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Abstract
The process of building a new database relevant to some field of study in biomedicine involves

transforming, integrating and cleansing multiple data sources, as well as adding new material

and annotations. This paper reviews some of the requirements of a general solution to this

data integration problem. Several representative technologies and approaches to data

integration in biomedicine are surveyed. Then some interesting features that separate the

more general data integration technologies from the more specialised ones are highlighted.

REQUIREMENTS OF A
GENERAL INTEGRATION
SYSTEM FOR BIOLOGICAL
DATA
The process of building a new database

relevant to some field of study in

biomedicine involves transforming,

integrating and cleansing multiple data

sources, as well as adding new material

and annotations. The next section reviews

some representative technologies for data

integration in biomedicine. Then some of

the features that distinguish the more

general data integration technologies from

the more specialised ones are highlighted.

Lastly, we compare the surveyed

technologies and comment on selecting

such technologies. For now, let us first

discuss the requirements of a good data

integration system in biomedicine.

In a dynamic heterogeneous

environment such as that of

bioinformatics, many different databases

and software systems are used. A large

proportion of these databases were

designed and built by biologists. When

these databases were first created, the

amount of data was small and it was

important that the database entries were

human readable. Database entries were

therefore often created as flat files. As new

types of data were captured, new

databases were created using a variety of

flat file formats. We ended up with a large

number of different databases in different

formats, typically using non-standard

query softwares, and only accessible to

bioinformatics experts.1

These databases and systems often do

not have anything that can be thought of

as an explicit database schema, which is a

formalised queryable catalogue of all the

tables in the database, the attributes of

each of these tables, and the meaning of

and indices on each of these attributes.

Further compounding the problem is that

research biologists demand flexible access

and queries in ad hoc combinations.

Simple retrieval of data is not sufficient

for modern bioinformatics. The challenge

is how to manipulate the retrieved data

derived from various databases and re-

structure the data in such a way to

investigate specific biomedical problems.2

As observed by Baker and Brass,1 many

existing biology data retrieval systems are

not fully up to the demand of painless and

flexible data integration. These systems

rely on low-level direct manipulation by

the user, where he or she uses a keyword

to extract summary records, then clicks

on each resulting record to view its

contents or to perform operations. This

works well for simple actions. However,

as the number of actions or records

increases, such direct manipulations

rapidly become a repetitive drudgery.

Also when the questions become more

complex and involve many databases,

assembly of the data needed is likely to
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exceed the skill and patience of the

biologist. Merely providing a library

package that interfaces to a large number

of databases and analysis softwares is also

not useful if it requires long-winded and

tedious programming to make use of and

add to the package.

The systems provided by

bioinformaticians in answer to the

challenge above can roughly be divided

into ‘point’ and ‘general’ solutions. A

point solution is a highly specialised

system: the data sources to be considered

are small and fixed; the biomedical

research questions to be addressed are

small and fixed; and the point solution is a

specific software that provides the

expected answers and nothing else.2

Hence, there is little database design and

consideration for extensibility nor for

flexibility. In contrast, a general solution is

not designed with a specific set of

biomedical research questions or with a

specific set of data sources in mind. It

must be designed with extensibility and

flexibility in mind. A general solution can

serve as the platform upon which to

shorten the time needed for constructing

various point solutions, just as a relational

database management system can serve as

the platform upon which to build specific

accounting systems.

A system that aims to be a general

integration mechanism in the

bioinformatics environment described

earlier must satisfy at least the following

four conditions, which were identified

previously by Wong.3

• It must not count on the availability of

schemas. It must be able to compile any

query submitted based solely on the

structure of that query. If it needs a

schema before it can compile a query,

then it would be hard to use for our

purpose because biomedical databases

often do not have usable schemas.

• It must have a data model that the

external database and software systems

can easily translate to, without doing a

lot of type declarations. If it does not

have such a data model, then there

would be a significant impedance in

moving external data into the system,

in moving internal data into external

databases, and in manipulating the data

when they are brought into the system.

• It must shield existing queries from

evolution of the external sources as

much as possible. For example, an extra

field appearing in an external database

table must not necessitate the

recompilation or rewriting of existing

queries over that data source. The

external data sources used by a

bioinformatician are typically owned by

different organisations who have an

autonomous right to evolve their

databases. It is therefore important for a

general data integration solution to be

robust when the data sources evolve.

• It must have a data exchange format that

is straightforward to use, so that it does

not demand too much programming

effort or contortion to capture the

variety of structures of output from

external databases and softwares. The

data exchange format is the standard by

which the system exchange data with

the external data sources. If it is not

straightforward to use, then great effort

would be needed for connecting the

system to the external data sources.

