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Abstract

Tobin’s average q has usually been well above 1, but fell below 1 during 1974-1984. Our
model explains this pattern and reconciles it with unchanging aggregate investment. The stock
market value in the numerator of q reflects ownership of physical capital and knowledge, but the
denominator measures just physical capital. Therefore, q is usually above 1. Periodic arrivals
of important new technologies, such as the microprocessor in the 70’s, suddenly render old
knowledge and capital obsolete, causing the stock market to drop. National accounts measures
of physical capital miss this rapid obsolescence. Then q appears to drop below 1.

JEL E44, O3, O41

1 Introduction

If one compares the aggregate market value of U.S. businesses with the replacement cost of their
capital stock, a surprising outcome is that over the last 45 years the market value has more often
than not been larger than the second measurement, with the ratio climbing to 1.4 or more.1 As
Figure 1 shows, the ratio, which we call q∗, rose from about 1 to 1.4 from the early 1950s to the early
1970s; then it fell abruptly and remained below 1 from the mid 1970s to mid 1980s; subsequently it
rose, passing 1.4 in 1995.2 This paper attempts to provide a simple, yet comprehensive model which
we can use to explain and interpret the average and time series features of the data. Conversely,
the framework which we propose allows us to integrate financial market values into the study of
economic growth.

Three basic elements underpin our analysis. (i) We assume that the frontier technology evolves
over time in an exogenous and uneven fashion. (ii) We assume that each unit of capital, tangible or
intangible, embodies a particular technology. And, (iii) we assume that firms produce with physical
capital, labor, and (applied) knowledge. We treat the last as intangible capital. We show that the
first two elements can cause data in the national accounts to mismeasure depreciation severely at
certain times.

∗The authors thank seminar participants at the University of Chicago, Ohio State University, University of Michi-
gan, Univeristy of Rochester, Wharton School of Business and two anonymous referees.

1We compute the market value of the U.S. businesses from the Federal Reserve’s Flow of Funds. For the replace-
ment cost, we use the current-price value of the physical capital stock computed by the Bureau of Economic Analysis
from National Income and Products Account physical investment and perpetual inventory equations. See Appendix
1.

2Although data sources vary somewhat, note that our Figure 1 resembles, for example, Laitner (2000, fig.1) and
Hall (2001, fig.13). See also McGrattan and Prescott (2000, p.21) and Smithers and Wright [2000, chart 2.1].
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Figure 1: Tobin’s average q, 1953-2000.

The idea that technological progress may be discontinuous comes from the literature of economic
history. Mokyr (1990a, 1990b) argues that seminal inventions, occurring at intervals of several
decades or more, are the ultimate source of growth. In the same spirit, Wicksell (1953, p.67) wrote,
“It is in the nature of things that new, great discoveries and inventions must occur sporadically,
and that the resulting increase in output cannot take the form of an evenly growing stream ....”3

According to Cohen et. al. (2000, p. 30), for example, electricity, internal combustion engines
and chemicals were the leading technologies in the early 1900s – whereas microelectronics and
information and communication technologies may have been principal after 1970. In our framework,
transforming inventions emerge at randomly spaced times, and our empirical section assumes that
historians and other commentators can identify for us the key arrival dates.

The embodiment assumption is familiar from Solow [1960]. Recent studies find a significant role
for embodied change in growth. Greenwood et al [1997] estimate that embodied technical progress
in equipment alone contributed 60% to overall TFP change in the U.S. from 1954 to 1990; Gort et
al [1999] argue that embodied progress is very important for structures too.

The embodiment framework fits particularly well with inventions that transform the whole econ-
omy, because in the model each new technology inaugurates a new aggregate production function.
For example, David [1990] describes how dedicated electric motors replaced central steam engines
as power sources for manufacturing. Beyond the steam engine itself, the old system of power deliv-
ery used overhead shafts and drive belts, which, in turn, required multi-story factories with linear
production layouts. When electrification made possible delivery of power through wires, many of
the existing components and structures became obsolete.

The recent microelectronics/information technology revolution seems to have attributes similar
to seminal inventions of the past. Progress in microelectronics has brought spectacular advances in

3See Evans (1969, p.334—335) for a brief discussion of similar concepts in Schumpeter and Wicksell.
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computers and telecommunications equipment. However, that progress, in turn, has led to broader,
structural changes in other industries. Mowrey and Rosenberg (1998) write,

Like electricity, the postwar electronics revolution has derived much of its economic impact
from a complex and lengthy process of interindustry diffusion and adoption. The products of
these high—technology industries have transformed the structure of mature industries (e.g.,
retailing) as well as newer ones (e.g., commercial aircraft design). (p.164)

Hall [2001, p.1198] makes similar observations. Brynjolfsson and Hitt [2000] describe how decen-
tralization of information processing has led away from hierarchical forms of organization, changing
business practices in health care, automotives, and build—to—order retailing. Machine tools offer an-
other illustration. While microchips may be a small component of their cost, numerically controlled
machine tools became much more practical and their use greatly expanded after microcomputer
controls replaced paper tapes in the 1970s (e.g., Ray [1984, chart 7.3—7.4]). Although computerized
numerically controlled tools are expensive and require programming, they work faster than corre-
sponding manual equipment and eliminate old—fashioned set—up time, offering substantial gains in
flexibility.4

In our framework, a firm’s intangible capital includes applied knowledge such as product designs
and firm—specific human capital. Our distinction between seminal inventions and applied knowledge
is as follows. Seminal inventions emerge exogenously, and randomly, and they define the economy’s
basic technology. They are too general for private agents to own. In contrast, individual firms
develop knowledge of how to apply a basic technology, and their understanding remains proprietary.
Applied knowledge is our “intangible capital.” For example, while the concept of a laser would be
a basic idea, the blueprint for a CD player that uses laser technology would be applied knowledge.
The difference is analogous to Mokyr’s (1990a, pp 12-13) distinction between macroinventions and
microinventions. He writes (1990b, p. 7), “Microinventions are more or less understandable with
the help of the standard economic concepts. They result from search and inventive effort, and
respond to prices and incentives. ... Macroinventions, on the other hand, do not seem to obey
obvious laws, do not necessarily respond to incentives, and defy most attempts to relate them to
exogenous economic variables.”5

Our model offers an explanation of the dynamic pattern on Figure 1: the denominator of
q∗ is mismeasured, especially at certain times. We believe there was a fairly abrupt, transforming
advance in technology in the early 1970s. As Hobijn and Jovanovic (2001) and others argue, we think
development of the microprocessor was the crucial change. The advent of a revolutionary invention
decreases the market value of existing intangible and tangible capital, which embody previous
technologies. Since revolutionary inventions do not create new ownership rights, no corresponding
capitalized rents arise for the new technology itself. Thus, the numerator of q∗, reflecting market
valuations, falls. The denominator, on the other hand, has much more inertia because national
accountants tend to construct physical capital stock series using depreciation rates that are constant
over time. If the numerator drops steeply after a seminal invention but the denominator reacts
slowly, q∗ will plummet.

Because of the measurement problem, investment does not need to collapse when q∗ falls below
1. In fact, our analysis below shows that an upward step in technology initiates an interval of
capital deepening, because the economy finds itself below its steady—state capital intensity. Flows

4E.g., Ray [1984] and Kelley [1994].
5Note that our approach is almost the opposite of Young [1993]. In his model, wholly new lines of production

emerge from intentional R&D, but gradual improvements in existing technologies occur exogenously (through learning
by doing).
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of new investment, tangible and intangible, subsequently rebuild the market value of the capital
stock, causing q∗ to rise. Provided agents learn about seminal inventions rapidly, the long—run
pattern of stock market swings will tend to be one of abrupt declines followed by more protracted
“bull advances.”

Intangible capital alone explains how the value of q∗ can exceed 1 for long periods of time:
the market value of firms, the numerator of q∗, reflects both physical capital and knowledge; the
denominator measures just physical capital.

Our story builds on ideas in the recent literature. Hall [2001] shows how one can use investment
theory to identify separately the price and quantity of capital from the value of securities. He finds
evidence suggesting that firms have accumulated large amounts of intangible capital, and that ad-
justment costs alone have difficulty explaining observed values of q∗. In our empirical application,
we follow Hall in estimating the quantity of intangible capital from the market value of businesses.
Our analysis differs from Hall in that we have endogenous obsolescence and accumulation of intan-
gible capital.

As stated, our explanation for the drop in the stock market during the 1970s relies on obsoles-
cence of capital. Here we draw on insights from Greenwood and Jovanovic [1999] and Hobijn and
Jovanovic [2001]. They show how the expected arrival of a new type of capital can lead to a large
fall in the stock market’s capitalization in an economy with a fixed capital stock and no investment.
The Hobijn and Jovanovic paper also relates the magnitude of the fall to the productivity of the
new technology. Our framework is different because it features capital accumulation.

