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Abstract

The central objective of the present author’s research is to develop a system supporting the design of a technological process

(a computer-aided process planning system) that functions similarly to a human expert in the field in question. The use of

neural networks makes the creation of such a system possible. The proposed method uses a system of three blocks of neural

networks, and involves the creation of neural networks to be used for the selection of machines, tools, and machining

parameters. These networks are built for each process operation separately; that is, a set of neural networks is created

for each selection. For the construction of models, different types of neural networks (multilayer networks with error back-

propagation, radial basis function, and Kohonen) with different structures were employed, and the networks that made the

best selections were identified. A method was also developed for the elimination of defects occurring during the production

process. When a defect comes to light, this method suggests changes to the technological process, thus improving the qual-

ity of that process. Guidelines for the elimination of defects are produced in the form of decision rules. Such a computer-

aided process planning system will be especially useful for process engineers who do not yet have sufficient experience in

the design of technological processes, or who have only recently joined a particular manufacturing enterprise and are not

fully familiar with its machines and other means of production (tools and instrumentation). It should be emphasized that

such a system performs an advisory role, and it is always the process engineer who makes the final decision. The neural

network models were tested on real data from an enterprise. A computer-aided process planning system based on rules

and neural network models enables the intelligent design of technological processes.
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1. INTRODUCTION

The technological process in mechanical engineering is a fun-

damental part of the production process that is directly related

to changes in the shape, size, surface quality, and physico-

chemical properties of the workpiece. This definition deter-

mines the function of the technological process, which is to

transform the workpiece from an initial state (semiproduct

or raw material) to the final state (finished product).

The traditional approach to the planning of a technological

process consists of an analysis of the drawing of the part and

of the implementation methods, and of the identification and

comparison of the technologies of parts with similar geomet-

rical elements, and then of the development of the manufac-

turing process. The manufacturing process is most often de-

veloped based on knowledge of technological processes for

similar parts (Feld, 2003). The process then involves a long

design time and a significant amount of routine and time-

consuming work.

Planning of technological processes has lost its traditional

character due to the possibility of using information technol-

ogy in the technological preparation of production. Automa-

tion, typification rules, and group technology also have an im-

pact on the development of methods for the design of

technological processes (Feld, 2003).

Over the years, approaches to the design of technological

processes have changed. The use of databases of ready-

made technological processes (systematic research of previous

solutions, use of alternative solutions from group technology,

use of data for modeling, and simulation of designed pro-

cesses) and the use of computer-aided design, computer-aided

process planning (CAPP), and their integration (through

shared databases and knowledge bases) are now common.

The first artificial intelligence technology used in CAPP

systems included expert systems with a knowledge base in

the form of frameworks, decision rules, and semantic net-

works. Contemporary technologies utilize fuzzy logic, neural

networks, genetic algorithms, and hybrid systems (Han &

Kamber, 2000; Hand et al., 2001; Klosgen & Zytkow,

2002; Larose, 2005; Russell & Norvig, 2009; Tadeusiewicz

et al., 2014). There is a tendency to produce hybrid systems
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that include many combinations of the aforementioned artifi-

cial intelligence methods. Hybrid systems integrate artificial

intelligence methods that have many complementary features

and attributes. Such a hybrid allows the utilization of all the

assets of the individual methods, and so these hybrids provide

the possibility of creating better problem-solving methods.

The use of artificial intelligence in CAPP systems allows

inclusion of the experience of process engineers in the form

of knowledge included in knowledge bases and the making

of inferences during the design process, akin to human rea-

soning.

Combination of artificial intelligence with a CAPP system

results in an intelligent CAPP system. This is also emphasized

in past studies (Koh & Gunasekaran, 2006; Ming et al.,

2008). Integration of artificial intelligence methods can lead

to the creation of better and more accurate methods, which

could be used in this area of expertise. The most important

function of intelligent systems is drawing conclusions. Con-

temporary CAPP is an increasingly used artificial intelligence

method.

The central objective of the present author’s research is to

develop a system supporting the design of a technological

process (a CAPP system) that functions similarly to a human

expert in the field in question. The use of neural networks

makes the creation of such a system possible. Based on tech-

nological processes that have already been developed, it is

possible to teach neural networks to carry out such a design

process. The design of a technological process is a very com-

plex task, requiring a process engineer’s knowledge and ex-

perience. It can be divided into smaller tasks:

† creation of a technological process plan, in which the se-

quence of technological operations is defined; and

† for each operation in the technological process, the ap-

propriate selection of machine, tools, and machining pa-

rameters is defined.

Such a CAPP system will be especially useful for process

engineers who do not yet have sufficient experience in the de-

sign of technological processes, or who have only recently

joined a particular manufacturing enterprise and are not fully

familiar with its machines and other means of production

(tools and instrumentation). It should be emphasized that

such a system performs an advisory role, and it is always

the process engineer who makes the final decision.