Besides the ability to query, assemble

and transform data from remote

heterogeneous sources, it is also important

to be able to conveniently warehouse the

data locally. The reasons to create local

warehouses are given below, some of

which were identified previously by

Davidson et al.:4

• It increases efficiency. It is clear that we

do not want to be choked by the

slowest external data source nor by

communication latency in the

execution of our queries, especially if

we own a fast computer. Warehousing

gives us as much efficiency as we can

afford to pay for.

A point solution is a
highly specialised
system

A general solution must
be designed with
extensibility and
flexibility in mind

Warehousing increases
efficiency
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• It increases availability. It is clear that

we do not want to be unable to run our

queries at a time we wish because a

needed external source is unavailable.

Warehousing guarantees that the data

we need for our queries are always

available whenever we need them.

• It reduces the risk of unintended ‘denial

of service’ attacks on the original

sources. Some data sources, such as the

Entrez web site at the National Center

for Bioinformatic Information, impose

a strict limit on the number of times or

the amount of data that we can access

within a single day. If we exceed that

limit, then we risk being banned from

the site. Unfortunately, some of our

queries may require very intensive

access to data held in such sites.

Warehousing protects us from this risk

by rendering it unnecessary for us to

access the remote site.

• It allows more careful data cleansing

that cannot be done on the fly. It is

widely acknowledged that many of the

biomedical sources contain a large

number of errors.5 For example,

Schoenbach et al.6 reported that up to

30 per cent of the database records that

they accessed when constructing their

warehouse on swine major

histocompatibility complexes contained

errors. Some of these errors can be

detected and corrected on the fly, but

some cannot. It therefore makes sense

that if our queries are sensitive to

certain errors that cannot be detected

or corrected on the fly, then we should

warehouse the data after careful

cleansing.

Creating warehouses leads to other

requirements on a general data integration

solution. Specifically the general data

integration solution must provide for the

construction of warehouses that have the

following properties. (1) The warehouse

should be efficient to query. (2) The

warehouse should be easy to update.

There are two aspects to this issue of ease

of update. The first aspect is of making an

individual change to the warehouse, such

as modifying an existing record, deleting

an existing record or adding a new

record. This aspect is a fundamental

characteristic of the data integration tools

that are used for maintaining the

warehouse. The second aspect is that of

the number of such individual changes

that need to be made to bring the

warehouse up to date. The second aspect

is more a consideration for the strategy for

maintaining the warehouse and is dictated

by the interval between updates to the

warehouse and the amount of changes

that the underlying data sources can

accumulate during the interval. A data

integration tool that offers greater ease on

the first aspect obviously also allows a

greater range of strategies on the second

aspect. (3) Equally important in the

biology arena is that the warehouse

should model the data in a conceptually

natural form. Although a relational

database system is efficient for querying

and is easy to update, its native data model

of flat tables forces us to fragment our data

unnaturally and unnecessarily in order to

make them fit into the third normal

form.7 For example, a record in the

popular SWISS-PROT database8 would

be fragmented into almost 30 tables in

order to be stored in accordance to the

third normal form. This unnatural

fragmentation brings forth two problems.

First, it increases the mental load of the

programmer and the possibility of

programming errors in answering a query,

because (i) the implementer of a query at

a later date may not be the same person

who did the third normal form

conversion and (ii) the implementer of a

query may not be the biologist who asks

the query. Secondly, it increases the cost

of certain queries significantly. For

example, if the query needs to reconstruct

a large portion of a SWISS-PROT

record, we would be required to perform

10–20 joins on the tables.

It is also important to realise that no

single system is complete for all possible

uses. A data integration system is rightly

Warehousing increases
availability

Warehousing reduces
risk of unintended
‘denial of service’
attacks

Warehousing allows
more careful data
cleansing that cannot be
done on the fly
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focused on (1) reading data from multiple

sources for integration, (2) simple

database-style transformation of data to

facilitate data being passed from one

application to the next, and (3) writing

data to warehouses. There are certain

types of analysis and manipulations of data

that a data integration system is not

expected to perform but is merely

expected to facilitate. These analyses and

manipulations include bioinformatics-

specific operations such as multiple

alignment and visualisation-specific

operations such as displaying data in a

graphical user interface. These operations

are best implemented either in a

specialised scripting language designed for

that purpose or in a full strength common

programming language. In order to

facilitate the programming of these

operations, the general data integration

system must provide a means for these

scripting and programming languages to

interface to it, via a language embedding

or an application programming interface

for these languages.