The model we propose is related to several papers from the general purpose technology (GPT)
literature on transitional slowdowns. Greenwood and Yorukoglu [1997] analyze a vintage capital
model where the IT revolution increases the rate of progress in equipment, but it also raises adoption
costs for new technologies. As in our analysis, the economy can benefit from new technology only
gradually, through investment in new knowledge. Unlike our formulation, the technology frontier
moves continuously, and the IT revolution increases the share of unmeasured knowledge investment,
causing a slowdown in measured output growth. Andolfatto and Macdonald [1998] have a model
in which technology is embodied in human capital and technological revolutions come in waves
associated with mass diffusions of new knowledge. The timing of the waves is endogenous and
depends upon technology—specific learning parameters. Differences between technologies lead to
uneven diffusion and uneven output growth over time. Helpman and Trajtenberg [1998] analyze
a model in which the periodic arrival of new GPTs leads to cycles in output growth and stock
market values. Reallocations of labor to the R&D sector generate the output cycles. Also closely
related to our work is Howitt’s [1998] model in which a new technology increases the economy’s rate
of invention and causes obsolescence of capital and a transitional slowdown. These papers focus
primarily on explaining the link between technological change and variations in output growth.
We present a general equilibrium system which can tie together output growth, NIPA measured
depreciation, and stock market valuations.

Although two of the elements of our model, intangible capital and the level of the economy’s
technology, are not directly observable, Sections 4—5 illustrate how a quantitative analysis is feasible.
We can identify the size and importance of intangible capital through comparisons of tangible
investment and market values of total national wealth from the U.S. Flow of Funds. Our model
actually provides two avenues for measuring TFP: (i) as is conventional, we can compare changes
over time in output with changes in inputs, and (ii) we can study the time path of the market value
of (all) capital, using the facts that at the advent of a seminal invention, the value should drop,
and that our model explicitly relates the degree of the fall to the degree of improvement in TFP.

Our theoretical steps yield a straightforward system of dynamic equations for an economy’s
aggregative variables, and Section 4 employs them to estimate our model’s parameters from U.S.
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post—WWII data. Section 5 suggests desirable changes in national accounts. Since national accounts
usually treat knowledge-creating activities as intermediate goods, whereas our analysis implies they
are investments, our framework implies a downward bias in measured GDP, and we can estimate
its magnitude.6 We also show that conventional accounting will tend to overstate the average rate
of return on capital, and we provide a new interpretation of the Solow residual, warning that inputs
conventionally employed in its calculation omit intangible capital and misstate obsolescence.

2 Model

This section presents our model. The model incorporates the three basic elements outlined in
the introduction. We show that it yields a very simple aggregative equation of motion, but one
featuring the aggregative market value of national wealth rather than the physical capital stock.

2.1 Elements

Suppose all firms behave competitively and have identical production functions with constant re-
turns in labor, physical capital, and intangible capital. Then aggregate output obeys the same
function. Let aggregate output be Yt, the aggregate stock of applied knowledge (or intangible cap-
ital) be At, the aggregate stock of physical capital be Kt, and labor be Lt, and let the production
function be7

Yt = Z · [At]
α · [Kt]

β · [Lt]
1−α−β, with α, β > 0, and α+ β < 1, (1)

where Z registers the economy-wide level of technology. We assume that individual firms purchase
inputs of A, K, and L, but that Z is freely available to all. Suppose that knowledge and physical
capital deteriorate (from normal obsolescence and physical wear) at the same constant rate δ.
Output is homogeneously divisible into consumption, Ct, and the two types of investment, so that

Yt = Ct + Ȧt + δ ·At + K̇t + δ ·Kt

Treat GDP as the economy’s numeraire. Assume that the economy saves a constant fraction σ of
its income, implying

Ȧt + δ ·At + K̇t + δ ·Kt = σ · Yt, σ ∈ (0, 1). (2)

Assume that investment is irreversible:

Ȧt + δ ·At ≥ 0 and K̇t + δ ·Kt ≥ 0. (3)

Irreversibility will be important when we discuss technological change: when Z rises abruptly, firms
would like to disinvest, exchanging their old capital and know—how for new; however, (3) rules that
out. Let labor supply grow exogenously at a constant rate n:

Lt = L0e
nt .

Assume, without loss of generality, that initially8

A0
K0

=
α

β
. (4)

6See also Howitt (1996). The National Accounts classify organizational investments, including new business
processes, new production systems, hiring consultants and training workers as intermediate goods (Brynjolfsson and
Hitt, 2000).

7Laitner and Stolyarov (2002) extend this framework to allow increasing returns to scale.
8 If (4) is violated, investment in one of the capital stocks ceases until the economy reaches ratio (4) at a finite

date, which we label t = 0.
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When Z stays constant, irreversibility constraints do not bind. Then we can analyze the model
as follows. Competitive behavior implies that the marginal products of knowledge and physical
capital both equal the rental fee; hence, they equal each other:

α · Yt
At
= β · Yt

Kt
⇐⇒ At =

α

β
·Kt. (5)

Let the market value of tangible plus intangible capital be

Mt = At +Kt (6)

Then from (1)—(6),

Ṁt = σ · Z ·
[αβ ]

α

[αβ + 1]
α+β

· [Mt]
α+β · [Lt]

1−α−β − δ ·Mt . (7)

This is mathematically identical to the familiar Solow (1956) model; hence, from any M0 > 0, we
can see that the market value per worker monotonically converges to a stationary level.

We actually want Z to evolve over time through a series of discrete upward steps. Think of an
exogenous Poisson process as determining the timing of steps, and think of the relative size of each
step as an independent draw from an exogenously given distribution.9

At initial time t = 0 the prevailing technology is Z0. Let {ti}∞t=1 with

0 < t1 < t2 < ...

be the dates of technological revolutions corresponding to a sequence of realizations ti − tt−1 of a
Poisson random variable. Let the corresponding sequence of draws from the TFP distribution be
{Zi}∞i=1 with

Z0 < Z1 < Z2 < ....

Let ι(t) be the index of the frontier technology at time t:

ι(t) ≡ i, t ∈ [ti, ti+1) , i ≥ 0.

With a Poisson process, as time passes after any ti, agents need not become more and more
reluctant to invest. As we will see below, the independence of Zi

Zi−1 means that knowing Zi gives
the agents no new information about the expected future prices of capital goods.

We assume that tangible and intangible capital embody the technology they are used with and
cannot be transferred or recycled for use with a new technology when it arrives. Let Kit and Ait

be the date t stocks of tangible and intangible capital that embody technology Zi. We assume that
labor is not technology-specific. Let Lit denote the amount of labor that works with technology Zi

at date t. Firms can produce with all technologies discovered so far:

Yt =

ι(t)X
i=0

Zi · [Ait]
α · [Kit]

β · [Lit]
1−α−β.

9Strictly speaking, these two assumptions are not needed for the present paper. However, if the intervals be-
tween technological revolutions and the magnitudes of TFP steps are unpredictable, our results will carry over in a
straightforward manner to a framework with intertemporal utility maximization by a representative consumer. See
the discussion in section 3.
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As a preview of results to follow, we first describe the model’s reaction to a single change in
Z. For 0 ≤ t < t1, suppose the maximum technology-specific TFP level is Z = Z0; for t ≥ t1, on
the other hand, let Z = Z1. After date t1, businesses can invest in capital stocks that embody the
unambiguously more productive technology Z1. New investment goods always have price 1. For
full employment of capital, the resale price of old capital must drop below 1 at date t1. As we
will demonstrate, the price of A0t or K0t relative to A1t or K1t equals P0 ≡ [Z0/Z1]1/(α+β) from t1
onward. The magnitude of P0 reflects the degree of inferiority of the old technology. Although new
investments embodying the old technology remain feasible after t1, they entail an immediate capital
loss of 1− P0. Agents therefore choose to invest only in capital embodying the frontier technology
Z1. Of course, this causes irreversibility constraints (3) to bind for K0t and A0t subsequent to t1.

As in Solow (1960), it is also the case that the aggregate production function from t < t1
remains valid after t1 provided we substitute Z = Z1 for Z = Z0, aggregate physical capital with
Kt = P0·K0t+K1t, and aggregate intangible capital similarly. The proof of Proposition 1 establishes
this formally.

