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Techno-Economical Model Based Optimal Sizing
of PV-Battery Systems for Microgrids

Soumya Bandyopadhyay , Student Member, IEEE, Gautham Ram Chandra Mouli , Member, IEEE,
Zian Qin , Member, IEEE, Laura Ramirez Elizondo, Member, IEEE, and Pavol Bauer , Senior Member, IEEE

Abstract—Microgrid with integrated photo-voltaics (PV) and
battery storage system (BSS) is a promising technology for future
residential applications. Optimally sizing the PV system and BSS
can maximise self-sufficiency, grid relief, and at the same time
can be cost-effective by exploiting tariff incentives. To that end,
this paper presents a comprehensive optimisation model for the
sizing of PV, battery, and grid converter for a microgrid sys-
tem considering multiple objectives like energy autonomy, power
autonomy, payback period, and capital costs. The proposed ap-
proach involves developing a holistic techno-economic microgrid
model based on variables like PV system power, azimuth angle,
battery size, converter ratings, capital investment and electricity
tariffs. The proposed method is applied to determine the optimum
capacity of a PV system and BSS for two case residential load
profiles in the Netherlands and Texas, US to investigate the effect
of meteorological conditions on the relative size of PV and battery.
Based on the optimisation results, thumb rules for optimal system
sizing are derived to facilitate microgrid design engineers during
the initial design phase.

Index Terms—Batteries, microgrids, optimal sizing, particle
swarm optimisation, renewable energy, techno-economical
analysis.

I. INTRODUCTION

I
NCREASING energy consumption of buildings (both res-
idential and commercial) has led to 40% of total energy

consumption in developed countries [1]. The rise of energy
demand in buildings will continue in the near future be-
cause of population growth, urbanisation, increasing penetration
of electric vehicles (EVs) [2], and electrification of house-
hold heating [3], [4]. To solve these problems, “Microgrid”
based future electrical power systems have been proposed. A
microgrid is a low voltage (LV) power network containing
distributed energy sources such as photovoltaic (PV) arrays,
micro-wind turbines, fuel cell and energy storage devices [5].
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Additionally, energy efficiency of the Microgrid can be im-
proved by choosing direct current (dc) distribution instead of
conventional ac based distribution [6]–[9].

Several publications have proposed optimal sizing of PV-
battery systems by maximising the economic value created
by using battery and PV system focusing on improving self-
consumption or energy autonomy [10], [11]. Other studies have
focused on optimal sizing of only the battery with the goal of
maximising peak-shaving [12]–[14]. A MILP based optimisa-
tion model for system sizing for grid-connected and off-grid
microgrids is presented in [15]–[17].

However, there are several limitations in current literature re-
garding the optimal sizing of PV-battery systems for microgrids.
First, most studies focus on a single objective like increasing
self-consumption, or reduce demand peaks or maximise eco-
nomic benefits [13], [15], [16]. Due to the mutually conflicting
nature of the targets, the single objective optimisation approach
is unable to provide valuable insights regarding the trade-offs be-
tween these objectives. Additionally, the inherent simplification
associated with formulating a complex multi-objective problem
into a weighted single objective problem fails to capture under-
lying trends. Second, in PV system modelling, most studies use
solar irradiation as the only input [18], occasionally combined
with temperature [15]. Some studies utilise more accurate PV
models which take into account the tilt and azimuth angle
of the panel orientations. However, during the design process
they select fixed values of tilt and azimuth angle [14], [19]
for maximum solar generation. This approach may not result
in optimal PV and storage sizes as they do not consider the
degree of temporal match of the PV profile and the load profile.
Third, many studies do not take into account the effect of load
profiles and power management strategy on battery lifetime [11],
[13], [17]. Fourth, the impact of incentives given by real-life
electricity tariffs on the optimal sizing is not investigated in the
literature [14], [15].

The aim of this paper is thus to develop a multi-objective opti-
misation (MOO) framework to solve the system sizing problem
for a grid-connected residential microgrid system to incorporate
multiple mutually opposing objectives while taking into account
the effect of battery degradation, incentives like feed-in tariffs,
and PV system orientation. The developed MOO framework
is applied to optimally size the PV-battery-converter system in
two residential load profiles in Cabauw, Netherlands (NL), and
in Austin, United States (US). The main contributions of this
paper compared to previous works are:
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1) Develop a multi-objective optimisation framework to size
PV system, grid converter, and battery storage capacity
resulting in Pareto fronts of trade-offs between multiple
objectives like lifetime capital cost, self-sufficiency, power
autonomy and simple payback period.