Lastly, the semantics issue may also be

important.4 This issue concerns the

equivalence and consistency between

parts of records in different data sources,

as well as the mappings between these

parts. A data integration technology that

understands which parts of two data

sources have the same meanings and

should be consistent with each other is

desirable. However, it must be recognised

that the same record in a database can

sometimes be interpreted in different

ways depending upon the purpose and

requirement of the user. Consequently,

this issue is sometimes considered as a part

of building a specific application or

integrated database, as opposed to as a part

of the tools used for building that

integrated database or application.

SOME DATA
INTEGRATION SOLUTIONS
We survey here a few solutions to the

data integration and warehousing problem

in biomedicine. The surveyed solutions

include EnsEMBL,9 GenoMax, SRS,10

DiscoveryLink,11 OPM,12 Kleisli3 and

XML.13,14 These examples are chosen to

span specialised point solutions to

increasingly general solutions. For each of

these systems, we provide an overview

and a discussion of their strong and weak

points.

EnsEMBL
EnsEMBL is a software system jointly

developed by the European

Bioinformatics Institute and the Sanger

Institute.9 It provides easy access to

eukaryotic genomic sequence data. It also

performs automatic prediction of genes in

these sequence data and assembles

supporting annotations for these

predictions. It is not so much an

integration technology, but is an excellent

example of a very successful integration of

data and tools for the highly specific

purpose of genome browsing. EnsEMBL

organises raw sequence data from public

databases into its internal database. It then

assembles these sequences into their

proper place in the genome. After that, it

runs GenScan to predict the location of

genes and applies various analysis

programs to annotate these predicted

genes. Finally, the results of the process

described above are presented for public

access. The main ‘entry points’ to these

results on the EnsEMBL Genome

Browser are by (i) searching by sequence

similarity via the built-in BLAST

component of the EnsEMBL Genome

Browser; (ii) browsing from the

chromosome level all the way down to

the DNA sequence level; (iii) searching

using special EnsEMBL identifiers; and

(iv) free-text matching using annotation

of databases linked to EnsEMBL,

including OMIM, SWISS-PROT and

InterPro. It can also dump its data into

Excel spreadsheets for use by external

data-mining softwares. Alternatively, the

EnsMart data retrieval tool can also be

used to access these results. EnsMart has a

good query builder interface that allows a

user to conveniently specify certain types

of genomic regions and filters on these

results. As a last resort, EnsEMBL

There are certain
analysis and
manipulations of data
that a data integration
system is not expected
to perform but is
merely expected to
facilitate

EnsEMBL is an excellent
example of a very
successful integration of
data and tools for the
highly specific purpose
of genome browsing

EnsMart has a good
query builder interface
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provides a Perl-based programmatic

interface for the most flexible access to its

stored results.

Its strengths lie in its highly tailored

functionalities for genome browsing.

Once the sequences are imported into the

system, assembly and annotation are

automatically performed, and the results

are automatically prepared for browsing in

a nice graphical user interface. Its

weaknesses lie also in its highly tailored

point solution nature. It is not possible to

ask EnsEMBL to perform an ad hoc query

in general, unless that particular type of

query has been anticipated by the designer

of the EnsEMBL and its associated access

tools. For example, while it is possible to

ask a query such as ‘extract 500 bases

flanking the translation initiation site of

each confirmed gene in the database’

using EnsMart, it does not seem possible

to ask a query such as ‘extract the first

exon of each confirmed gene in the

database’ using EnsMart at this moment.

For the latter query, the user can resort to

accessing EnsEMBL and extracting the

required information by Perl

programming. EnsEMBL also does not

have a flexible data model nor exchange

format, other than the structure of its

highly specialised internal database. Thus,

it is not straightforward to add new kinds

of data sources, and it is also not

straightforward to output or export data

from EnsEMBL other than in the fixed

export formats.

The weaknesses mentioned above are

viewed from the perspective of the

requirements of a general data

integration system. However, one has to

remember that EnsEMBL is intended as

a point solution for the specific purpose

of genome browsing. Within the

context of this specific purpose,

EnsEMBL works much better than

virtually any other alternative, as its

design has anticipated the common

queries a biologist may want to ask and

makes it possible to ask them without

requiring the help of a programmer. An

added plus point is that EnsEMBL has

no licence fee.