2. CAPP OVERVIEW

The planning of technological processes is carried out in dif-

ferent ways. In the traditional approach, the process engineer

designs the technological process manually, without the as-

sistance of a computer. There are also IT systems, including

a technological database, supporting the work of the process

engineer. Azab and ElMaraghy (2007) describe mathematical

modeling for reconfigurable process planning on the back-

ground variant and generative process-planning systems.

Reconfigurable process planning is an important enabler of

changeability for evolving products and systems. The pro-

posed reconfigurable process-planning mathematical scheme

scales better with problem size compared with classical pro-

cess-planning models. Another paper (Lee et al., 2013)

describes the construction of a practical CAPP system for

hole making that satisfies the specific requirements of marine

engine machining. The applied examples (engine block and

cylinder header) described in the article are machined using

the proposed system. The CAPP system consists of a hole

manager, cutting sequence definition, and operation man-

ager, which are derived from a conventional knowledge-

based system.

There also exist solutions using neural networks for the

planning of particular elements included in the technological

process. An example is found in Al-Ghanim’s article (2002),

describing the ART neural network that supports the selec-

tion of machining parameters for a milling process. In another

example (Deb et al., 2006), the selection of machining opera-

tions is assisted by neural networks. Other authors (Joshi

et al., 2008) report setup planning and operation sequencing

using a neural network and genetic algorithm. The operation-

sequencing problem is converted into a traveling salesman

problem in which the objective function is to reduce total

cost. To solve such problems efficiently, a genetic algorithm

technique is more suitable. The work describes results for

prismatic parts. A further article (Rana et al., 2013) presents

an application of a neural network for the fast identification

of optimal or near-optimal operation sequences for rotational

parts. Other authors (Klancnik et al., 2008) describe the use of

a self-organizing map (SOM) neural network for the predic-

tion of a tool-path strategy in milling to obtain the best possi-

ble quality of the machined surface. Another article (Marko-

poulos et al., 2008) describes neural network models created

for the prediction of surface roughness in electrical discharge

machining.

These articles usually describe the application of computer

techniques for solving single tasks, such as the prediction of

surface roughness in electrical discharge machining, or the

selection of machining parameters. Unfortunately, there is a

visible lack of an integrated approach to technological pro-

cess planning as a whole.

The author’s earlier publications also include models of

neural networks for tool selection in process planning (Rojek,

2008, 2010). Those papers present neural networks as models

for classification in intelligent CAPP systems. For the con-

struction of classification models, three types of neural net-

works were used: linear network, multilayer network with er-

ror backpropagation (MLP), and radial basis function

network (RBF). The classification models were compared

for their ability to produce the best classification. Classifica-

tion models were constructed for tool selection for selected

manufacturing operations: turning, milling, and grinding.

The models for milling were presented in detail.

The present work concerns the development of a CAPP

system whose functions include the design of essential
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elements of a technological process, and so it can be said to

describe a method of technological process design in which

neural networks are used in a comprehensive manner.

As well as the method of technological process design, a

case study is presented involving the selection of appropriate

machines, tools, and machining parameters for a milling op-

eration at a real manufacturing enterprise. The goal of the re-

search was to develop the best neural networks for selecting

particular elements of the technological process.

Neural networks are used here for the selection of ma-

chines, tools, and machining parameters, namely, all ele-

ments that are chosen for each technological operation of

the technological process. The set of operations creates a tech-

nological process. For each selection, models are constructed

in the form of MLP, RBF, and Kohonen neural networks for

different processes: milling, grinding, turning, and so on. The

best neural networks were chosen based on the quality of the

selections made.

Amethod was also developed for the elimination of defects

occurring in the course of the manufacturing process. This

method uses decision rules. When such a defect comes to

light, the process engineer can use this method to determine

how to adapt the technological process so that such a defect

does not occur in the future. This method improves the quality

of the technological process.

A support system based on intelligent models makes it pos-

sible to create scenarios for the selection of different compo-

nents for technological operations. The models created are

therefore able to improve the technological processes. The

models were tested on real data from an enterprise.

3. METHODS

3.1. Theories of neural networks

Neural networks are selected as data-mining algorithms.

Neural networks are very good tools for extracting patterns

from databases. This property enables the performance and

automation of tasks hitherto reserved for humans. MLPs are

the most widespread and universal neural networks applied

to solving a variety of problems. In these networks, the selec-

tion of the number of neurons in the input layer is conditioned

by the dimension of the data vector x. The neural model con-

sists of the sum of input signals x1, x2, . . . , xN multiplied by

weight coefficientswi1,wi2, . . . ,wiN and of an additional value

wi0. The output signal of the model is the sum of the elements,

and it is subsequently input into a nonlinear sigmoid activation

function. The error backpropagation algorithm is the basic al-

gorithm for supervised learning by many-layered one-way

neural networks. It depends on a change in the weights of

the input signals of every neuron in every layer so that the value

of the error for the next learning couples contained in the learn-

ing file is minimized. For this purpose, it uses the gradient

method, the fastest drop (Tadeusiewicz et al., 2014).