2) Study the effect of solar meteorological potential on op-
timal PV and battery sizing by comparing results on two
different geographical locations: Cabauw, NL and Austin,
US.

3) Investigate the effect of electricity pricing tariffs and feed-
in tariffs on optimal sizing of PV and battery system.

4) Draw guidelines for selecting the optimal azimuth angle
for a residential PV system.

5) Derive sizing equations and thumb rules to optimally
size PV-battery-converter systems for microgrids based
on solar potential and specific load profile.

The paper is structured in five parts. In Section II, the techno-
economical model of the microgrid is presented. Section III
develops the multi-objective optimization (MOO) framework
and optimises the sizing of PV-battery based microgrid for
two residential load profiles in NL and US. The results of
the multi-objective optimisation are presented and analysed in
Section IV to derive insights into optimal design and thumb
rules for optimal system sizing. Finally, general conclusions are
summarised based on the results.

II. TECHNO-ECONOMICAL MODEL OF A MICROGRID

The techno-economical model of PV-battery based micro-
grids is presented in this section. The technical model comprises
of the PV system model, the battery lifetime model, and the
power management strategy. The economic model presents the
methodology to compute the lifetime cost which consists of
the capital cost and the operational cost. Finally, the figure of
merits (FoMs) of a grid-connected PV-battery based residential
microgrid are highlighted based on the different metrics pro-
duced by the two models.

The technical model is presented in three sub-sections. First,
the power and energy output of a rooftop PV system is modelled
considering azimuth and tilt angle of the PV panels. Second,
the power management strategy to control battery bank power is
presented. Finally, the battery lifetime methodology is discussed
briefly.

1) PV System Modeling: To estimate the energy and power
generated by the rooftop PV array, an accurate PV system model
is built in this paper. Based on meteorological data of Nether-
lands and Texas, US, Global Horizontal Irradiance (SGHI),
Diffuse Horizontal Irradiance (SDHI), Direct Normal Irradi-
ance (SDNI) and ambient temperature (Ta) are obtained. The
PV array is modelled in MATLAB using Sun power E20-327
modules rated at 327 W.

At a certain sun position, the irradiance on a panel with a spe-
cific orientation (Am, θm) can be computed using the geometric
models and the isotropic sky diffused model:

SDNI
m = SDNI[sin θm cos as cos(Am −As) + cos θm sin as] (1)

Fig. 1. (a) Annual energy yield of a 5kW PV system in: Cabauw, Netherlands,
(b) Annual energy yield of a 5 kW PV system in: Austin, Texas.

SDHI
m = SDHI 1 + cos θm

2
(2)

Sm = SDNI
m + SDHI

m (3)

whereSDHI
m ,SDNI

m are the components of DHI and DNI which are
incident on the panel. The above equations show that the solar
energy generation by a panel can be controlled by changing the
module azimuth (Am) and the tilt angle (θm).

To improve the PV model accuracy, the effect of the ambient
temperature on solar power generation is also taken into con-
sideration. The E20-327 PV module is rated for 327 W at the
ambient temperature of 25◦. For other ambient temperatures, the
PV array output power Psolar(t) at a certain time instant can be
computed using [20]:

Tcell = Ta +
Sm(TNOCT − 20)

800
(4)

Psolar(t) =
NpPrSm[1− γ(Tcell − 25)]

1000
(5)

Fig. 1 shows the annual energy yield for a 5kWp PV array for
different azimuth angle and module tilt is estimated for the case
of Netherlands (NL) and Texas (TX) based on equations (1)–(5).
In case of Netherlands, the maximum annual yield is 5800 kWh
obtained for south-facing panels with Am = 185◦, θm = 28◦.
The maximum energy yield of 7830 kWh for Austin, Texas is
obtained for panels with Am = 175◦, θm = 18◦.

To elaborate the effect of module azimuth orientation, Fig. 2
shows the power output profile of a 5 kW PV system during a
summer day in the Netherlands with different azimuth (Am)
angles at an optimal tilt angle of θm = 28◦. By changing
the azimuth, the time of the day when maximum PV power
is available can be controlled at the cost of lower energy yield.
To investigate the effect of module azimuth on optimal storage
size sizing, the azimuth angle (Am) is considered as a design
variable in the optimisation framework.

2) Power Management Strategy: The goal of the power man-
agement strategy is to determine the charging/discharging power
of the batteryPbess(t) and grid powerPgrid(t) at a certain time in-
stant based on the load power Pload(t) and PV power generation
Ppv(t) at that particular instant. Different power management al-
gorithms lead to different solutions to the optimal storage and PV
sizing problem. In this study, the state-based power management
algorithm approach is considered due to their simplicity, low
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Fig. 2. Power generated by 5 kW PV system for a summer day (Day 165 of
year 2017) in Netherlands for different azimuth angles = 0◦, 100◦, 180◦, and
260◦ with constant tilt angle of 28◦.