To extend this reasoning to an endless series of changes in Z, we need a formal definition of
equilibrium. We look for an equilibrium where Ait and Kit always have the same relative price. In
particular, if p(X, t) is the resale price of a unit of capital X at time t, we want

p(Ait, t) = p(Kit, t) = Pit, for all i, t. (8)

Equilibria of this kind seem empirically relevant, since investment in A orK ceases if (8) is violated,
yet both types of are positive in our data – see Section 3.

Let Wt be the wage rate, Rt be the rental rate on new physical and intangible capital, and
IKit and IAit be date t gross investment in the stocks of Ai and Ki. As above, let output be the
numeraire. Then
Definition: An equilibrium is a sequence of functions of time denoting factor prices

{Wt, Rt, Pit} , all i ≥ 0, t ≥ 0

and quantities ©
Ait, I

A
it ,Kit, I

K
it , Lit

ª
such that
1. The price of capital embodying the frontier technology equals 1:

Pι(t),t = 1, all t

2. Firms maximize profits, and all existing capital is employed:

(Ait,Kit, Lit) = arg max
(a,k,l)

³
Zi · aα · kβ · l1−α−β − Pit ·Rt · a− Pit ·Rt · k −Wt · l

´
,

all i ≥ 0, t ≥ ti

3. Investment seeks the highest return:

For all t, we have IAit , I
K
it > 0⇐⇒ i ∈ argmax

j
{Pjt}

4. Labor and goods markets clear
ι(t)X
i=0

Lit = Lt, all t

7



ι(t)X
i=0

¡
IAit + IKit

¢
= σYt, all t

5. Capital stocks follow their laws of motion

Ȧit = IAit − δAit, i ≥ 0, t ≥ ti

K̇it = IKit − δKit i ≥ 0, t ≥ ti

given initial conditions

A0,0
K0,0

=
α

β
,

Ai,ti = 0, Ki,ti = 0, all i > 0.

Proposition 1 establishes existence and characterizes the equilibrium. The price of an old
vintage of capital falls over time in a series of discrete downward steps that coincide with changes
in technology. There exists a useful aggregate for the capital stock: current output depends on
capital stocks of different vintages only through their aggregate market value.
Proposition 1:

(i) Characterization of equilibrium:

Pit =

µ
Zi

Zι(t)

¶ 1
α+β

, i ≥ 0, t ≥ ti (9)

Ait =

( R t
ti
eδ(s−t)θσYsds, t ∈ [ti, ti+1)

Ai,ti+1 · e−δ(t−ti+1), t ≥ ti+1
(10)

Kit =

( R t
ti
eδ(s−t) (1− θ)σYsds, t ∈ [ti, ti+1)

Ki,ti+1 · e−δ(t−ti+1), t ≥ ti+1
(11)

where
θ ≡ α

α+ β
.

(ii) Aggregation: letting
Mt = At +Kt,

where

At =

ι(t)X
i=0

PitAit and Kt =

ι(t)X
i=0

PitKit, (12)

we have
At = θMt; Kt = (1− θ)Mt; (13)

Rt = (α+ β)
Yt
Mt
; Wt = (1− α− β)

Yt
Lt
;

and, aggregate output can be expressed as

Yt = Zι(t) ·Aα
t ·Kβ

t · L1−α−βt = Zι(t) ·
[αβ ]

α

[αβ + 1]
α+β

· [Mt]
α+β · [Lt]

1−α−β, all t ≥ 0. (14)

Proof: See Appendix.

8



0 t1 t2

yt

t

y0


y1


0 t1 t2

Mt

t

0 t1 t2

K*
t

t

0 t1 t2

q*
t=Mt/K*

t

t

q = α/β + 1

Figure 2: Time series outcomes of the model

Aggregation result (14) implies that even with a series of technological revolutions, the aggregate
dynamics of the model follow (7) between changes in Z. Specifically, starting from given M0, we
can solve

Ṁt = σ · Z̄t · [Mt]
α+β · [Lt]

1−α−β − δ ·Mt , (15)

where

Z̄t ≡ Zι(t) ·
[αβ ]

α

[αβ + 1]
α+β

,

on each (ti−1, ti), using the terminal value Mti from one interval as the initial condition for Mt on
the next.

Figure 2 illustrates time series outcomes. For times between ti and ti+1, (15) determines growth.
GDP per worker, yt = Yt

Lt
, will converge toward its stationary—state level, say, y∞i . However, Z

takes a discrete upward step at ti+1. The old dynamic path is interrupted, and we follow a new one,
toward a higher stationary—state y∞i+1. There is no drop in output at ti+1; production as before
remains feasible. Conversely, there is no upward leap in yt at ti+1, since society can only take
advantage of Zi+1 through production with new capital.

Since Mt is a market value, it abruptly drops at t = ti+1, as existing capital loses its resale
potential. Subsequently Mt rises, because its balanced growth path is higher with Zi+1 than with
Zi (see the lower left panel on Figure 2). In our framework, both At andKt are strictly proportional
to Mt at all dates.

Figure 2’s K∗
t is a conventional measure of the physical capital stock – corresponding to the

denominator of our q∗. The conventional physical capital stockK∗
t evolves according to a differential

equation
K̇∗
t = It − δ̄ ·K∗

t , (16)

where It is NIPA real physical investment (i.e., our IKι(t),t) and δ̄ is the average rate of depreciation.
The NIPA aggregate capital stock is constructed from different asset subcategories using a separate
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perpetual inventory equation with a constant depreciation rate δ̄j for each asset j. For each asset
category, δ̄j reflects data on service lives and resale prices. Then δ̄ in equation (16) is the weighted
sum of δ̄j , with weights equal to shares of asset j in the aggregate capital stock. An important
point is that each δ̄j is constant – we can think of it as reflecting average physical depreciation
and obsolescence through (many) complete cycles [ti, tt+1) in Figure 2. For example, the U.S.
Department of Commerce writes, “The depreciation rates used to derive the estimates [of K∗

t ]
reflect the effects of normal obsolescence over time. They are not adjusted to take account of
obsolescence that is unusually or unexpectedly larger than the amounts built in to the depreciation
schedules ....” 10

Our model’s δ reflects only normal depreciation between revolutions (i.e., within intervals
(ti, ti+1)), whereas δ̄ reflects this plus the discontinuous obsolescence at dates ti. According to
the pricing formula (9), the average depreciation rate on an arbitrarily chosen interval (0, T ) equals

δ̄ = δ +
1

T

1

α+ β
ln

µ
Zι(T )

Z0

¶
. (17)

On the one hand, because δ̄ exceeds δ, physical capital K∗
t will grow slower than Mt (and Kt)

within intervals (ti, ti+1). On the other hand, δ̄ only captures abrupt obsolescence at each ti in a
long—run average sense, and K∗

t will not discontinuously drop as Mt does at times ti.

2.2 Correspondence with Figure 1

We now have the basic elements of our proposed explanation of Figure 1.
We believe the data show two intervals, say, [ti−1, ti) and [ti, tt+1). As stated, the ratio on

Figure 1 is measured Tobin’s q, defined as

q∗t =
Mt

K∗
t

.

While the numerator will move sharply to reflect market valuations, the denominator will adjust
with inertia – as discussed above, K∗

t is roughly a moving average of undepreciated past physical
investment. At the beginning of each interval, abrupt obsolescence lowers the value of tangible
and intangible capital stocks. Over the course of the interval, however, values of these stocks rise
faster than K∗

t , because δ is less than δ̄. Thus, q∗ should dip at ti; then it should rise with t for
t ∈ (ti, ti+1). That is what Figure 1 shows.

The numerator of q∗t is At +Kt. The denominator, K∗
t , best approximates Kt towards the end

of each interval [ti, ti+1). Thus, we expect q∗t to converge to its theoretical value

qt =
Mt

Kt
=

α

β
+ 1

for t ∈ (ti, ti+1). This covergence is interrupted at date ti+1, when q∗t drops again. This is consistent
with Figure 1 (also see Table A1 in Appendix 1).

3 Discussion

This section discusses several of our key assumptions and their implications.
10U.S. Department of Commerce, Bureau of Economic Analysis, “Fixed Reproducible Tangible Wealth in the United

States, 1925—94,” August 1999, http://www.bea.doc.gov/bea/Articles/National/NIPAREL/Meth/wlth2594.pdf. See
also Fraumeni (1997).
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Figure 3: Share of physical investment in measured GDP, 1953-2001.