RBF networks have several advantages compared with

MLP-type networks. They can model any nonlinear function

using their single hidden layer, which eliminates the need to

decide on the number of layers during the design stage. For

this reason, RBF networks can be trained quickly (the differ-

ence in training speed is around an order of magnitude;

Tadeusiewicz et al., 2014).

When calculating the MLP and RBF networks, the transi-

tion (activation) functions used for the neurons in the hidden

layer are optionally hyperbolic tangent, linear, logarithmic,

and exponential, and the functions used for the neurons in

the output layer are hyperbolic tangent, linear, or softmax.

The error functions used in the learning process are, option-

ally, the sum of squares function (SOS) and the cross entropy.

The cross entropy function is given by Eq. (1):

ECE ¼ �
X

N

i¼1

ti ln
� yi

ti

�

, (1)

where N is the number of examples used, yi is the calculated

output value of the neural network, and ti is the real output

value from the data file.

In the learning process ofMLP neural networks, the iterative

Broyden–Fletcher–Goldfarb–Shanno algorithm is used to per-

form the optimization computing (Neural Networks, 2015).

Kohonen networks are among the basic types of self-orga-

nizing nets. Thanks to their capacity for self-organization,

they open up completely new possibilities, one of which is

adaptation to previously unknown input data. SOMs, also re-

ferred to as Kohonen networks, are neural networks that are

associated with coordinates defined on a straight line, in a

plane, or in any n-dimensional space. The learning of this

type of network consists in changing the coordinates of the

neurons so that they strive to reach a pattern that conforms

to the structure of the analyzed data. This means that the net-

works “stretch” around data sets and adapt their structure to

them. Kohonen networks are usually one-way nets in which

each neuron is connected to all components of the N-dimen-

sional input vector x. The weight coefficients of neuron con-

nections create the vectorwi. The input signals are normalized

at the start of the computation; that is, jjxjj ¼ 1. After

stimulation of the network by the input vector x, a kind of

competition occurs between the neurons, the winner ww

fulfilling the condition in Eq. (2):

dðx,wWÞ ¼ minl�i�nd(x,wi), (2)

where d(x, wi) denotes the distance between vector x and vec-

tor wi in Euclidean space.

Each neuron is enclosed within a topological neighbor-

hood G(i, x), and in the classic Kohonen algorithm the func-

tion G(i, x) is defined as follows [Eq. (3)]:

G(i, x) ¼
1 for d(i,w) � R

0 for d(i,w) . R
,

�

(3)

whereR denotes the neighborhood radius.When calculating a

Kohonen network, the radius R approximates to 0.
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Detailed descriptions of neural networks can be found in a

number of publications (Larose, 2006; Haykin, 2008; Russell

& Norvig, 2009; Tadeusiewicz et al., 2014).

The following section describes trials conducted using

models based on MLP, RBF, and Kohonen artificial neural

networks.

3.2. Method of technological process planning using

neural networks

The technological process planning method uses a system of

three blocks of neural networks, and involves the creation of

neural networks for the selection of machines, tools, and ma-

chining parameters. These networks are built for each process

operation separately; that is, for each selection, a set of neural

networks is created. For the construction of models, different

types of neural networks (MLP, RBF, and Kohonen) with dif-

ferent structures were employed, and the networks that pro-

vided the best selections were identified.

A technological process can be defined as a sequence of in-

dividual technological operations; this forms the framework of

the technological process. After defining the framework of the

technological process for each process operation, a proper se-

lection of machines, tools, and machining parameters is

made using a system of three blocks of neural networks.

Following selection of the operational process, information

about the technological operation is transferred to the input of

the block for selection of the machine, tools, and machining

parameters. On the basis of the supplied input parameters, the

first neural network selects the machine and the second neural

network selects the tool. The results of these two networks are

transmitted together with the input parameters to the third

neural network for the selection of machining parameters.

The results of all three neural networks, consisting of the

code of the machine, the code of the tool, and the machining

parameters, are passed to a module that collects information

about the whole technological process. The design of the

technological process is completed when selections have

been made for all of the technological operations in the pro-

cess framework (Fig. 1).

Trials were performed for selected technological opera-

tions. The models for the milling operation will be presented

here in detail. Models were prepared in the form of different

types of neural network: MLP, RBF, and Kohonen networks.

For each type of network, the model parameters were varied

appropriately.

The neural networks were created using Statsoft STATIS-

TICA Data Miner, NeuralSolutions, and the author’s own

software.

4. CASE STUDY

4.1. Description of the Bohamet enterprise

Bohamet is a company offering a wide range of products. The

main areas of its operations are the following:

† production of parts for ships (windows, illuminators,

and wipers),

† production of industrial valves and fittings,

† production of glass,

† processing of metals, and

† products for the mining industry.

In its manufacturing operations, the company uses many

domestic suppliers, as well as contractors from other Euro-

pean countries. The high quality of Bohamet’s products is

confirmed by the numerous certificates of conformity with

standards and quality held by the company and its suppliers.

In order to ensure the highest quality of its products and ser-

vices, the company has obtained an ISO 9001:2000 certifi-

cate.