Fig. 3. Power profiles (1 minute resolution) of different sources and overall
load along with battery SoC profile on a summer day (day= 240) in Netherlands
with battery as primary source algorithm. The simulated house has installed PV
power is 5 kW, a lithium ion battery of 10 kWh capacity with Crate of 1 and a
5 kW front-end converter.

computational requirement and ease of real-life implementation.
In this algorithm, the battery is used as the primary source all
the time. The utility grid is used only on two scenarios: (1) when
the battery has reached the minimum allowable SoC, and there
is not enough solar generation to provide power to the load,
and (2) when the battery has reached the maximum allowable
SoC, and the excess solar power is fed into the grid. Fig. 3
shows the power profiles of the grid, battery, PV and load along
with the SoC of the battery on a summer day in NL using the
algorithm.

3) Battery Lifetime Modelling: In literature, battery ageing
is characterised and quantified by the term state of health (SoH).
For residential based grid storage application, capacity fad-
ing (permanent capacity loss) is used as the primary indicator
for SoH of the battery. By convention, in EV batteries, the
end-of-life (EOL) condition is reached when the battery capacity
has dropped to 80% of its nominal capacity [21]. The same

TABLE I
OVERVIEW OF ECONOMIC PARAMETERS

convention is used in this analysis for residential applications.
Therefore, the SoH of the battery becomes:

SoH =

(

1−
ξ

Q0

)

.100% (6)

where ξ is the total capacity fade of the battery during operation
and Q0 is the nominal capacity of the battery. It can be seen
that when 20% of the nominal battery capacity has faded the
SoH of the battery becomes 80% based on (6), and thus the
battery system has reached the end-of-life (EOL) condition.
The main goal of lifetime modelling process is to estimate the
lifetime as a function of the operating conditions associated with
the application: Lbatt = f(SoC,DoD, Ctot), where Ctot is the
total Ah processed by the battery in that load cycle. In this paper,
a detailed empirical Li-ion battery lifetime model developed
in [22] is used.

This concludes the details of the technical model of the
grid-connected microgrid. The economic modelling approach
is presented in the next section.

An economic model of the microgrid is required to quantify
the benefits of installing a PV and battery system in grid-
connected microgrids. The economic benefit comes in form of
savings in the electricity bill due to: (a) using PV energy and
battery stored energy for houshold loads thereby reducing grid
dependency, and (b) selling unused PV power to the grid.

During the system lifetime, the total cost of the system can be
divided in two parts: (a) capital cost, and (b) operational costs
which include cost of electricity. The cost of battery replace-
ments and maintenance is considered within the capital costs.
Thus, the total capital cost (κtotal) of a PV-battery integrated
grid-connected microgrid can be formulated as the following:

κtotal = κbatt + κpv + κgrid-conv

= πbattCbatt(nreplace + 1) + πpvPpv,r + πconvPgrid-conv,r

(7)

where, κBatt, κpv, and κgrid-conv are the capital cost associated
with the battery storage system, PV system, and the front end
grid converter. πbatt, πpv, and πconv are unit-price for the battery
system, the PV system, and the grid interfacing converter.nreplace

denotes the number of battery replacements needed during the
total system lifetime. Table I shows the values of the constants
used in the economic model along with their sources. Next, the
electricity tariffs associated with NL and US are discussed in
detail.

4) NL Tariff: The electricity tariff in the Netherlands chosen
for this study is based on Eneco residential rates [25]. Eneco
tariff is based on time-of-use (TOU) prices with peak and off-
peak rates as shown in Table II.

Authorized licensed use limited to: TU Delft Library. Downloaded on December 06,2021 at 11:20:38 UTC from IEEE Xplore.  Restrictions apply. 
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TABLE II
NETHERLANDS ENECO ELECTRICITY TARIFFS

TABLE III
AUSTIN ENERGY ELECTRICITY TARIFF STRUCTURE

Based on the data provided, the total electricity bill (κelec) can
be computed based on the following:

κelec = κpeak + κoff-peak (8)

κpeak = Enet,pcp if Enet,p > 0

= Enet,pcfed if Enet,p < 0 (9)

κoff-peak = Enet,offcoff if Enet,off > 0

= Enet,offcfed if Enet,off < 0 (10)

where Enet,i is the net energy exchanged between the grid and
the house for the period i={p,off}:

Enet,i = Egrid-drawn,i − Egrid-fed,i (11)

5) Texas Tariff: The electricity tariff system for Texas consid-
ered in this study is based on Austin energy residential rates [26].
Austin Energy has a five-tier rate structure that incentivises
customers on lowering their electric usage resulting in lower
bills. Details of the electricity bill are presented in Table III.