Average labor productivity. As figure 2 shows, a technological revolution does not cause a slowdown
in average labor productivity (and the real wage). We do not view this as a limitation of our
model. For simplicity, the model assumes that workers are homogenous and that new technology
can be operated at full efficiency by anyone. Relaxing these assumptions can produce a slowdown
in productivity and wages at ti. For example, in Greenwood and Yorukoglu (1997) workers need to
learn to realize the full potential of the new technology, and productivity grows slowly during the
learning phase. Caselli (1999) shows that when a new technology arrives, workers whose learning
cost is high stay with the old technology, and their wage drops as capital flows away from old
equipment.
Tobin’s q and aggregate investment. Figure 3 shows that although q∗ remained below one from 1974
to 1984, investment rate during this period was not much different from its historical average. This
is contrary to investment theories (e.g. Hayashi, 1982) where q∗ is a proxy for the marginal benefit
from investment. Our analysis offers a way to reconcile the time series for q∗ and investment: in our
model, the “theoretical” value of q that determines firms’ investment decisions is always constant
and equal α

β + 1; q
∗ differs from q because of mismeasurement.

Constant saving rate. If the saving rate is not assumed to be constant, agents’ expectations can,
in principle, affect the time paths for variables. For example, an expectation that the next change
in technology is close or that it is drastic will make consumers more reluctant to save. However,
the assumed processes for ti and Zi are free of these expectational effects. Knowing ti and Zi does
not give any additional information about ti+1 and

Zi+1
Zi
. Therefore, expected capital losses due to

changes in Z are independent of the current state and depend only on exogenous variables: the
rate of arrival of the new technologies and the distribution of Zi+1

Zi
.

A more general model with intertemporal utility maximization will have different adjustment
dynamics, but the basic elements of our explanation for the pattern of Figure 1 will not be affected.
Even in a more general model, the market will still drop when a new technology arrives and will
rise eventually when the new capital is accumulated. Besides, Figure 3 shows an approximately
constant investment rate, so our assumption of constant saving rate looks empirically plausible.
One distinct implication of a variable saving rate is noteworthy. Proposition 1 implies that the
share of unmeasured knowledge investment is a constant fraction σθ of national income. If instead
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IA and IK both respond to changes in the interest rate, the fraction of national income that goes
unmeasured will change over time. One can then use the estimation procedure proposed in the
next section to identify the mismeasurement in GDP growth year by year, but we leave this for
future research.
Equal depreciation rates of physical capital and applied knowledge. This paper assumes that de-
preciation rates for A and K equal one another. If depreciation rates were different, investment in
one of the capital stocks might cease periodically. The arrival of new technology might leave the
stocks of A and K imbalanced, and their relative price would no longer be the same. Then all new
investment would go to the capital stock with the higher relative price.11 Data do not support such
a scenario in the time period Section 4 studies. Physical gross investment (nonresidential fixed
capital investment plus change in private inventories) as a percentage of GDP is always positive,
and the same is true for private R&D spending, which corresponds to a fraction of our variable A.

Alternatively, measured depreciation rates do not seem too different in practice. Jones and
Williams (2000) suggest an average rate .10 for the depreciation of applied knowledge.12 Our
estimate below of NIPA annual depreciation of nonresidential fixed (physical) capital yields an
average rate of 0.0752. (Roughly equal rates are presumably not a mere coincidence: if TFP is
embodied in physical capital, producers would logically design capital goods to last as long as a
technology typically does.)

4 Estimation/Calibration

To illustrate our model’s potential usefulness in Section 5, we set parameter values using U.S. data
from 1953—2001.13 The time period begins after the Korean War. As above, we assume Figure 1
has two intervals, say, [t0, t1) and [t1, t2), with separate technology levels Z0 and Z1, respectively.
The first episode began, we assume, prior to 1953, and it ended, say, in 1973. The second was
still underway in 2001. In our notation, t0 < 1953, t1 = 1973, and t2 > 2001. As Hobijn and
Jovanovic (2001) argue, the underlying crucial invention at t1 might have been the microprocessor.14

Since many commentators believe that the U.S. stock market’s very recent performance manifested
“irrational exuberance,” this section actually only uses net worth data for 1953—95 – leaving
Section 5 to consider whether or not subsequent years display a pattern distinct from earlier dates.

11Formally, full employment conditions for A and K imply that

At

Kt
=

α

β
· p(K, t)

p(A, t)
· RK(t)

RA(t)
,

where RA (RK) is the rental rate on A (K) expressed in units of output and p(·) is the price of capital (relative to
output). If depreciation rates are equal,

RK(t)

RA(t)
= 1 and p(K, t) = p(A, t), all t.

With different depreciation rates, rental rates on A and K are no longer equal. Moreover, when a new technology
arrives, the ratio RK(t)

RA(t)
will change, because the interest rate will now impact the rental rates differently. Then full

employment of factors implies that the relative price p(K,t)
p(A,t) must adjust. When the ratio

p(K,t)
p(A,t) is different from 1,

there is no investment in the capital stock with lower relative price – see Shell and Stiglitz (1967).
12Estimates of the depreciation of monopoly profits from patents range from 4 to 25 years. See Pakes and Schanker-

man (1984), Mansfield et al. (1981) and Caballero and Jaffe (1993).
13The BEA data on K∗ ends in 2000, but it plays no role in the estimation. Our financial—return data (described

below) ends in 1999, with this section only using returns for 1953—1995.
14See also Andolfatto and MacDonald [1998]. With a model of the origins of dates ti, they detect a number of

changes during the post—WWII era. The two largest occur in the early 1950s and the early 1970s. The authors
associate the first with chemicals and synthetic materials, and the second with electronics.
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We derive a 6 equation statistical model from Section 2’s economic framework. We estimate
the following 6 parameters: α, the output elasticity of applied knowledge; β, the output elasticity
of physical capital; σ, the aggregate average propensity to save out of gross domestic product; Z0,
the TFP level for the interval [t0, t1); Z1, the TFP level for [t1, t2); and, δ, the rate of physical
depreciation for t 6= ti any i. Call the vector of parameters �u. We estimate �u using a method
of moments approach. This section first derives each equation of the statistical model; then it
describes our instruments; finally, it presents our parameter estimates. Appendix 3 explains our
data sources.

For the estimation, we switch to a discrete—time version of our model, which matches annual
data. Note that the variable Mt measures end—of—year net worth, hence the level at the start of
year t+ 1. The new version of our basic equation of motion is

Mt = m (Mt−1, t) ≡ σ · Z̄t · [Mt−1]α+β · [Lt]
1−α−β + (1− δ) ·Mt−1. (18)

Although Section 2 has, for simplicity, a constant rate of labor force growth, the present section
allows the labor supply Lt to vary from year to year – see Appendix 3.

The equations of our statistic model have the form

f it = �it, i = 1, ..., 6 .

In each case, f it gives, as described below, the discrepancy between a current dependent variable
and a function, which the theoretical model determines, of exogenous variables, past dependent
variables, and parameters. Thus, each f it is itself a function of current and past dependent variables,
exogenous variables, and �u. �it is a regression error.
Equation 1 We assume that the instant after the revolution of t1, the resale value of existing
capital falls according to (9). Using that formula, define

M̃t =

 Mt

³
Z0
Z1

´ 1
α+β

t = t1

Mt t 6= t1
.

Then we set
f1t ≡ ln(Mt)− ln

³
m
³
M̃t−1, t

´´
, t = 1953, ..., 1996. (19)

As stated, on the basis of external information, we are suspicious of the connection over the years
1996—2001 between measured financial net worth and capital as an input to production. Thus, we
never employ Mt−1 for t− 1 > 1995 as a predetermined variable. Instead, we set

f1t ≡ ln(Mt)− ln
¡
m
¡
M∗

t−1, t
¢¢
, t = 1997, ..., 2001 , (20)

where the following equations inductively define M∗:

M∗
1996 ≡ m (M1995, 1996)

M∗
t ≡ m

¡
M∗

t−1, t
¢
, t = 1997, ..., 2001 .

Notice that since f1t is a difference of logarithms, there is no reason to think of �
1
t as having a time

trend – it equals the log of the ratio of actual to predicted M . The same logic applies for the
second, third, and fifth equations below.
Equation 2 The second equation of our statistical model compares data on GDP with Y deter-
mined from our model’s aggregate production function.
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We need two adjustments. First, because residential capital plays no role in our analysis, we
subtract housing services from NIPA GDP, calling the difference GDP ∗.15 Second, our model’s
aggregate output, Y , treats gross investment in applied knowledge as a final good; thus,

Yt = GDP ∗t + Ȧt + δ ·At.