For the purposes of the present study, the processing of me-

tals at Bohamet was analyzed. Some parts are made as single

elements, while others can be classified as small- or medium-

series production. During the manufacture of its products, ba-

sic technological operations are performed, including cutting,

laser cutting, milling, rolling, grinding, threading, and so on.

(Bohamet, 2015). The developed approach was tested in a

real case scenario.

4.2. Production data

An analysis of the organizational structure of the company

and its production process constitutes the first stage of data

and knowledge acquisition for the intelligent CAPP system.

The method of designing the technological process and the

scope of the information collected also depend on the type of

manufacturing operations undertaken by the company. In this

case, the types of operations are single-item and small-series

production. These two types of manufacturing operations are

characterized by the large number of variants of products

made in small series or even as single elements. Their diver-

sity results in a low level of standardization.

The manufacturing data of the company focuses on three

basic groups of items (orders, products, and means of produc-

tion). The orders item is associated with data on schedules

and quantities of products to be manufactured. The products

item includes all data that describe the products (i.e., struc-

ture, geometry, material, technological data, technological

process, and product lifecycle). The means of production

item is associated with data that describe the company’s man-

ufacturing capacity (i.e., machines, instruments, and tools).

Data concerning orders, products, and means of production

are used when designing the technological process. The pro-

cess engineer uses information containing a large amount of

data, which is constantly modified. Data searching is per-

formed in accordance with specific criteria. Moreover, infor-

mation takes different forms (text and drawings) and is pres-

ent at different locations within the company. As a result,

quick access to accurate and current data is important.

The initial stage of the design of the technological process

after the engineering data is received is the preparation of the
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framework technological process. Next, the framework tech-

nological process is supplemented with additional data on

technological operations. The next stages of designing the

technological process involve the selection of machines,

tools, and processing parameters for specific technological

operations. The last stage is the generation of a technological

process in the form of a process card and instructions for the

machining stations.

Manufacturing knowledge comes frommany sources. Data

from catalogs and databases can be obtained easily. However,

if one wishes to acquire the knowledge, preferences, and ex-

perience of the process engineer, simple information tools are

not enough. It is necessary to create such models and tools

that will enable that knowledge to be contained in a computer

system. For this reason, in the present study, methods of ma-

chine learning (neural networks) were used.

In the past, a process engineer used tool catalogs, often in

paper form. The computer system did not record parameters

such as degree of wear of the machine, which often makes

it necessary to choose other machining parameters than those

indicated by the catalog. Then the process engineer applies

his or her knowledge, experience, and preferences. In tradi-

tional computer systems the preferences and experience of

the process engineer are not taken into account in CAPP.

Fig. 1. Method of technological process planning using neural networks.
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Use of the engineer’s knowledge and experience is made pos-

sible by neural network models.

The content of the learning files for the neural networks

was prepared in consultation with a process engineer.

4.3. Selection criteria

For the purpose of the selection models, the following criteria

were determined:

† criteria for the selection of machines for technological

operations include the following factors: type and scope

of machining, dimensions of the workpiece, accuracy of

machining, production efficiency, anticipated load, and

hourly cost of operation of the machine;

† criteria for the selection of machining tools for techno-

logical operations include the following factors: method

of machining, shape of the machined surfaces, type and

accuracy of machining, production volume, material of

the machined object, and type of machine used; and

† the criteria for selection of the machining parameters are

significantly affected by the following factors: material

of the machined object, material of the tool blade, the

machine used, the type of machining, and requirements

relating to the quality of the surface.

5. RESULTS AND DISCUSSION

5.1. Machine selection

5.1.1. Data preparation

In order to prepare the learning data for neural networks, an

analysis of the machinery used at Bohamet was performed, in

particular in relation to the CNC machines: mills, mill-drills,

grinders, and turning lathes. The machine was selected sepa-

rately for each technological operation.

Based on the machine data and the selection criteria, a learn-

ing file was prepared for the MLP and RBF neural networks.

The following data are supplied at the input of the neural net-

work: type of operation (e.g., rough and finishing); X product

length (mm), Y product width/diameter (mm), Z product

height/diameter (mm), X size of the working space (mm), Y

size of the working space (mm), Z size of the working space

(mm), maximum diameter of tool (mm), length of tool (mm),

cost of operation of the machine (PLN/h), minimum rotational

speed (rpm), maximum rotational speed (rpm), maximum

working range f (mm/min), and machine power (power at the

spindlemotor¼ l kW). Themachine code is obtained at the out-

put of the neural network. In the case of the Kohonen network,

the learning file contained both machine selection parameters

and the machine code as input. Figure 2 shows the inputs and

outputs of neural networks for machine selection. Table 1 con-

tains example data for the selection of a milling machine.

All the cases of machine selection in the database (521 re-

cords) were divided into a learning file (75% of the records), a

test file (15% of the records), and a validation file (10% of the

records). The neural network was taught using the learning

file and tested using the test file; in addition, its operation

was verified using the validation file. The validation file is

used to address the problem of overfitting of neural networks.