GenoMax
GenoMax is an enterprise-level

integration of bioinformatics tools and

data sources developed by InforMax.15 It

is a good illustration of an amalgamation

of a few point solutions, including a

sequence analysis module and a gene

expression module, developed on top of

a data warehouse of fixed design.2 The

warehouse is an ORACLE database

designed to hold sequence data, gene

expression data, 3D protein structures

and protein–protein interaction

information. Load routines are built in

for standard data sources such as

GenBank and SWISS-PROT. The

specialised point-solution modules

provide capabilities such as performing

BLAST16 and GenScan17 runs on

sequences and computing differentially

expressed genes from microarray

experiments. A special scripting language

of limited expressive power is also

supported for building analytical

pipelines.

Its strengths are twofold. Firstly, each

of GenoMax’s component point-solution

modules is a very well-designed

application for a specific purpose. For

example, its gene expression module

provides self-organising map clustering,

principal component analysis and so forth

on microarray data via simple-to-use

graphical user interfaces. Secondly, these

components are integrated in a tight way

via the specially designed data warehouse.

Its weakness is its tight point-solution-like

application integration. While GenoMax

has a broader scope than EnsEMBL, it

does cover fewer data types and products

than products such as SRS,

DiscoveryLink and Kleisli. For example,

these latter systems can easily incorporate

chemical assay data that are beyond the

current data warehouse design of

GenoMax. In addition, GenoMax’s

scripting language is not designed for

large-scale database-style manipulations

and hence this type of ad hoc query is not

always straightforward or optimised in

GenoMax. There are also difficulties in

adding new kinds of data sources and

GenoMax is a good
illustration of an
amalgamation of a few
point solutions

GenoMax’s scripting
language is not designed
for large-scale database-
style manipulations
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analysis tools. For example, it is probably

impossible to express in the GenoMax

scripting language the ‘rosetta stone’

method for extracting protein

interactions.18

SRS
SRS10 is marketed by LION Bioscience

and is arguably the most widely used

database query and navigation system for

the Life Science community. It provides

easy-to-use graphical user interface access

to a broad range of scientific databases,

including biological sequences, metabolic

pathways and literature abstracts. SRS

provides some functionalities to search

across public, in-house and in-licensed

databases. In order to add a new data

source into SRS, this data source is

generally required to be available as a flat

file and a description of the schema or

structure of the data source must be

available as an Icarus script, which is the

special built-in wrapper programming

language of SRS. The notable exception

to this flat file requirement on the data

source is when the data source is a

relational database. SRS then indexes this

data source on various fields parsed and

described by the Icarus script. A biologist

then accesses the data by supplying some

keywords and constraints on them in the

SRS Query Language. Then all records

matching those keywords and constraints

are returned. The SRS Query Language is

primarily a navigational language. This

query language has limited data joining

capabilities based on indexed fields and

has limited data restructuring capabilities.

The results are returned as a simple

aggregation of records that matched the

search constraints. In short, in terms of

querying power, SRS is essentially an

information retrieval system. It brings

back records matching specified keywords

and constraints. These records can contain

embedded links that a user can follow

individually to obtain deeper information.

However, it does not offer much help in

organising or transforming the retrieved

results in a way that might be needed for

setting up an analytical pipeline. There is

also a browser-based interface for

formulating SRS queries and viewing

results. In fact, this interface of SRS is

often used by biologists as a unified front

end to independently access multiple data

sources, rather than learning the

idiosyncrasies of the original search

interfaces of these data sources. For this

reason, SRS is sometimes considered2 to

serve ‘more of a user interface integration

role rather than as a true data integration

tool.’

In summary, SRS has two main

strengths. First, it is very straightforward to

add new data sources into the system,

because of the use of the Icarus scripting

language and the simplicity of flat file

indexing. In fact, several hundred data

sources have been incorporated into SRS

to date. Secondly, it has a nice user

interface that greatly simplifies query

formulation, making the system usable by

a biologist without the assistance of a

programmer. In addition, SRS has an

extension known as PRISMA that is

designed for automating the process of

maintaining a SRS warehouse. PRISMA

integrates the tasks of monitoring remote

data sources for new data sets, and

downloading and indexing such data sets.

On the other hand, SRS also has some

weaknesses. Firstly, it is basically a retrieval

system that simply returns entries in a

simple aggregation. If the biologist wishes

to perform further operations or

transformations on the results, they must

do that by hand or write a separate

postprocessing program using some

external scripting languages such as C or

Perl, which is cumbersome. Secondly, its

principally flat-file-based indexing

mechanism rules out the use of certain

remote data sources – in particular, those

that are not relational databases – and does

not provide for straightforward integration

with dynamic analysis tools. However, this

latter shortcoming is mitigated by the

SCOUT suite of applications marketed by

LION Bioscience that are specifically

designed to interact with SRS. It should

also be mentioned that SRS is free for

academic users.