Based on the rate structure, the annual electricity bill of a
household in Austin, Texas is computed using the following
equation:

κelec = cfixed + Etotalcrc + Esumcpsa,s + Ewincpsa,w · · ·

+
5

∑

i=1

Etier,ictier,i − Efedcfed (12)

where Etotal is the total energy exchanged with the grid (drawn
and fed), Esum and Ewin are the energy exchanged with the grid
during the summer and the winter months. Etier,i for i = 1–5 are
obtained from the net drawn energy from the grid. Efed is the
net energy fed into the grid.

The tariff equation (12) shows that self-consumption by con-
sumers is encouraged as the electricity tariff increases sharply
between tiers. Additionally, consumers are encouraged to be
producers as well with the Value of Solar (VOS) tariff which

Austin Energy credits solar customers for the solar energy pro-
duced by their on-site solar energy system. However, it must be
noted that the regulatory charge and the power supply adjustment
charges discourages consumers to be dependent on the grid in
terms of both drawing and feeding in power. In conclusion,
multiple objectives like self-consumption or energy autonomy,
peak shaving or power autonomy need to be considered while
optimally sizing PV and battery system for lowering electricity
bill in the Austin Energy tariff structure.

Figure of merits (FoMs) of Microgrids: A detailed description
of the modelling methodology of the technical and economic
aspects of the PV-battery system integrated microgrid is pre-
sented in the previous section. However, to optimally size the PV
system, battery storage and the converters, certain performance
metrics or figure of merits (FoMs) need to be defined to evaluate
and differentiate between designs objectively. To that end, the
following four FoMs are introduced.

Energy autonomy factor (α): The grid energy autonomy factor
is a metric to measure self-sufficiency or energy independence
of the microgrid design. It is calculated as:

γ =
Eload − Egrid,buy

Eload
× 100 (%) (13)

Power autonomy (ρ): Power autonomy factor is a metric to
quantify the power independence of the microgrid from the
utility grid. It is computed as the following:

ρ =

(

1−
1

N

N
∑

i=1

|Pgrid,i|

|Pload,i|

)

× 100 (%) (14)

where N depends on the resolution of the power profiles used.
In this study, 1 min resolution is chosen.

Therefore, to compute the power autonomy factor for an
annual load profile N is = 24× 60× 365. As the energy au-
tonomy factor (α) measures the energy independence of the
microgrid, the power autonomy factor (ρ) measures the power
independence which includes both drawn and fed power. For
example, the Texas electricity bill as shown in equation (12)
incentivises customers to regulate their peak by charging the
regulatory and the power supply adjustment costs. However, in
Netherlands traiff structure the customer is encouraged to be
energy independent and not necessarily power independent.

Lifetime capital cost (κtotal): The capital cost of the entire
system is an economic metric to quantify the total lifetime
cost of the system which includes the initial investment cost,
maintenance, and the replacement costs during the system life-
time [27]. Detailed modeling of the capital cost is already shown
in equation (7).

Simple payback period (TPB): The simple payback period is a
metric to measure the economic viability of the PV-battery based
system [23], [28]. It is defined as the number of years needed to
pay back the capital cost with the savings related to electricity
bill (Rsavings):

TPB (year) =
κtotal

Rsavings
=

κtotal

κelec,o − κelec,pv-batt
(15)

where κelec,o and κelec,pv-batt are the annual electricity bills with-
out and with integrated pv-battery system in the house.
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TABLE IV
OPTIMIZATION VARIABLES AND THEIR RANGE

The choice of performance metrics is motivated to facilitate
both the end-users and the distribution system operators (DSOs).
Economic metrics like lifetime system cost and the simple
payback period are useful to end-users to analyse the cost-
effectiveness of the solutions. On the other hand, fundamental
technical metrics like energy autonomy and power autonomy
can be utilised by DSOs to design tariff schemes to incentivise
users to achieve their higher system-level goals like reducing the
operating costs, delay expensive grid upgrades [12], and solving
network congestion [29], [30].

This concludes the techno-economical modelling of the PV-
battery based microgrid. Based on the model metrics, four FoMs
are identified which will be used for the optimisation problem
formulation.