5.1.2. Neural networks supporting machine selection

For the MLP and RBF networks, the trials involved the

creation of neural network models with one hidden layer

and with two parameters: the number of neurons in the hidden

Fig. 2. Inputs and output of multilayer network with error backpropagation (MLP) and radial basis function (RBF) neural networks for

machine selection.
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layer and the number of learning epochs. The neurons in the

hidden layer were selected experimentally. In the trial, the pa-

rameter defining the number of neurons in the hidden layer

took values from 5 to 30 (for MLP) and from 10 to 60 (for

RBF), while the second parameter, the number of learning

epochs, took values from 5 to 100.

In the case of the Kohonen network (SOM network), the

topology of the network (5� 6, 10� 10, and 15� 15) and

the number of learning epochs were varied.

Figure 3 shows the parameters of the learning process for

MLP, RBF, and Kohonen neural networks. Among the pa-

rameters for the MLP and RBF networks, a determination

was made of the range of the number of neurons in the hidden

layer, the number of taught and retained neural networks, and

an error function. For the Kohonen network, a determination

was made of the network topology and learning parameters.

In addition, using the example of that network, a learning

and testing graph is shown.

Neural network models were constructed with different

stop conditions for the network learning process. The first

of the conditions was the number of epochs, and the second

was the attainment of a defined error value. Table 2 shows

the epoch number condition (100) and the error value attained

at that number of epochs.

For each condition for the end of the learning process, an er-

ror function (entropy and SOS function) was verified. After the

completion of each trial, tests were performed to provide infor-

mation on incorrectly classified decisions. The quality of a net-

work’s operation and its root mean square (RMS) error were

compared. In classifying networks, quality was calculated as

the ratio of correctly classified cases to all cases in the set.

Table 2 contains a summary of the neural networks for mill-

ing machine selection. For the purpose of learning MLP net-

works, the Broyden–Fletcher–Goldfarb–Shanno algorithm

was used. The RBF networkwas taught using the RBF training

algorithm. The RBF network was taught in two stages. In the

first stage, the radial functions, which use only input variables

from the data, were distributed. In the second stage, theweights

connecting the radial functions with the output neurons were

determined. In the case of the Kohonen network, network

learning was performed using the Kohonen method, which

consists in assigning cluster centers to the radial neuron layer.

The overall evaluation of a network was the classification qual-

ity measure given as a percentage. The table shows the RMS

error in the teaching, testing, and validation phases, as well

as the effectiveness of machine selection expressed in percent-

ages.

When analyzing neural networks (MLP, RBF, and Koho-

nen), one must note that their effectiveness is influenced by

the number of neurons in the hidden layer, the number of

learning cycles, and the error function. In addition, the activa-

tion functions in the hidden and output layers have an impact

in the case of MLP and RBF networks.

An analysis was also made of the outputs of the neural net-

works. Figure 4 shows a summary of the classification of

selections of particular machines. The summary contains

the total number of selections of each machine, the numbers

of cases correctly and incorrectly classified, and the same

numbers expressed as percentages. Following analysis of

the various neural network models, the Kohonen network

model (15-225) was chosen as the most effective for machine

selection (effectiveness 99.96%).

Table 1. Structure of the learning file for neural networks for machine selection (multilayer network with error backpropagation and

radial basis function network)

Example Data

Type of Operation

Neural Network Input Rough Rough Rough Finishing Finishing Finishing

X Product length/diameter (mm) 100 1000 1000 1250 400 750

Y Product width/diameter (mm) 20 200 800 620 250 500

Z Product height/diameter (mm) 30 100 900 560 250 160

X Working space size (mm) 800 3000 1400 1500 800 3000

Y Working space size (mm) 500 2100 1200 820 500 2100

Z Working space size (mm) 500 780 1100 700 500 780

Max. tool diameter (mm) 90 125 130 125 90 125

Tool length (mm) 250 350 400 300 250 350

Cost of operation of machine (PLN/h) 120 250 180 160 120 250

Min. rotational speed (rpm) 50 50 10 50 50 50

Max. rotational speed (rpm) 8000 6000 2000 6000 8000 6000

Max. working range f (mm/min) 10000 7000 2000 7000 10000 7000

Machine power (power at the spindle

motor; kW) 7.5 22 15 15 7.5 22

Neural Network Output

Machine code LG 800 PRO 3210S FEMCO_WBMC-100 HCMC 15/18 LG 800 PRO 3210S
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Fig. 3. Parameters of the learning process for multilayer network with error backpropagation (MLP), radial basis function (RBF), and

Kohonen neural networks.
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The accuracy and the degree of certainty of the neural net-

works were also assessed. Accuracy refers to the operation of

the network on new data, while the degree of certainty indi-

cates the relationship of new input data to a particular class

of patterns. Both parameters depend on the quality of classi-

fication of the neural network. The greater are the accuracy

and degree of certainty, the better is the classification capabil-

ity of the neural network. The same method was used to de-

velop neural network models for the selection of tools and

machining parameters.