SRS is sometimes
considered to serve
‘more of a user
interface integration
role than as a true data
integration tool’
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DiscoveryLink
DiscoveryLink11 is an IBM product and,

in principle, it goes one step beyond SRS

as a general data integration system for

biomedical data. The first thing that

stands out – when DiscoveryLink is

compared with SRS, EnsEMBL and

GenoMax – is the presence of an explicit

data model. This data model dictates the

way a DiscoveryLink user views the

underlying data, the way he or she views

results, as well as the way he or she

queries the data. The data model is the

relational data model.19 The relational

data model is the de facto data model of

most commercial database management

systems, including IBM’s DB2 database

management system upon which

DiscoveryLink is based. As a result,

DiscoveryLink comes with a high-level

query language, SQL, that is a standard

feature of all such database management

systems. This gives DiscoveryLink several

advantages over SRS. Firstly, not only can

a user easily express SQL queries that go

across multiple data sources – which an

SRS user is able to do – but they can also

perform fruther manipulations on the

results – which an SRS user is unable to

do. Secondly, not only are the SQL

queries more powerful and expressive

than those of SRS, the SQL queries are

also automatically optimised by DB2. The

use of query optimisation allows a user to

concentrate on getting the query right

without worrying about getting it fast.

However, DiscoveryLink still has a

some way to go in practice. The reason is

twofold. The first reason is that

DiscoverLink is tied to the relational data

model. This implies every piece of data

that it handles must be a table of atomic

objects such as strings and numbers.

Unfortunately, most of the data sources in

biology are not that simple and are deeply

nested. Therefore, there is severe

impedance mismatch between these

sources and DiscoveryLink.

Consequently, it is not straightforward to

add new data sources or analysis tools into

the system. For example, to put the

SWISS-PROT database into a relational

database in the third normal form would

require us to break every SWISS-PROT

record into nearly 30 pieces in a

normalisation process! Such a

normalisation process requires a certain

amount of skill. Similarly, to query the

normalised data in DiscoveryLink requires

some mental and performance overhead,

as we need to figure out which part of

SWISS-PROT has gone to which of the

30 pieces and we need to join some of the

pieces back again. The second reason is

the DiscoveryLink supports only wrappers

written in C++, which is not the most

suitable programming language for

writing wrappers. In short, it is difficult to

extend DiscoveryLink with new sources.

In addition, DiscoveryLink does not store

nested objects in a natural way and is

limited in its capability for handling long

documents. It also has limitations as a tool

for creating and managing data

warehouses for biology.

In spite of these weaknesses, in theory,

DiscoveryLink has greater generality than

point solutions such as EnsEMBL,

specialised application integration such as

GenoMax, and user interface integration

solutions such as SRS. Unfortunately, this

greater generality is achieved at the price

of requiring that SQL be used for

expressing queries. While writing queries

in SQL is generally simpler than writing

in Perl, it is probably still beyond the skill

of an average biologist. This is a

disadvantage in comparison with

EnsEMBL, GenoMax and SRS, which

have good user interfaces for a biologist to

build the simpler queries.

OPM
OPM12 was developed at Lawrence-

Berkeley National Labs and is a general

data integration system. OPM was

marketed by Gene Logic, but its sales

were discontinued some time ago. It goes

one step beyond DiscoveryLink in the

sense that it has a more powerful data

model, which is an enriched form of the

entity-relationship data model.20 This data

model can deal with the deeply nested

structure of biomedical data in a natural

The first thing that
stands out is the
presence of an explicit
data model

The use of query
optimisation allows a
user to concentrate on
getting the query right

It is not straightforward
to add new data sources
into DiscoveryLink
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way. Thus it removes the impedance

mismatch. This data model is also

supported by an SQL-like query language

that allows data to be seen in terms of

entities and relationships. Queries across

multiple data sources, as well as

transformation of results, can be easily and

naturally expressed in this query language.

Queries are also optimised. Furthermore,

OPM comes with a number of data

management tools that are useful for

designing an integrated data warehouse

on top of OPM.

However, OPM has several

weaknesses. First, it requires the use of a

global integrated schema. It needs

significant skill and effort to design a

global integrated schema well. If a new

data source is to be added, the effort

needed to re-design the global integrated

schema potentially goes up quadratically

with respect to the number of data sources

already integrated. If an underlying source

evolves, the global integrated schema

tends to be affected and significant re-

design effort is potentially needed.