III. MULTI-OBJECTIVE OPTIMISATION FRAMEWORK

A multi-objective optimisation framework is developed in
this section to optimally size the PV system, the grid converter,
and the battery of a microgrid. It utilises the techno-economical
model developed in the previous section. Initially, the optimisa-
tion targets and variables are described, followed by a discussion
on the system analysis flowchart. In the final part of this study,
the developed multi-objective optimisation framework is utilised
to optimally size the PV-battery for a microgrid in different
operational scenarios. The results obtained are presented and
analysed in detail in the next section.

A. Optimisation Targets and Variables

Based on the FoMs introduced in the modelling section, the
targets of the optimisation are:

1) Maximize energy autonomy factor (α)
2) Maximize power autonomy factor (ρ)
3) Minimize lifetime capital cost (κtotal)
4) Minimize simple payback period (TPB)
The objectives mentioned above are selected strategically to

ensure that the optimisation progresses towards designs with
acceptable economic and technical performances.

Table IV presents the optimisation variables and their range.
The optimisation variables are mainly categorised into three
groups: battery variables, PV system variables and the grid con-
verter variables. Crate is chosen as an independent optimisation
variable which decides the rated power of the batteryPbatt,r based
on the battery capacity Ecap. To ensure feasible designs, specific
constraints are put on the optimisation solution space. In the

next part, the multi-objective optimisation algorithm and sizing
methodology is discussed in detail.

B. Multi-Objective Optimisation Algorithm and Methodology

Particle swarm optimisation (PSO) algorithm is used for opti-
mising the proposed PV-battery sizing problem. PSO is an evo-
lutionary gradient-free algorithm inspired by the movement of
birds or insects in a swarm which potentially requires fewer func-
tion calls [31]. However, PSO is a single-objective optimisation
algorithm. To make it suitable for multi-objective optimisation
problems, the concept of Pareto dominance is combined [32] to
generate non-dominated solutions or Pareto-optimal solutions,
which results in Pareto fronts. A repository is used to store the
Pareto-optimal solutions which are updated at the end of each
iteration. Fig. 4 presents the multi-objective optimisation routine
in a flowchart depicting the inputs, outputs, and system analysis
of the PV-battery optimal sizing problem.

Thirty particles or designs per iteration and two-hundred
iterations are evaluated to generate a stable Pareto front between
two conflicting objectives. MATLAB is used to compute all the
analytical equations presented in the previous section to model
the performance parameters or figure of merits (FoMs) of the
microgrid design. The time required to evaluate a complete
design varies between 15 s–30 s.1 In this paper, an approach
based on placing particles on the border of the search space
using a combination of variable clipping and reflecting [31].
The optimisation results for two case studies (Netherlands and
US) are discussed in the next section.

IV. OPTIMISATION RESULT ANALYSIS

The MOO framework developed in the previous section is
utilised to optimally size the PV-battery-grid converter system
in both the Netherlands and the US residential case studies. Fig. 5
shows the real-life load profiles used in this paper. The data for
the NL residential load profile is obtained from a Dutch DSO
company, and the US profile is obtained from Pecanstreet online
database [33]. Table V presents the details regarding the selected
household load profiles.

It must be noted that the PV-battery sizing results obtained
from the MOO framework for the two case studies are particular
solutions for the particular combination of the load profile,
solar irradiance profile, battery technology, power management
strategy, and electricity tariff structure. Altering any of the above
aspects will lead to different conclusions on the PV-battery sizing
problem.

The optimisation returns a 4-D Pareto optimal front. To aid
visualisation and insight into the results, a detailed analysis is
conducted in three steps. First, higher level results are analysed
using sub-fronts of two targets. At a second level, complete
fronts are shown to aid explanation of underlying trends. Finally,
two optimal designs are selected and analysed to verify the
efficacy of the optimisation process.

Fig. 6 shows the side views of the 4D Pareto optimal front
which highlight the trade-offs between lifetime system cost,

1Intel Xeon CPU E5-1620 v2 @ 3.70 GHz, 16 GB RAM.
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Fig. 4. Flowchart of the proposed main multi-objective optimisation routine for PV-battery sizing for microgrids. The routine calculates and identifies the
Pareto-optimal designs as a combination of the optimisation design variables, which include the PV system parameters, battery management parameter, and grid
converter ratings. The system analysis for individual designs evaluates the optimisation targets based on the swarm algorithm-generated designs and feeds it back
to the optimisation routine to update the Pareto-optimal design repository.