Table 2. Parameters of the best multilayer network with error backpropagation (MLP), radial basis function network

(RBF), and self-organizing map network (SOM) for machine selection

Network Name
MLP
14-7-1

MLP
14-28-1

RBF
14-21-1

RBF
14-60-1

SOM
15-30

SOM
15-225

Network effectiveness (%) 72.65 93.41 91.54 97.82 94.11 99.96

Error (learning) 0.2308 0.0824 0.1126 0.0534 0.0507 0.0004

Error (testing) 0.4231 0.0659 0.1027 0.0575 0.0612 0.0002

Error (validation) 0.1667 0.0824 0.0985 0.0564 0.0648 0.0009

Learning algorithm BFGS BFGS RBFT RBFT Kohonen Kohonen

Number of epochs 100 100 100 100 100 100

Error function Entropy Entropy Entropy Entropy Entropy Entropy

Activation function in the

hidden layer

Exponential Tanh Gaussian Gaussian — —

Activation function in the

output layer

Softmax Softmax Softmax Softmax — —

Fig. 4. Summary of classification of machine selection. MLP, multilayer network with error backpropagation; RBF, radial basis function

network; SOM, self-organizing map network.
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5.2. Tool selection

5.2.1. Data preparation

In order to prepare the learning data for neural networks, an

analysis was performed using Bohamet’s tools, which were

divided into drills, milling cutters, lathe tools, and grinding

wheels. The tools were selected separately for each techno-

logical operation.

Based on the tool data and the selection criteria, a learning

file was prepared for the MLP and RBF neural networks for

milling. The following data were supplied at the input of

the neural network: type of operation (e.g., rough, and finish-

ing), type of machined surface (e.g., groove, outline, and sur-

face), type of machined material (e.g., 316L), roughness (e.g.,

20), type of tool (e.g., connected or monolithic), type of mill-

ing cutter mounting (e.g., top-mounted), diameter of milling

cutter (mm), shape of milling cutter (cylindrical), number of

blades (e.g., 10), total length of milling cutter (mm), milling

speed vc (m/min), milling depth ap (mm), feed rate (mm/min),

cost of operation of the tool (PLN/h), and milling width ae
(mm). At the output of the neural network, the milling cutter

code was obtained. In the case of the Kohonen network, the

learning file contained both milling cutter selection parame-

ters and the milling cutter code as input.

All of the cases of tool selection in the database (553 re-

cords) were divided into a learning file (75% of the records),

a test file (15% of the records), and a validation file (10% of

the records). The neural network was taught using the

learning file and tested using the test file; in addition, its op-

eration was verified using the validation file. The validation

file is used to address the problem of overfitting of neural net-

works.

5.2.2. Neural networks supporting tool selection

For MLP and RBF networks, the trials involved the crea-

tion of neural network models with one hidden layer and

with two parameters: the number of neurons in the hidden

layer and the number of learning epochs. The neurons in

the hidden layer were selected experimentally. In the trial,

the parameter defining the number of neurons in the hidden

layer took values from 5 to 30 (for MLP) and from 10 to

60 (for RBF), while the second parameter, the number of

learning epochs, took values from 5 to 100.

In the case of the Kohonen network (SOM network), the to-

pology of the network (5�6, 10�10, 15�15, and 20�20) and

the number of learning epochs were varied.

For each condition for the end of the learning process, an

error function (entropy and SOS function) was verified. After

the completion of each trial, tests were performed to provide

information on incorrectly classified decisions. The quality of

a network’s operation and its RMS error were compared. In

classifying networks, quality was calculated as the ratio of

correctly classified cases to all cases in the set.

Table 3 provides a summary of the neural networks for mil-

ling cutter selection. The overall evaluation of a network was

the classification quality measure given as a percentage. The

table shows the RMS error in the learning, testing, and vali-

dation phases, as well as the effectiveness of tool selection ex-

pressed in percentages. Following analysis of the various

neural network models, Kohonen network model (16-400)

was chosen as the most effective for tool selection (network

effectiveness 100%).

The accuracy and the degree of certainty of the neural net-

works were also assessed. Accuracy refers to the operation of

the network on new data, while the degree of certainty indi-

cates the relationship of new input data to a particular class

of patterns. Both parameters depend on the quality of classi-

fication of the neural network. The greater are the accuracy

and degree of certainty, the better is the classification capabil-

ity of the neural network.

For example, Figure 5 shows the accuracy of MLP net-

works (15-18-1 and 15-26-1). The first network has 15 in-

puts, 18 neurons in the hidden layer and 1 output; the second

has 15 inputs, 26 neurons in the hidden layer and 1 output.