Therefore, it may be costly to extend

OPM with new sources. Secondly, OPM

stores entities and relationships internally

using a relational database management

system. It achieves this by automatically

converting the entities and relationships

into a set of relational tables in the third

normal form. This conversion process

leads to an entity being broken up into

many pieces when stored. This process is

transparent to the OPM user, so they can

continue to think and query in terms of

entities and relationships. Nevertheless,

the underlying fragmentation often causes

performance problems, as many queries

that required no join – when viewed at

the conceptual level of entities and

relations – are mapped to queries that

required many joins on the physical pieces

that entities are broken into. Thirdly,

OPM does not have a simple format to

exchange data with external systems. At

one stage, it interfaces to external sources

using CORBA. The effort required for

developing CORBA-compliance

wrappers is generally significant.21

Furthermore, CORBA is not designed for

data intensive applications.

Although OPM’s query language is at a

higher level and is simpler to use than the

SQL of DiscoveryLink, it shares the same

disadvantage as DiscoveryLink from the

perspective of an average biologist. The

programming of queries other than the

simplest kind is probably still beyond his

or her expertise.

Kleisli
Kleisli3 is marketed by geneticXchange

Inc. of Menlo Park. It is one of the

earliest systems that have been successfully

applied to some of the earliest data

integration problems in the human

genome project, including the US

Department of Energy’s so-called

‘impossible’ queries in early 1994. The

approach taken by the Kleisli system is

illustrated by Figure 1. It is positioned as a

mediator system encompassing a nested

relational data model, a high-level query

language, and a powerful query optimiser.

It runs on top of a large number of light-

weight wrappers for accessing various data

sources. There are also a number of

application programming interfaces (APIs)

that allow Kleisli to be accessed in an

open database connectivity (ODBC)- or

Java database connectivity (JDBC)-like

fashion in various programming languages

for a various applications. The Kleisli

system is highly extensible. It can be used

to support several different high-level

query languages by replacing its high-

level query language module. Currently,

Kleisli supports a ‘comprehension syntax’-

based language called CPL3 and a ‘nested

relationalised’ version of SQL called

sSQL. The Kleisli system can also be used

to support many different types of

external data sources by adding new

wrappers, which forward Kleisli’s requests

to these sources and translate their replies

into Kleisli’s exchange format. These

wrappers are light weight and new

wrappers are generally easy to develop

and insert into the Kleisli system. The

optimiser of the Kleisli system can also be

customised by different rules and

OPM comes with a
number of data
management tools that
are useful for designing
an integrated data
warehouse

Kleisli is positioned as a
mediator system

New wrappers are
generally easy to
develop and insert into
the Kleisli system
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strategies.3 Besides the ability to query,

assemble and transform data from remote

heterogeneous sources, it is also important

to be able to conveniently warehouse the

data locally. Kleisli does not have its own

native database management system.

Instead, it has the ability to turn many

kinds of database systems into an

updatable store conforming to its nested

relational data model. In particular, Kleisli

can use flat relational database

management systems such as Sybase,

Oracle and MySQL to be its updatable

store. It can even use all of these systems

simultaneously. It is also worth noting

that Kleisli stores nested relations into flat

relational database management systems

using an encoding scheme that does not

require these nested relations to be

fragmented over several tables.

Kleisli possesses the following strengths.

It does not require data schemas to be

available. It has a nested relational data

model and a data exchange format that

external databases and software systems

can easily translate into. It shields existing

queries, via a type inference mechanism,

from certain kinds of structural changes in

the external data sources. Kleisli also has

the ability to store, update and manage

complex nested data. It has a good query

optimiser. Finally, Kleisli is also equipped

with two application programming

interfaces so that it can be accessed in a

JDBC-like manner from Perl and Java.22

However, Kleisli shares a common

weakness with DiscoveryLink and OPM.

Even though CPL and sSQL are both

high-level query languages and protect

the user from many low-level details –

such as communication protocols,

memory management, thread scheduling

and so on – the programming of queries

using CPL or sSQL other than the

simplest kind is probably still beyond the

expertise of an average biologist.

XML
XML (Extensible Markup Language) is a

standard for formatting documents. As

such, it is not a data integration system by

itself. However, there is a growing suite

of tools based on XML that, taken as a

whole, can be used as a data integration

system. We therefore believe it is

pertinent to include a discussion on XML

and its associated tools in the context of

this paper.