Although the national income and product accounts provide no data on investment in intangible
capital, we can use Proposition 1, and then equation (2), to write

Yt = GDP ∗t + θ · (Ṁt + δ ·Mt) = GDP ∗t + θ · σ · Yt.
So,

GDP ∗t = (1− θ · σ) · Yt.
The second equation of our statistical model is

f2t ≡ ln(GDP ∗t )− ln
³
(1− θ · σ) · Z̄t · [M̃t−1]α+β · [Lt]

1−α−β
´
, t = 1953, ..., 1996. (21)

For t beyond 1996 the formula remains the same but we replace M̃t−1 on the right with M∗
t−1 as

defined in equation (20).
Equation 3 Let IKt be NIPA gross physical nonresidential investment plus change in inventories
for year t. If It is total investment from our model – including intangible as well as tangible capital
– Section 2 shows

IKt = (1− θ) · It .
The third equation of our statistical model sets

f3t ≡ ln(IKt )− ln((1− θ) · σ · Z̄t · [M̃t−1]α+β · [Lt]
1−α−β), t = 1953, ..., 1996. (22)

Again, for times past 1996, we use the same formula but replace M̃t−1 on the right with M∗
t−1.

Equation 4 We can relate the factor share of labor to the parameters of our aggregate production
function. Before doing so, we introduce indirect business taxes, which affect the marginal revenue
products of inputs.

Let τ∗t be the measured indirect tax rate.16 We set our model’s tax rate τ t to make tax collections
from Yt match NIPA data: using the relationship of GDP ∗ and Y derived above,

τ t · Yt = τ∗t ·GDP ∗t iff
τ t = τ∗t · (1− θ · σ)

(Thus, τ t is a function of τ∗t , θ, and σ.)
Setting the marginal revenue product of labor equal to the wage rate, we have

Wt · Lt

Yt
= (1− τ t) · (1− α− β) .

Using the relationship of GDP ∗ and Y again, our statistical model’s fourth equation is

f4t ≡
Wt · Lt

GDP ∗t
− (1− τ t) · 1− α− β

1− θ · σ all t. (23)

15 In our data 1953—2001 the average ratio of GDP ∗, measured GDP less housing services, to GDP is .9067. The
coefficient of variation of the ratio is .0064.
16The average indirect tax rate for 1953—2001 is .0817, with coefficient of variation .0657.
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Equation 5 Section 2’s analysis shows that physical capital obeys

Kt = (1− θ) ·Mt .

The flow of depreciation on physical capital, reflecting wear and tear, is δ ·Kt. Section 2 implies
there will also be discontinuous obsolescence at t1, causing a fall in the resale price of existing
units of capital from 1 to [Z0/Z1]1/(α+β). NIPA measured depreciation reflects both continuous
and discontinuous depreciation (recall Section 3), and, since accountants construe the latter from
formulas based on average past experience, the NIPA flow treats the combined rate as a constant
which we call δ̄. Recall its definition in (17). Letting Dt be the NIPA flow of depreciation of
physical capital during year t, the fifth equation of our statistical model sets

f5t ≡ ln(Dt)− ln(δ̄ · (1− θ) · M̃t−1), t = 1953, ..., 1996, (24)

with, for years after t = 1996, M∗
t−1 in place of M̃t−1.

There remains the task of specifying the average rate of obsolescence (in effect, T for (17)).
We cannot deduce the average span between revolutions from our time interval, because the latter
has only a single seminal invention. Turning to longer term data, the diagram of leading sectors
in Cohen et al. [2000, p.30] seems to imply that there were 5—7 distinct revolutionary inventions
over the last 200 years. That suggests an average periodicity of 30 to 40 years. The long series for
q∗ of Smithers and Wright [2000, chart 2.1] is similar to our Figure 1.17 It shows three declines
during the twentieth century, and the magnitudes of the declines are all roughly the same. The
two complete episodes roughly run from 1910 to 1973, suggesting T = 30 and

δ̄ = δ +
1

30
· 1

α+ β
· ln
µ
Z1
Z0

¶
. (25)

This is our baseline case.
Equation 6 Let rt be the average real interest rate for year t. We measure rt from Robert Shiller’s
data on ex post returns on financial investments – see Appendix 3. In our theoretical model, the
interest rate should equal the marginal revenue product of Mt less depreciation and obsolescence;
thus, we set

f6t ≡ rt − [(1− τ t) · (α+ β) · Z̄t · [M̃t−1)]α+β−1 · [Lt]
1−α−β −∆t], t = 1953, ..., 1996, (26)

where

∆t ≡
 δ +

·
1−

³
Z0
Z1

´ 1
α+β

¸
t = t1

δ t 6= t1

.

As above, for t > 1996 we employ M∗
t−1 in the place of M̃t−1.

Instruments We estimate our six parameters using a method of moments approach. Nonlinear
least squares would have a consistency problem from the lagged dependent variable in, say, our first
equation if �1t were autocorrelated, and business cycles make autocorrelation plausible. There is
also a potential simultaneity problem from, say, Lt, in equations (19)—(21) – recall Prescott [1986]
and others. Pure calibration would not yield standard errors for parameter estimates, would not

17Smithers and Wright’s data refers only to nonfarm, nonfinancial corporations; they have used historical data
to extend their series back before 1950; and, they have processed their numerator somewhat differently from our
Figure 1. After 1950, their chart displays qualitatively the same pattern as our Figure 1, though their average q∗ is
lower.
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determine parameters simultaneously across our six equations, and presumably would not be able
to employ the details of the shapes in Figure 2.

Our moments are

m(�u) =
1

101− 52 ·
2001X

t=1953



f1t · v1t
6×1

f2t · v2t
6×1

f3t · v3t
1×1

f4t · v4t
1×1

f5t · v5t
1×1

f6t · v6t
6×1


,

where each vit is a vector of instruments. For equations (22)—(24), vector v
i
t has a single element,

always equal to 1. For equations (19), (21) and (26), the vector has the following six elements:

vit =



½
1, t < t1
0, otherwise½
1, t ≥ t1
0, otherwise½
1, t ≤ t0 + 5 or t1 − 5 ≤ t < t1
0, otherwise
1, t ≤ t0 + 5
−1, t1 − 5 ≤ t < t1
0, otherwise½
1, t1 ≤ t ≤ t1 + 6 or t1 ≥ 1989
0, otherwise
1, t1 ≤ t ≤ t1 + 6
−1, t1 ≥ 1989
0, otherwise



.

As stated, there are external reasons for doubting the quality of the net worth data after 1995;
thus, in this section we set v1t and v6t = 0 all t > 1995.

The rationale for the components of vit, i = 1, 2, 6, is as follows. We think of history as having
a panel of episodes [ti, ti+1), i = 0, 1,..., of which we have data on two. Econometrically, we think
of the length of each episode as long. Each episode has a “fixed effect” Zi, and there are extensive
cross—episode parameter constraints. The first two components of vit embody the idea that the
mean of �it, i = 1, 2, 6, should be 0 over [t0, t1) and, separately, over [t1, t2). Beyond this, Section 2
provides a precise model, and we want to enforce consistency between the data and specific patterns
which the model generates. To illustrate, think about the interval [t0, t1) from the graph of Mt in
Figure 2. If data follows the solid curve, the first component of v1t alone would allow a “perfect fit”
from a model generating a horizontal line through the middle of the curve. In contrast, instruments
3—4 and 5—6 require our model to follow the more detailed implications of the figure.

Equations (22)—(24) merely match data with our constant average propensity to save, factor
share of labor, and average rate of depreciation.

Our estimation steps follow Gallant (1987, ch.6). Define

S(�u, V ) ≡ [(101− 52) ·m(�u)]0 V −1 [(101− 52) ·m(�u)] .
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We choose parameter values to minimize S(.). There are two stages. In the first, V has sub matrices

2001X
t=1953

[
−→
vit ][
−→
vit ]

0 ,

for i = 1, ..., 6, along its principal diagonal. Minimizing S(.) with respect to �u yields consistent
estimates. Using these to evaluate each f it , we form an improved estimate bV of V , which is
consistent even with autocorrelated and heteroscedastic errors. Specifically, for each t, form the
vector −→wt ≡ (cf1t · v1t , ...,cf6t · v6t ) where bf it means f it evaluated using first—stage estimates of �u.
Determine a matrix cV0 from cV0 = 2001X

t=1953

[−→wt][
−→wt]

0 ;

a second matrix,cV1, using products [−→wt][
−−→wt−1]0; and a third,dV−1, from [−−→wt+1][

−→wt]
0. Then bV sumscV0,cV1, and dV−1, using Parzen weights. The second stage minimizes S(., bV ), yielding our second—stage

estimator bu.
Parameter Estimates Table 1 presents our preferred parameter estimates. The starting date is
1953; the revolution date, t1, is 1973; and, the ending date is 2001. All coefficients are signifi-
cantly different from 0 at the 5% level. The bottom row shows that a test of the over—identifying
restrictions accepts at the same significance level.