The first network (15-18-1) has a quality classification of

98.33%, and the second network (15-26-1) 92.35%. Hence,

we conclude that there will be differences in accuracy. In

Table 3. Parameters of the best multilayer network with error backpropagation (MLP), radial basis function network (RBF),

and self-organizing map network (SOM) for tool selection

Network Name
MLP

15-18-1
MLP

15-26-1
RBF

15-26-1
RBF

15-58-1
SOM
16-225

SOM
16-400

Network effectiveness (%) 98.33 92.35 94.34 98.85 95.34 100.00

Error (learning) 0.0258 0.0954 0.0782 0.0213 0.0645 0.0000

Error (testing) 0.0000 0.0488 0.0356 0.0081 0.0287 0.0000

Error (validation) 0.0244 0.0854 0.0621 0.0241 0.0512 0.0000

Learning algorithm BFGS BFGS RBFT RBFT Kohonen Kohonen

Number of epochs 100 100 100 100 100 100

Error function Entropy SOS Entropy Entropy Entropy Entropy

Activation function in the

hidden layer

Linear Tanh Gaussian Gaussian — —

Activation function in the

output layer

Softmax Logarithmic Softmax Softmax — —
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the graph below, the accuracy is represented by the value “in-

correct” or “correct.”

In the case of MLP 15-18-1 (the better network), there is

only one tool incorrectly classified, whereas with MLP 15-

26-1 (the inferior network) there are four incorrectly classified

tools for the same number of attempts to enter new data. The

accuracy is greater when the neural network has a higher qual-

ity classification.

An analysis was also made of the output of neural net-

works. Figure 6 shows a summary of the classification of se-

lections of particular tools. The summary includes the total

number of selections of each tool, the numbers of cases clas-

sified as correct and incorrect, and the same numbers ex-

pressed as percentages. In view of the large number of tools,

only a part of the analysis is shown.

5.3. Machining parameter selection

5.3.1. Data preparation

In order to prepare the learning data for the neural networks,

an analysis was performed of the technological processes with

regard to selection of the machining parameters for specific

machines and tools at Bohamet. The machining parameters

were selected separately for each technological operation.

Based on the machining parameter data and the selection

criteria, a learning file was prepared for the MLP and RBF

neural networks. The following data were supplied at the in-

put of the neural network: type of operation (e.g., rough and

finishing), type of machined material (e.g., 316L), selected

tool code, roughness (e.g., 20), machining depth ap (mm), mill-

ingwidth ae (mm), target depth (mm), andmachine code.At the

output of theneural network, a set of parameters tobeconfigured

on the machine was obtained: feed rate (mm/min), machining

speed (m/min), duration of the operation (min), and tool service

life (min). In the case of the Kohonen network, the learning file

contained all of the parameters as input.

All the cases ofmachiningparameter selection in thedatabase

(617 records) were divided into a learning file (75% of the

records), a test file (15% of the records), and a validation file

(10% of the records). The neural network was taught using the

learning file and tested using the test file; in addition, its

operation was verified using the validation file. The validation

file is used to address the problem of overfitting of neural net-

works.

5.3.2. Neural networks supporting machining parameter

selection

For the MLP and RBF networks, the trials involved the

creation of neural network models with one hidden layer

and with two parameters: the number of neurons in the hidden

layer and the number of learning epochs. The neurons in the

hidden layer were selected experimentally. In the trial, the pa-

rameter defining the number of neurons in the hidden layer

took values from 5 to 30 (for MLP) and from 10 to 60 (for

RBF), while the second parameter, the number of learning

epochs, took values from 5 to 100.

In the case of the Kohonen network (SOM network), the to-

pology of the network (5�6, 10�10, 15�15, 20�20, 25�25,

and 30�30) and the number of learning cycles were varied.

For each condition for the end of the learning process, an

error function (entropy and SOS function) was verified. After

the completion of each trial, tests were performed to provide

information on incorrectly classified decisions. The quality of

a network’s operation and its RMS error were compared. In

Fig. 5. Accuracy of multilayer network with error backpropagation neural networks (MLP).
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classifying networks, quality was calculated as the ratio of

correctly classified cases to all cases in the set.

Table 4 shows a summary of the neural networks for mill-

ing parameter selection. The overall evaluation of a network

was the classification quality measure given as a percentage.

The table shows the RMS error in the teaching, testing, and

validation phases, as well as the effectiveness of selection ex-

pressed in percentages.

Following analysis of the various neural networkmodels, the

Kohonen networkmodel (8–900) was chosen as themost effec-

tive for machining parameter selection (effectiveness 100%),

but it required a long learning time and a large number of neu-

Table 4. Parameters of the best multilayer network with error backpropagation (MLP), radial basis function network

(RBF), and self-organizing map network (SOM) for machining parameter selection

Network Name
MLP
8-19-4

MLP
8-21-4

RBF
8-31-4

RBF
8-49-4

SOM
12-625

SOM
12-900

Network effectiveness (%) 94.17 97.77 95.24 98.98 96.55 100.00

Error (learning) 0.0284 0.0086 0.0232 0.0199 0.0352 0.0000

Error (testing) 0.0561 0.0261 0.0456 0.0235 0.0305 0.0000

Error (validation) 0.0904 0.0322 0.0811 0.0278 0.0378 0.0000

Learning algorithm BFGS BFGS RBFT RBFT Kohonen Kohonen

Number of epochs 100 100 100 100 100 100

Error function SOS Entropy Entropy Entropy Entropy Entropy

Activation function in the

hidden layer

Logarithmic Tanh Gaussian Gaussian — —

Activation function in the

output layer

Exponential Softmax Softmax Softmax — —

Fig. 6. Summary of classification of tool selection. MLP, multilayer network with error backpropagation; RBF, radial basis function

network; SOM, self-organizing map network.
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rons to build the neural structure. The accuracy and the degree

of certainty of the neural networks were also assessed.