Kleisli has the ability to
store, update and
manage complex nested
data

Kleisli has the ability to
turn many kinds of
database systems into
an updatable store
conforming to its nested
relational data model

Figure 1: Kleisli, positioned as a mediator
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XML allows for a hierarchical nesting

of tags and the set of tags can be defined

flexibly. Thus XML can be viewed as a

powerful data model and a useful data

exchange format, providing directly for

two of the important ingredients of a

general data integration solution for

biomedicine. As a result, an increasing

number of tools and sources in

biomedicine such as PIR, Entrez and so

on are becoming XML-compatible.14 The

intense interest in the development of

query languages for semi-structured data13

in the database community has also

resulted in a number of powerful XML

query languages such as XQL23 and

XQuery,24 which provided the means for

querying across multiple data sources and

for transforming the results into a more

suitable form for subsequent analysis steps.

Research and development works are also

in progress on XML query optimisation25

and on XML data stores.26 A robust and

stable XML-based general data integrating

and warehousing system does not yet exist

for biomedicine. However, once high-

performance XML data stores become

available, we can also expect the database

research community to begin more

research and development on data

warehousing using these stores.

Consequently, we believe that given

sufficient time, XML and the growing

suite of XML-based tools can mature into

an alternative data integration system in

biomedicine that is comparable to Kleisli

in generality and sophistication.

HIGHLIGHT OF SELECTED
FEATURES
This section highlights some features that

distinguish the more general data

integration technologies from the more

specialised data integration solutions

surveyed earlier.

Data model and data exchange
format
A key feature that separates the more

general data integration technologies –

DiscoveryLink, OPM, Kleisli – from the

more specialised technologies –

EnsEMBL, GenoMax, SRS – is the

explicit presence of a data model. From

the point of view of the traditional

database world,27 a data model provides

the means for specifying particular data

structures, for constraining the data

associated with these structures, and for

manipulating the data within a database

system. In order to handle data outside

the database system, this traditional

concept of data model is extended to

include a data exchange format, which is a

means for bringing data outside the

database system into it and also for

bringing data inside the database system

outside. We use Kleisli’s data model to

illustrate this concept.

The data model underlying the Kleisli

system is a complex object type system

that goes beyond the ‘sets of records’ or

‘flat relations’ type system of relational

databases.19 It allows arbitrarily nested

records, sets and a few other data types.3

Having such a ‘nested relational’ data

model is useful and matches the structure

of biomedical data sources well. For

example, if we are restricted to the flat

relational data model, the GenPept report

in Example 1 must necessarily be split into

many separate tables in order to be stored

in a relational database without loss. The

resulting multi-table representation of the

GenPept report is conceptually unnatural

and operationally inefficient.

Example 1 The GenPept report is the

format chosen by the US National Center for

Biotechnology Information to present amino

acid sequence information. The feature table is

the part of the GenPept report that documents

the positions and annotations of regions of

special biological interest. The following type

represents the feature table of a GenPept report

from Entrez.28 Here we use { and } brackets

for sets, ( and ) brackets for records, [ and ]

brackets for lists, and #l: to label the field l of a

record. In fact, the same bracketing scheme is

used as the data exchange format of Kleisli.22

(#uid:num, #title:string, #accession:

string, #feature:{(

#name: string, #start:num, #end:num,

#anno:[(

A feature that separates
the more general data
integration technologies
from the more
specialised technologies
is the explicit presence
of a data model
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#anno_name: string,

#descr:string)])})

The feature table of GenPept report 131470,

a tyrosine phosphatase 1C sequence, is shown

partially below.

(#uid:131470, #accession:"131470",

#title:". . . (PTP-1C). . .", #feature:{(

#name:"source", #start:0, #end:594,

#anno:[

(#anno_name:"organism", #descr:"Mus

musculus"),

(#anno_name:"db_xref",

#descr:"taxon:10090")]),

. . .})

The particular feature displayed above goes

from amino acid 0 to amino acid 594, which is

actually the entire sequence, and has two

annotations. The first annotation indicates that

this amino acid sequence is derived from mouse

DNA sequence. The second is a cross-reference

to the US National Center for Biotechnology

Information taxonomy database. h

It is generally easy to develop a wrapper

for a new data source, or modify an

existing one, and insert it into Kleisli. The

main reason is that there is no impedance

mismatch between the data model

supported by Kleisli and the data model

that is necessary to capture the data

source. The wrapper is often a very light-

weight parser that simply parses records in

the data source and prints them out in

Kleisli’s very simple data exchange format.

Example 2 Suppose we want to implement

a function webomim-get-detail that

uses an OMIM identifier to access the OMIM

database and returns a set of objects matching

the identifier. Suppose the ouput is of type

{(#uid: num, #title: string,

#gene_map_locus: {string},

#alternative_titles: {string},

#allelic_variants: {string})}

Note that is this a nested relation: it is a set of

records, and each record has three fields that are

also of set types, viz.