Our estimated average rate of depreciation (inclusive of obsolescence), 7.52% per year, seems
conventional. The combined output elasticity of intangible and physical capital is α + β = .30,
with 95% confidence interval (.26, .34). This lies on the upper edge of the range of conventional
estimates. Since the estimated ratio α/β is about .50, our model implies that the economy’s stock
of intangible capital is half as large as physical capital. As we expect, Table 1 implies Z1 > Z0.
Section 5 discusses various aspects of Table 1’s outcomes in more detail.

Figure 4 presents dynamic simulations forward and backward fromM1972, the level ofM at the
start of 1973. The simulations use the coefficients from Table 1. When computing the ratios for
q∗ = M/K∗ on Figure 4, we do not simulate the value of K∗ since we do not model the process
by which the BEA computes K∗; instead, we use the same denominator, the BEA’s K∗, to obtain
both simulated and empirical q∗. For the years 1953—95, the model seems to track the data quite
well, including replicating the patterns of Figure 1. Section 5 separately considers the time period
1996—2001.

The model does overpredict the drop in M at revolution date t1. The empirical decline in Flow
of Funds net worth from the beginning of 1973 to the start of 1975 is 22 percent of the first figure;
the simulated decline is 55 percent. Data quality may explain part of the difference: although
flow of funds net worth includes both corporate and non corporate businesses, presumably accurate
market valuations exist in the short run only for corporations. Indeed, Hall [2001, fig.13] and Hobijn
and Jovanovic [2001, fig.1], which are both based on corporate shares alone, show net worth drops
in the early 1970s at least as large as our simulation. Long—term debt creates another problem:
account ledgers typically do not make adjustments for capital gains and losses on long—term bonds
stemming from changes in market interest rates. As the simulations show, our model predicts
temporarily higher interest rates following a technology revolution. After t1, rising interest rates
cause capital losses for households on their bond holdings – and empirical M will not capture
these losses. Businesses which had issued the bonds garner corresponding capital gains. The latter
prop up, to some extent, equity valuations, which, at least in the case of corporations, M does
register. This creates another upward bias in measured M in the aftermath of t1.
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Figure 4: Simulation results

Although r, the ex post return on financial investments depends exclusively on corporate se-
curities, the problem with capital gains and losses on debt persists. Nevertheless, our simulation
does quite well: the measured return for 1973—1974 combined is -26 percent; the simulated return
for our model’s abrupt, single—period change in 1973 is -31 percent.

We experimented with different revolution periodicities for equation (25). Setting a period of
25 years (e.g., replacing 1/30 with 1/25 in (25)) produced inferior simulation results; periods of 35
or 40 years, on the other hand, yielded outcomes virtually identical to Table 1.

Our model does not predict revolution date t1 – the latter is exogenous. Table 2 repeats our
method of moment steps for t1 = 1974. Although the parameter estimates are qualitatively similar
to Table 1, corresponding simulations (not shown) are much less satisfactory. In particular, with
the 1974 parameters, by 1953 simulated M under predicts empirical net worth by over two thirds.
(Setting t1 = 1972 also leads to poor simulation results.)

The remainder of this paper uses the parameter estimates of Table 1.

18



5 Results

We turn now to accounting implications of our model. We finish with an assessment of the behavior
of the U.S. stock market in the late 1990s.
GDP bias The U.S. national accounts omit investment in knowledge from the set of final goods.
Thus, our analysis implies that measured GDP is understated. Parameter estimates from Table 1
imply that the bias is rather substantial:

Yt −GDP ∗t
GDP ∗t

=
θ · σ

1− θ · σ ≈ 6.07% .

Measurement of TFP The traditional approach to TFP measurement is to compute the difference

d ln(GDPt)

dt
− γ∗ · d ln(K

∗
t )

dt
− (1− γ∗) · d ln(Lt)

dt
≡ st (27)

where γ∗ is the factor share of capital, and to define “technological progress” as the (Solow) residual
st. Although measured GDPt differs from Yt in not counting business investments in applied
knowledge as final output, if the relative discrepancy is constant, as it is in our model, GDP growth
is still measured correctly. Similarly, although we think that K∗

t omits intangible capital, our
analysis makes physical capital strictly proportional to comprehensive capital Mt.

Nevertheless, according to our model there remain two sources of mismeasurement that will
affect one’s computation of the Solow residual. One is the growth rate of capital stock. Although
in our model obsolescence is uneven, the construction of K∗ assumes the rate of depreciation is
constant. The growth rate in q∗ equals the difference in growth rates of actual and measured
physical capital:

d ln(q∗t )
dt

=
d ln(Kt)

dt
− d ln(K∗

t )

dt
.

This implies that the traditional Solow residual understates (overstates) the rate of output growth
from technological progress when q∗t is falling (rising). A second problem is capital’s share, γ∗ in
(27). If GDP omits investment in applied knowledge as a final good, and if one estimates 1−γ∗ from
wage and salary payments divided by measured GDP, 1−γ∗ will be overstated and γ∗ understated.

In the end, our analysis suggests that (27) may not provide a useful way of thinking about
technological progress. In our model, exogenous technological progress is episodic, abrupt, and
infrequent. The effects of such change appear in national output only after investment in new
physical capital and in applied knowledge, and we need a general equilibrium approach to inter-
pret the manifestations. As a bonus, the equilibrium approach yields a second way of measuring
exogenous improvements in technology – namely, through changes in the market value of existing
capital. The two ways are evident in our equations (21) and (19), respectively.18

Measurement of Depreciation and Embodied Technical Change As stated in Section 4, average
depreciation, δ̄, is the sum of physical wear and tear and economic obsolescence. According to
Table 1, the rate of the former is 5.48% per year, and the latter is 2.04% per year. Equation (24)
in our statistical model relates δ̄ to NIPA measured depreciation. In addition, pricing formula (9)
shows that obsolescence is proportional to embodied technical progress – a link which equation (19)
exploits.19 Gort et al. [1999] employ similar ideas to study structures. They use a vintage capital

18Sakellaris and Wilson (2001) follow an alternative course. Assuming embodied technical progress at a continuous
rate, they use plant—level time series of investment and output to estimate the rate of technological improvement on
equipment of varying vintages.
19Of course, our analysis presupposes that firms do not retire assets which are still productive. In a model where

capital goods have finite economic life spans, depreciation schedules are no longer geometric. See Whelan [2002].
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framework, with continuous technical progress, to derive an analog of equation (17); measure δ̄
with data on building rents by age; derive δ from maintenance expenditures; and then back out a
rate of technical change. Greenwood et al. [1997] use a continuous—time version of (17) to relate
the rate of embodied technical change to the rate of decline in the quality—adjusted price of new
investment goods relative to consumption.20

Rate of return In our framework, since NIPA GDP is understated, measured aggregate factor
payments are too small. If one measures wages and salaries and then computes payments to capital
as a residual, all of the understatement falls on the latter. If we compute the return to capital by
dividing residual payments by the total capital stock, both the numerator, as just discussed, and
the denominator, which omits the stock of knowledge, should be larger.

Letting R be the rental fee on capital in our model, we have

Y = GDP ∗ + IA = R · (K +A) +W · L .

In the national accounts, measured output, GDP ∗, is the sum of payments to capital and labor.
Letting R∗ be the conventionally measured rental fee on physical capital,

GDP ∗ = R∗ ·K +W · L .

Combining the equations,

R∗ ·K +W · L+ IA = R ·K +R ·A+W · L iff

R∗ = R+
R ·A− IA

K

In conventional growth models, the long—run equilibrium condition for an economy not accumulat-
ing capital beyond the so—called “golden rule” level implies

R ·A > IA

(e.g., Abel et al. [1989]).21 Since less than golden rule accumulation is generally taken to be the
empirically relevant case (e.g., Abel et al.), we then expect

R∗ > R .

Our data from Shiller on ex post financial returns from corporate investment shows an average
return for 1953—95 of 10.35 percent. Calculating R∗ for the same years from

(1− τT ) ·GDP ∗T −WT · LT

(1− θ) ·MT
,

where the numerator is our model’s physical capital stock, and then subtracting our Table 1 estimate
of δ̄, the average return is indeed larger, 13.21 percent. (Both rates of return are gross of income
taxes. If we subtract corporate income taxes, Shiller’s return, for instance, drops to 6.77 percent.)
Relative importance of intangible capital How can one measure the stocks of tangible and intan-
gible capital from market data? Our model implies that after a major technological change, the

20 It follows from aggregation results (12) and (14) in Proposition 1 that one unit of capital of vintage 0 is the
equivalent of P0 < 1 units of vintage ι, since both have an equal contribution to output. Then the quality adjusted
price of capital good of vintage i (i.e., the amount of consumption that needs to be sold in order to buy the equivalent
of one unit of, say, K0 or A0) is P0t/Pit. See also Laitner and Stolyarov [2002].
21Note that in our model, A = θ ·M and K = (1− θ) ·M . Hence, R ·A > IA if and only if R ·K > IK .
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market value of existing capital precipitously declines. The obsolescence which leads to the decline
leaves our model’s (quality—adjusted) physical capital stock K below its “book value” – the latter
being, for example, Figure 1’s K∗. Under this interpretation, we can separately determine K and A
from Figure 1 only when the stock market is near its peak, because that is when K∗ approximates
K, so that q∗ ≈ (A+K)/K. Figure 1 then suggests that in the U.S., the stock of applied knowledge
is 30—50 percent as large as the physical capital stock.