Fig. 5. (a) NL house daily load profile for four days of the year with maximum
load Pload,max,nl = 7 kW, (b) Texas, US house daily load profile for four days of
the year with maximum load Pload,max,us = 9.8 kW.

energy autonomy, power autonomy, and payback period. Indi-
vidual 2D Pareto fronts are discussed in the following:

TABLE V
LOAD PROFILE DETAILS

A. Pareto Front Analysis

α− κtotal Pareto front: In the case of Texas load profile, it
is evident from the fronts shown in Fig. 6, that full energy
autonomy is achievable after significant capital investment.
However, in the case of the NL residential profile, it is difficult to
achieve full energy autonomy, which asymptotes around 70%.
It can be explained due to the low solar potential combined
with the temporal mismatch between the yearly solar generation

Authorized licensed use limited to: TU Delft Library. Downloaded on December 06,2021 at 11:20:38 UTC from IEEE Xplore.  Restrictions apply. 
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Fig. 6. Results of multi-objective optimisation for PV-battery sizing with NL and US houseload profile: (a) α− κtotal: Pareto fronts of trade off between energy
autonomy factor and lifetime system cost, (b) ρ− κtotal: Pareto fronts of trade off between power autonomy and lifetime system cost, and (c) TPB − κtotal:
Pareto-fronts of simple payback period and power autonomy factor.

Fig. 7. Effect of PV module azimuth angle on: (a) energy autonomy for different PV power for Cabauw, NL, (b) energy autonomy for different PV power for
Texas, US, (c) correlation coefficient between annual pv generation profile and load profile for the case of NL and US.

profile (Fig. 10a) and daily energy usage profile (Fig. 10b) of
the Netherlands. Therefore, to achieve full energy autonomy in
case of NL load profiles, battery-based storage is not sufficient
and seasonal storage is required.
ρ− κtotal Pareto front: Fig. 6b shows that full power autonomy

is hard to achieve in both NL and US case studies with maximum
possible values of 50% and 70% respectively. Additionally, it is
evident that power autonomy can be negative in certain cases.
Negative power autonomy is due to feeding more power into the
grid compared to the actual in-house load power demand which
leads to even lower electric bills.
TPB − α Pareto front: The trade-off between simple payback

period and energy autonomy is presented in Fig. 6c. Previously
it is shown that the US-based PV-battery system performs much
better than the NL system in terms of both power autonomy
and energy autonomy for the same capital investment. However,
the NL based PV-battery system performs significantly better in
the metric of simple payback period (TPB) for certain energy
autonomy. It can be explained due to the following reasons: (a)
the annual electricity bill for the NL load profile without any
PV and battery is 1630 $ compared to 840 $ in case of the US

Austin load profile leading to higher the savings potential for the
NL case is much higher and therefore leads to lower payback
period, and (b) the NL electricity tariff heavily incentivises the
end-user to be energy autonomous by installing PV with battery
storage compared to the Austin tariff. This result underlines the
importance of incorporating the cost of electricity model in the
optimisation problem.

B. PV-battery System Design and Sizing Trends

Underlying trends regarding the battery system design, PV
system design and sizing are analysed in this section. Fig. 8
presents the maximum allowable depth of discharge (DoD)
of the Li-ion battery system of the optimised designs. The
maximum allowable DoD of the Li-ion battery system increases
with the increase of the battery capacity for both NL and US.
Based on that, it is concluded that for optimal performance of a
Li-ion based microgrid, one should select a proper DoD range
depending on the size of the battery. For these particular case
studies, a smaller capacity battery (≤5 kWh) has an optimal
maximum DoD of 40%–70%. The optimal maximum DoD
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Fig. 8. Maximum allowable DoD vs. the battery capacity of the optimal Pareto
system designs.

is 65%–90% for battery capacities ranging from 10 kWh to
20 kWh. 100% DoD of the battery can be utilised for battery
sizes bigger than 20 kWh when the capacity fading due to daily
cycles is insignificant compared to the nominal battery capacity
for this particular application.

In Section II-1, the potential of changing the azimuth angle
Am to improve the temporal match between the pv generation
profile and the houseload profile was presented. To that end,
Az was considered to be a design variable in the optimisation
framework (Table IV). Fig. 7a and 7b presents the range of
Am for the optimal designs for the NL and US case studies
respectively. In case of the NL designs the optimal range is
between 180◦–220◦ whereas for the case of Austin, US the
optimal range is 240◦–300◦. It is interesting to highlight that
the optimal designs have significantly different Am from the
maximum energy generation Am,max which is 185◦ for NL and
175◦ for the US case (Fig. 1). To explain this result, a new
metric based on the Pearson correlation coefficient is defined
to quantify the temporal match between the PV power profile
and load profile:

γ(Ppv, Pload) =
1

N − 1

N
∑

i=1

(

Ppv,i − µpv

σpv

)(

Pload,i − µload

σload

)

(16)
where Pj, µj, and σj are the annual power profile, mean and
the standard deviation of the power profile for the jth system
with j = {pv, load}. The correlation co-efficient γ represents
the degree of temporal match between the PV profile and the
load profile. γ ranges from 1 (complete temporal match) to -
1 (complete temporal mismatch). Fig. 7c shows the variation
of correlation coefficient γ with the choice of azimuth angle for
both the NL and the US case studies. It is evident from Fig. 7, that
the optimal choice of azimuth angle Am for pv-battery system
design is the one which results in maximum temporal match
between the pv profile and the load profile. Additionally, the
correlation coefficient γ for the case of NL load profile and PV
profile is almost 10 times lower compared to the case of the
US profile. It is expected since there is significant mismatch
between the annual solar profile and load profile for the NL

Fig. 9. Results of multi-objective optimisation for PV-battery sizing with NL
and US houseload profile: (a) variation of energy autonomy factor with storage
hours (Sh) or ratio of battery capacity to rated pv power in case of NL, (b)
variation of annual cost of electricity with Sh in case of NL and (c) variation of
energy autonomy factor with Sh in case of US, (d) variation of annual cost of
electricity with Sh in case of US.

case study. Fig. 10a and Fig. 10b show that there is high load
demand and low solar generation during winter coupled with
comparatively lower load demand and higher solar generation
during the summer. However, in the US case study, the seasonal
load demand variations match the seasonal PV profile variations
leading to high values of correlation coefficient γ.

Finally, it is important to derive design thumb rules to select
PV system size and battery capacity to achieve optimal per-
formance for a certain capital investment. In this considered
PV-battery system for grid-connected microgrids there are four
unknown variables: Ppv,r, Pbatt,r, Pgrid,r, and Ecap. For the relative
sizing of PV power and battery capacity, a metric called storage
hours (Sh) is defined as following:

Sh =
Ecap

Ppv,r
(17)

Fig. 9a shows the effect of storage hours on the energy
autonomy of the PV-battery based microgrid for the NL case
study. It can be seen that the optimal range of Sh is 2 to 4 which
also results in the minimum annual cost of electricity as shown
in Fig. 9b. Applying similar analysis to the case of US as shown
in Fig. 9c and 9d, the optimal range of Sh turns out to be 4 to 6.
Since Texas, US has higher solar potential (≈35%) compared to
Cabauw, NL, it is intuitive that a bigger sized battery is needed to
properly harness the excess solar potential. This ratio can be used
as a thumb rule for sizing PV and battery system for a microgrid
in Netherlands and US, Texas to ensure high performance for a
fixed capital cost.
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Fig. 10. (a) Annual daily energy usage profile for the NL with a daily average
of 18 kWh and US load profile with a daily average of 17 kWh, (b) comparison of
solar energy production throughout the year in Cabauw, Netherlands and Austin,
Texas for a 5 kW PV system designed for maximum annual solar output.

Fig. 11. Variation of energy autonomy factor with (a) sum of all the source
converter ratings Psum,total, (b) ratio of the sum of PV-battery converter ratings
to the grid converter rating Pratio.

To optimally size the different converters associated with the
grid, PV, and the storage, two additional metrics or equations
are introduced:

Psum,total = Pgrid,r + Ppv,r + Pbatt,r (18)

Pratio =
(Ppv,r + Pbatt,r)

Pgrid,r
(19)

where Psum,total represents the sum of all the source/storage
converter ratings, and Pratio is the ratio of the sum of PV-battery
converters to the grid converter rating. Fig. 11 presents the effect
of the two aforementioned metrics on the energy autonomy of the
microgrid optimal designs for both the case studies. In case of the
NL house, aPsum,total of 15 kW or above will result in high energy
autonomy. Similarly aPsum,total of 20 kW or above is required for
high energy autonomy for the Austin, US house. It is interesting
to point out that the maximum load power in case of NL and US
are 7 kW and 9.8 kW respectively which are approximately half
of the thresholds required for high energy autonomy. Similarly,
from analysing Fig. 11b, the optimal converter ratio factor Pratio

lies somewhere around 1–1.5 for both the case studies of NL
and US. As for sizing guidelines, one can select a certain rated
power for the PV system depending on the avaliable area for PV
installation and use equations (17), (18), (19) as thumb rules to
optimally size the battery capacity, and the converter sizes for
a grid connected microgrid. Table VI summarizes all the sizing

TABLE VI
SYSTEM SIZING THUMB RULES

equations derived from analyzing the data obtained from the
optimisation procedure.

