x)

x
dx

]

∓ iπ

∫

dxf(x)δ(x), (64)

where A < 0 < B and f(x) is a function well behaved in the interval [A,B], and where P.V. refers to the
Principal Value of the integral. Using (64) we can then obtain:

∑

m

〈Φn|Ô
†|Φm〉〈Φm|Ô|Φn〉δ(E−Em)+

∫

dEc〈Φn|Ô
†|Φc〉〈Φc|Ô|Φn〉δ(E−Ec) = −

1

π
Im

(

〈Φn|Ô
†Ĝ(E)Ô|Φn〉

)

.

(65)

The function 〈Φn|Ô
†Ĝ(E)Ô|Φn〉 is what, for instance in Ref.[4], is called the response function, from which

the strength function can be extracted according to Eq.(65).
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