Calibrating our model provides another way of assessing the magnitudes of K and A. According
to the model, A/K = α/β. Table 1’s estimate of the ratio α/β is .48 – implying the stock of
intangible capital is 48 percent as large the physical capital stock.22

Valuing markets by “historical standards” Because changes in technology interrupt convergence
to the steady state (see Figure 2), our model predicts that the long—run average value of q∗ always
understates q. This means it may be treacherous to compare the current q∗ to its long—term
average in predicting whether the stock market is likely to rise or fall (see, for instance, Smithers
and Wright [2000]). For example, if a long time has passed since the last major technology change,
stock market values will seem too high by “historical standards.”
Is the stock market overvalued? Many commentators suggest that stock prices rose beyond levels
of “rational” valuation in the late 1990s. The graphs on Figure 4 show our simulations severely
under predict both the level of net worth and rate of return on financial investment after 1995.

We can perform a statistical test of the significance of the discrepancy of data and our model’s
simulation 1996—2001 in the case of M , and 1996—1999 in the case of r. As Section 4 explains,
our basic instruments disregard net worth and rate of return data after 1995, and our calibrations
never use initial—condition values of Mt with t > 1995. We now add one additional element to our
instrument vector for the first equation, v1t , and for the sixth equation, v

6
t . The new element is 1

for t > 1995 and 0 elsewhere. We add a new parameter µM , affecting only our first equation, and
µR, affecting only our sixth equation. Specifically, the new versions of f1t and f6t are

f1∗t ≡
½

f1t − µM t ≥ 1996
f1t otherwise

,

f6∗t ≡
½

f6t − µR t ≥ 1996
f6t otherwise

.

We then reestimate the specification of Table 1 with 8 parameters, the original 6 plus µM and µR.
We continue Section 4’s procedure of always simulating values of Mt, t > 1996, from m(.) with
initial condition M1995. Notice that µM counterbalances the new element for instrument vector v1t :
the new element imposes a new first—moment condition, but the maximization process can adjust
µM to make

1

101− 95 ·
2001X

t=1996

f1∗t · 1 = 0 .

On the other hand, if one were to impose µM = 0, the model would have to fit data 1996—2001
without new help. The same is true for µR.

Table 3 presents the estimates for µM and µR. In each case, the T—statistic is a test of the
hypothesis that the new data points for M and r, respectively, are consistent with the model.
Evidently, the hypothesis is rejected in both cases. A joint Wald test of µM = µR = 0 also strongly
rejects.

Table 4 shows the ratio of actual and simulated (from the parameters of Table 1) values of
net worth. We can see that the actual value exceeded the simulation by 48 percent in 1999.
22The second approach has the advantage of not relying on a constructed time series for K∗.
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The discrepancy was down to 18 percent by 2001. If indeed market values experienced a bubble,
according to our model the necessary correction had run two—thirds of its course by the end of
2001.

In the end, there is an implicit warning in Table 4 as follows: if actualM includes a substantial
noise component, simply replacing a conventional measure of capital (K∗

t here) with, say, (1−θ)·Mt,
is not without peril. This paper advocates utilizing market data – but in combination with external
information.

6 Conclusion

We offer a new model of technological progress and economic growth. The model has three funda-
mental elements. First, inventions that transform production occur sporadically and exogenously.
Second, production requires labor, physical capital, and applied knowledge. Third, a seminal in-
vention gives society a new production function with a higher scaling constant (as in traditional
treatments), but it also requires new inputs – in particular, new physical capital and applied
knowledge.

The first element allows us to incorporate information about seminal inventions from the litera-
ture of economic history. Our focus on episodes, initiated by transforming inventions, immediately
provides a reason for why the measured rate of technological change varies over different time
periods.

The second element makes the stock market value of businesses higher than the value of their
physical capital alone. We attempt to measure the volume of intangible capital, and it appears to
be about 50% as large as physical capital.

The third element means that society can only realize standard of living gains from a seminal
invention after physical and (applied) knowledge investments build a new capital stock embodying
the new ideas. Thus even discontinuous changes in technology will tend to lead to continuous
advances in living standards. To put it differently, while standard neoclassical models assume finite
rates of technological change, our model derives the flow rate of change from an economy’s flow
rate of investment.

We advocate using a market-based measure of national net worth in studying technological
change and growth. Section 5 warns that market valuations can be misleading in some periods.
Nevertheless, we argue that uneven technological advance leads to widely and irregularly spaced
dates at which existing capital depreciates very rapidly due to obsolescence. Traditional measures
of the aggregate capital stock, based on perpetual inventory methods, will miss these dates, but
financial—market valuations almost surely will not. Somewhat surprisingly, in our framework the
advent of a transforming invention will tend to lead to a precipitous stock market decline. Rapid
obsolescence will leave the economy’s capital stock below its steady—state level (though output is,
at first, unaffected). Convergence toward the new steady—state will follow, with the stock market
rising, savers garnering favorable rates of return, and output per person growing. An analyst is
left with two data sources for assessing changes in the economy’s underlying technology: changes
in market valuations of existing capital, and changes in the rate of growth of output.
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Appendix 1: Data
Year Business Fixed Market value Ratio of

Capital and Inventories of businesses Column 2÷Column 1
1953 505.10 445.04 0.88

1954 516.80 507.28 0.98

1955 552.70 569.47 1.03

1956 606.80 622.66 1.03

1957 642.50 613.12 0.95

1958 662.90 719.87 1.09

1959 686.30 765.00 1.11

1960 700.90 793.80 1.13

1961 719.60 907.79 1.26

1962 746.80 913.76 1.22

1963 770.50 975.55 1.27

1964 811.50 1087.03 1.34

1965 871.70 1214.71 1.39

1966 951.70 1197.77 1.26

1967 1022.10 1413.42 1.38

1968 1116.00 1627.46 1.46

1969 1229.00 1557.52 1.27

1970 1336.80 1609.94 1.20

1971 1466.40 1828.84 1.25

1972 1601.30 2171.23 1.36

1973 1823.10 2059.21 1.13

1974 2204.00 1972.42 0.89

1975 2397.40 2269.53 0.95

1976 2623.30 2523.77 0.96

1977 2911.70 2611.47 0.90

1978 3319.50 2906.77 0.88

1979 3847.30 3395.33 0.88

1980 4386.60 4025.26 0.92

1981 4900.70 4189.16 0.85

1982 5154.80 4549.70 0.88

1983 5302.40 4962.73 0.94

1984 5640.10 5156.01 0.91

1985 5912.90 5801.03 0.98

1986 6138.20 6547.70 1.07

1987 6475.00 6942.10 1.07

1988 6903.60 7751.84 1.12

1989 7301.40 8842.95 1.21
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Year Business Fixed Market value Ratio of

Capital and Inventories of businesses Column 2÷Column 1
1990 7677.20 8696.71 1.13

1991 7788.50 9833.48 1.26

1992 8038.80 10255.04 1.28

1993 8409.90 11060.55 1.32

1994 8894.50 11308.31 1.27

1995 9346.60 13592.80 1.45

1996 9778.70 15742.74 1.61

1997 10303.30 19089.90 1.85

1998 10783.40 22015.44 2.04

1999 11410.30 26184.50 2.29

2000 12218.40 25183.08 2.06

2001 NA 23275.62 NA

Table A1: Market Value of Businesses and the Stock of Reproducible Capital (billions US dollars).

Source: Column 1: Herman [2001, tab.1, Nonresidential Private Fixed Assets] plus National Income and Product

Accounts current dollar business inventories. Column 2: U.S. Flow of Funds

(http://www.federalreserve.gov/releases/z1/Current/data.htm) Table L.100, row 1; minus L.100, row 25; minus

L.106, row 15, and L.105, row 18; plus L.105, row 7, and row 10; plus L.108, row 10; minus L.106, row 14, and L108,

row 15; plus L.107, row 1; minus L.107, row 23.