C. Analysis of Selected Optimal Designs

Higher level design sizing trends are obtained in the previous
section by analysing the optimisation results. To highlight the
efficacy of the sizing optimisation procedure, we have selected
two Pareto optimal microgrid designs for more in-depth analysis.
The designs are chosen with the same total lifetime cost of
13,000 $ to ensure a fair comparison.

Table VII presents the important design and performance
metrics of the two selected design cases. In terms of pv-battery
system sizing, the NL microgrid has a higher power PV system
and lower battery capacity compared to the US counterpart.
Due to higher solar potential, the US microgrid needs a slightly
bigger battery to store the excess solar energy. Both the mi-
crogrid designs under-utilise the battery capacity by selecting a
maximum allowable DoD of 63% (NL) and 70% (US) to extend
the lithium-ion battery lifetime.

In performance factors like energy autonomy and power
autonomy, the NL microgrid lags behind the US microgrid.
Still, the NL microgrid performs much better economically with
simple payback period almost half that of the US microgrid
design. This is mainly due to two reasons. First, the annual cost
of electricity for the US house is significantly lower than the
NL house (see Table V) for almost similar energy consump-
tion, thereby limiting the savings margin. Second, the Dutch
electricity provider incentivises high energy autonomy with
net-metering based tariff system, whereas the US tariff system
incentivises high power autonomy, which is a comparatively
more difficult metric to achieve. Fig. 12 presents the annual grid
power profiles of the two selected case studies. It is evident
from the profile (Fig. 12a) that the NL house microgrid interacts
heavily with the utility grid throughout the year, which results
in weak power autonomy of 15%. During winter, when the solar
generation is low, and the load requirement is high, it depends
solely on the grid to supply the load. However, during the
summer days when the load is comparatively lighter, and solar
power is higher, the microgrid consistently dumps the excess
solar energy to the utility grid. Therefore, the NL microgrid is
highly energy-positive during the winter days and highly energy-
negative during the summer days, which eventually balances
out due to the electricity tariff’s sole dependence on energy
autonomy rather than power autonomy. This leads to low simple
payback period for the NL microgrid. However, unlike the NL
microgrid, the US microgrid has weaker interaction with the
grid as the Texas electricity tariff incentivises power autonomy,
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TABLE VII
RESULTS OF SELECTED OPTIMISED MICROGRID DESIGNS

Fig. 12. Annual profile of the power exchange of microgrids with the utility
grid (Pgrid): (a) NL house microgrid, (b) US house microgrid.

which leads to less dumping of solar power in the grid. There-
fore, it is economically more viable to install PV and battery
system for the NL case study compared to the US case study
although the solar potential of Texas, US is much higher than
Cabauw, NL.

V. CONCLUSION

This paper presents a multi-objective optimisation (MOO)
procedure to size the PV-battery-converter system for micro-
grid applications. To validate the advantages of the proposed
method, the MOO framework is applied to optimally size
PV-lithium-ion (Li-ion) battery-converter system for two resi-
dential case studies in Cabauw, Netherlands and Austin, US. An
in-depth microgrid model considering battery degradation, PV
design variables, and real-life electricity tariffs are coupled with
the MOO framework with the goal of drawing design guidelines
for optimal system sizing. Some essential observations obtained
from a detailed analysis of the optimisation results are presented
below:

1) The local electricity tariffs in Cabauw, NL heavily incen-
tivises energy autonomy with significant feed-in tariffs
leading to low payback periods for an initial investment.
However, Austin electricity tariffs incentivise power au-
tonomy by power-based tariffs, which lead to higher pay-
back periods for an initial investment.

2) Solar potential of a location has a significant impact on the
relative sizing of the battery capacity relative to the rated
PV power. The optimal value of storage hour (Sh =

Ecap

Ppv,r
)

for Cabauw is between 2 to 4, whereas for Austin it is
between 4 to 6.

3) Optimal value of the azimuth angle (Am) for the PV system
is found to be the one which results in a maximum temporal
match between the annual PV and load profile.

4) Thumb rules for optimal system sizing are derived to size
the battery power rating, battery capacity, PV power rating,
and the grid converter rating in equations in Table VI for
grid-connected microgrid application.

In conclusion, the presented multi-objective optimisation pro-
cess provides a platform to optimally size PV-battery systems
during the initial design process taking into account a multitude
of design variables and multiple objectives. For future work, this
study can be extended to compare different battery technologies
to select the most economical design. Additionally, the effect
of intelligent power management algorithms with forecasting
capability on the system sizing problem can be investigated with
this framework.
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