An analysis was also made of the outputs of the neural net-

works for machining parameter selection. The total effective-

ness of the networks is given in Table 4.

Figure 7 shows the menu of the developed system based on

neural networks for the selection of a milling machine,

milling tool, and machining parameters (a) and the result pro-

duced by the system for the milling operation (b). The system

was created using AITECH SPHINX.

5.4. Advantages and disadvantages of neural

networks

The application of neural networks to the design of a techno-

logical process has both advantages and disadvantages. A

very significant advantage is the ability to acquire the techno-

logical knowledge and experience of process engineers from

technological processes that have already been developed.

This knowledge and experience, contained within a computer

system, enables the design of technological processes by less

experienced engineers, who in this way avoid errors and thus

reduce losses to the enterprise.

A disadvantage of the use of neural networks is the complex-

ity of the CAPP system. Models for the selection of a machine,

tools, andmachining parameters are developed for each techno-

logical operation separately (formilling, grinding, turning, etc.).

Moreover, the learning files for the neural networks contain both

quantitative and qualitative parameters. Qualitative parameters

are also coded as zero-one sequences. For example, if for a

type of operation we have two values, “rough” and “finishing,”

this may be coded as follows:

† a rough operation by the sequence 01 and

† a finishing operation by the sequence 10.

In this case, one nominal value is replaced by two numerical

values. This means that due to qualitative parameters, the num-

ber of inputs and outputs of the neural network is increased. The

actual number of a network’s inputs and outputs depends on the

number of qualitative values considered. The neural networks

also require additional learning periodically as new data are re-

ceived. These data may include newmachines and tools, as well

as additional examples of developed technological processes.

Furthermore, the knowledge contained in the system is spe-

cific to a particular enterprise. This means that such a CAPP

system is a universal tool because the technological process is

designed in a defined way, and the same neural network struc-

tures can be used. In contrast, the neural networks have to go

through a new learning process based on data and examples

for each enterprise.

5.5. Elimination of defects in technological operations

A method was also developed for the elimination of defects

occurring in the course of the manufacturing process. This

method uses decision rules. When such a defect comes to

light, the process engineer can use this method to determine

how to adapt the technological process so that such a defect

does not occur in the future. This method improves the quality

of the technological process. The guidelines for the milling

operation are presented in detail.

An analysis of tool catalogs can provide general guidelines

for the elimination of defects in milling. However, the real

knowledge and experience of a process engineer are very

important here. Based on the engineer’s knowledge, decision

rules to assist the machine operator were prepared.

For example, the improper surface quality defect may be

caused by wear of the cutting edges or by run-out of the mill-

ing cutter. This defect may be eliminated in several ways:

† selecting a harder grade of cutting plates,

† selecting an adhesion-proof grade of cutting plates,

† increasing the cutting speed,

† reducing the movement speed,

† reducing the cutting depth, or

† checking the use of a coolant–lubricant.

Fig. 7. Summary for the milling operation.
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The priority level assigned to these methods of eliminating

defects depends on the experience of the process engineer.

Examples of rules are shown below:

If improper_surface_quality then cutting_edges_are_

worn;

If cutting_edges_are_worn then select_harder_grade_of_

cutting_plates and priority¼ 0.5;

If cutting_edges_are_worn then increase_cutting_speed

and priority¼ 1.

The rules were checked for accuracy in the knowledge

base. Verification and validation of the rules were performed.

Anomalies, such as conflicting, absorbing, repeated, and in-

complete rules, were eliminated.

ACAPP system based on rules and neural network models

enables the intelligent design of a technological process. An

example of the use of rules is shown in Figure 8.

6. CONCLUSIONS

The tests performed in this study have demonstrated the useful-

ness of neural networks and their high effectiveness in support-

ing the design of technological processes. Neural networks,

being very good algorithms for data exploration, have provided

wide opportunities for making use of the data contained in

technological databases. The comparison of MLP, RBF, and

Kohonen networks has resulted in interesting research conclu-

sions.MLP networks are a very good universal tool for solving

complex problems. RBF networks provide results faster. A

comparison of RBF networks with Kohonen networks enabled

verification of the behavior of networks using supervised and

unsupervised learning.Moreover, it was possible to test the be-

havior of those networks when handling a real problem, such

as the design of a technological process.

The outputs of neural network models can serve as sugges-

tions for a process engineer. However, it is the process engineer

who should be responsible for making the final decision.

The use of neural networkmodels to aid process planning has

introduced a new quality to CAPP systems and enables the crea-

tion of a support system that collects knowledge automatically

and has the capacity for adaptation. This is particularly impor-

tant when developing CAPP systems for complex real systems.
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