Appendix 2: Proofs

Proof of Proposition 1:
Take any technology j < ι (t) and any date t ≥ tj . The time subscript will be dropped for more

compact notation. Let
Yj = ZjA

α
jK

β
j L

1−α−β
j , all j ≤ ι (t) (28)

The first order conditions for profit maximization read

α
Yι
Aι
= R (29)

β
Yι
Kι

= R (30)

α
Yj
Aj

= PjR (31)

β
Yj
Kj

= PjR (32)

(1− α− β)
Yj
Lj
= (1− α− β)

Yι
Lι
=W (33)

Using the expression for the production function (28), first order condition (33), and from (??)—(32)
the fact that

Aj

Kj
=

Aι

Kι
=

α

β
,
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we obtain the following relationship between the capital labor ratios Kj

Lj
and Kι

Lι
:

1 =
Yj/Lj

Yι/Lι
=

Zj

³
Aj
Kj

´α ³Kj

Lj

´α+β
Zι

³
Aι
Kι

´α ³
Kι
Lι

´α+β = Zj

³
Kj

Lj

´α+β
Zι

³
Kι
Lι

´α+β . (34)

Dividing (32) by (30), and using (33) and (34),

Pj =
Yj/Kj

Yι/Kι
=

Yj/Lj

Yι/Lι

Kι/Lι

Kj/Lj
=

µ
Zj

Zι

¶ 1
α+β

< 1.

This immediately implies
IAjt = 0, I

K
jt = 0 for all j < ι (t)

Since
Aj

Kj
=

α

β

at all times, the laws of motion for capital imply the same ratio for investments

IAj

IKj
=

α

β
.

Therefore, from the market clearing condition,

IAj =

½ α
α+βσY, j = ι

0, j < ι
, IKj =

(
β

α+βσY, j = ι

0, j < ι.

Integrating investment with respect to time yields (10) and (11). This also implies (13).
We now turn to aggregating the output. From (34),

Pj
Kj

Lj
=

Kι

Lι
.

Similarly,

Pj
Aj

Lj
=

Aι

Lι

Therefore,
ιX

j=0

PjKj

L
=

ιX
j=0

PjKj

Lj

Lj

L
=

Kι

Lι

and
ιX

j=0

PjAj

L
=

ιX
j=0

PjAj

Lj

Lj

L
=

Aι

Lι
.

Using (9), (12), (28), and the above expressions,

Y =
ιX

j=0

Yj =
ιX

j=0

ZιP
α+β
j Aα

jK
β
j L

1−α−β
j =

ιX
j=0

Zι

µ
PjAj

Lj

¶αµPjKj

Lj

¶β

Lj
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= Zι

µ
Aι

Lι

¶αµKι

Lι

¶β

L = Zι

 ιX
j=0

PjAj

L

α ιX
j=0

PjKj

L

β

L

= Zι

 ιX
j=0

PjAj

α ιX
j=0

PjKj

β

L1−α−β = ZιA
αKβL1−α−β.

From (31) and (32)

α
ιX

j=0

Yj = R
ιX

j=0

PjAj , β
ιX

j=0

Yj = R
ιX

j=0

PjKj ,

so that
(α+ β)Y = R (A+K) .

Finally, from (33),

(1− α− β) · Y = (1− α− β) ·
ιX

j=0

Yj =W ·
ιX

j=0

Lj =W · L .

Appendix 3: Data Sources for Section 4

This appendix presents the data sources for Section 4’s calculations.
Equation 1. Mt is private, nonresidential net worth from the U.S. Flow of Funds – see Appendix
1 – divided by the NIPA personal consumption chain price index (NIPA table 7.1, row 7). All
NIPA data comes from

http : ///www.bea.doc.gov/bea/dn/nipaweb/SelectedTables.asp

Lt is millions hours worked by full and part—time employees of domestic industries (NIPA table 6.9B
& C, row 2).
Equation 2. GPD* is nominal GDP (NIPA table 1.1, row 1); less housing services (NIPA table
2.2, row 14); divided by personal consumption chain price index (NIPA table 7.1, row 7). See text.
Equation 3. IK is fixed nonresidential investment (NIPA table 1.1, row 8); plus change in private
inventories (NIPA table 1.1, row 12); divided by personal consumption chain price index (NIPA
table 7.1, row 7).
Equation 4. τ∗ is indirect business taxes (NIPA Table 1.9, row 13), divided by final sales to do-
mestic purchasers (NIPA table 1.5, row 6). We use compensation of employees (NIPA table 1.14,
row 2), proprietor’s income (NIPA table 1.14, row 9), and compensation of employees of proprietor-
ships (NIPA table 1.15, row 13). We construct NI∗t from GDP ∗t (see above) less consumption of
nonresidential fixed capital (NIPA table 5.2, row 8), less indirect business taxes (NIPA Table 1.9,
row 13). Then

Wt · Lt

GDP ∗t
=
compensation of employeest − compensation of employees of proprietorshipst
NI∗t − compensation of employees of proprietorshipst − proprietor’s inocmet

· NI∗t
GDP ∗t

Equation 5. D is consumption of nonresidential fixed capital (NIPA table 5.2, row 8), divided by
personal consumption chain price index (NIPA table 7.1, row 7).
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Equation 6. r is as follows. For each t, let d1 be U.S. Flow of Funds

http : //www.federalreserve.gov/releases/z1/Current/data.htm

nonfarm, nonfinancial corporate credit market instruments (L.102, row 21), divided by nonfarm,
nonfinancial corporate market value equity (L.102, row 41). Setting

d2 ≡ d1
d1 + 1

,

d2 is debt as a fraction of debt plus equity. Then at each time t,

r = d2 · interest+ (1− d2) · equity+ (1− d2) · corp. tax− inflation ,

where “interest” is the 6—month nominal interest rate on prime commmercial paper, series 4 from

http : //www.econ.yale.edu/˜shiller/data/chapt26.html

“equity” is percent appreciation in average share price plus dividend divided by share price (series
1—2 same source); “corp tax” is the same dividend, times the NIPA corporate profits tax liability
(NIPA table 1.14, row 23), divided by NIPA aggregate dividends (NIPA table 1.14, row 25); and,
“inflation” is percent rate of inflation for the NIPA personal consumption chain price index (NIPA
table 7.1, row 7).
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Table 1. Method of Moments:

Starting Date 1953; Revolution Date 1973; Ending Date 2001

Stage 1 Stage 2

Parameter Value Value Std. Error T{Stat
Estimated Parameters

± .0393 .0548 .0121 4.5361
® .0418 .0980 .0361 2.7147
¯ .2358 .2025 .0177 11.4720
¾ .1455 .1754 .0210 8.3621
Z0 12.0435 12.1334 .2216 54.7424
Z1 15.7357 16.1431 .3450 46.7916

Calculated Values
± .0599 .0752

1¡ ® ¡ ¯ .7224 .6995
µ .1506 .3261

(Z0=Z1)1=(®+¯) .3817 .3866
Summary Numbers

S(:) .1855 17.9342
years 49 49

Test of Overidentifying Restrictions
p-value Â2(S(:); 15) .7339



Table 2. Method of Moments:

Starting Date 1953; Revolution Date 1974; Ending Date 2001

Stage 1 Stage 2

Parameter Value Value Std. Error T{Stat
Estimated Parameters

± .0623 .0717 .0102 7.0402
® .1152 .1442 .0237 6.0925
¯ .1864 .1754 .0095 18.4826
¾ .1888 .2061 .0160 12.9143
Z0 12.5923 12.1265 .2959 40.9810
Z1 16.4858 15.9759 .4719 33.8538

Calculated Values
± .0820 .0910

1¡ ® ¡ ¯ .6984 .6804
µ .3819 .4512

(Z0=Z1)1=(®+¯) .4093 .4221
Summary Numbers

S(:) .1631 17.1294
years 49 49

Test of Overidentifying Restrictions
p-value Â2(S(:); 15) .6888



Table 3. Method of Moments Estimates of ¹M and ¹R:

Starting Date 1953; Revolution Date 1973; Ending Date 2001

Stage 1 Stage 2

Parameter Value Value Std. Error T{Stat
Estimated Parameters

¹M .2617 .2412 .0454 5.3158
¹R .1044 .0980 .0223 4.6883

Wald Test of ¹M = ¹R = 0
p-value Â2(S(:); 2) 1.0000



Table 4. Actual and Simulated Net Worth

and Rate of Return

Year Actual M/Simulated M Actual r/Simulated r
1996 1.0310 2.2693
1997 1.1840 2.4804
1998 1.3047 2.7404
1999 1.4756 1.3215
2000 1.3391 NA
2001 1.1765 NA