#gene_map_locus,
alternative_titles and

allelic_variants. This type of

output would definitely present a problem if we

had to give it to a system based on the flat

relational model, as we would need to arrange

for the information in these three fields to be

sent into separate tables. Fortunately, such a

nested structure can be mapped directly into

Kleisli’s exchange format. So the wrapper

implementer would only need to parse each

matching OMIM records and to write it out in

a format like this:

{(#uid: 189965,

#title: "CCAAT/ENHANCER-BINDING

PROTEIN, BETA; CEBPB",

#gene_map_locus: {"20q13.1"},

#alternative_titles: {"C/EBP-BETA",

"INTERLEUKIN 6-DEPENDENT DNA-

BINDING PROTEIN; IL6DBP",

"LIVER ACTIVATOR PROTEIN; LAP",

"LIVER-ENRICHED TRANSCRIPTIONAL

ACTIVATOR PROTEIN",

"TRANSCRIPTION FACTOR 5; TCF5"},

#allelic_variants: {})}

Here, instead of needing to create separate

tables to keep the sets nested inside each record,

the wrapper would simply print the appropriate

set brackets { and } to enclose these sets. Kleisli

would automatically deal with them as they

were handed over by the wrapper. This kind of

parsing and printing is extremely easy to

implement. h

OPM shares with Kleisli a nested

relational data model, except that the

former lacks a data exchange format.

Hence the mapping of the examples to

OPM’s data model is conceptually just as

straightforward, but the practical

implementation in OPM demands

considerably more effort. It is worth

pointing out that while SRS does not

have an explicit data model, it does have

an implicit one supported by its Icarus

language for scripting parsers. In the case

of SRS, this implicit data model in Icarus

also greatly facilitates the rapid scripting of

wrappers.

Query capability
Another feature that separates the more

general data integration technologies from

the more specialised ones is the presence

of a flexible high-level query language for

manipulating data conforming to the data

model. We use sSQL, the primary query

This type of output
would definitely present
a problem if we had to
give it to a system based
on the flat relational
model

There is no impedance
mismatch between the
data model supported
by Kleisli and the data
model that is necessary
to capture the data
source

In the case of SRS, this
implicit data model in
Icarus also greatly
facilitates the rapid
scripting of wrappers

Another feature that
separates the more
general data integration
technologies from the
more specialised ones is
the presence of a
flexible high-level query
language
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language of Kleisli, to illustrate this

feature. sSQL is based on the de facto

commercial database query language

SQL, except for extensions made to cater

for the nested relational model and for the

federated heterogeneous data sources.

Example 3 The feature table of a GenBank

report has the type below. The field

#position of a feature entry is a list

indicating the start and stop positions of that

feature. If the feature entry is a CDS, this list

corresponds to the list of exons of the CDS.

The field #anno is a list of annotations

associated with the feature entry.

{(#uid: num, #title: string, #accession:

string, #seq: string, #feature: {(

#name: string,

#position: [(#start: num, #end: num,

#negative: bool, . . .)],

#anno: [(#anno_name: string, #descr:

string)], . . .)}, . . .)}

Given a set DB of feature tables of GenBank

chromosome sequences, we can extract the 500

bases upstream of the translation initiation sites

of all disease genes – in the sense that these

genes have a cross-reference to OMIM – on

the positive strand in DB as below. Here l2s
is a function that converts a list into a set:

select

uid: x.uid,

protein: r.descr,

flank: string-span(x.seq, p.start - 500,

p.start)

from

DB x, x.feature f,

{f.position.list-head} p,

f.anno.l2s a, f.anno.l2s r

where not (p.negative)

and a.descr like "MIM:%" and

a.anno_name ¼ "db_xref"

and r.anno_name ¼ "protein_id"

Similarly, we can extract the first exons of

these same genes as follows:

select

uid: x.uid,

protein: r.descr,

exon1: string-span(x.seq, p.start,

p.end)

from

DB x, x.feature f,

{f.position.list-head} p,

f.anno.l2s a, f.anno.l2s r

where not (p.negative)

and a.descr like "MIM:%" and

a.anno_name ¼ "db_xref"

and r.anno_name ¼ "protein_id"

These two example queries illustrate how a

high-level query language makes it possible to

extract very specific output in a relatively

straightforward manner. h

We illustrate how to combine multiple

sources using high-level query languages.

An in silico discovery kit (ISDK) prescribes

experimental steps carried out in

computers very much like the

experimental protocol carried out in wet

laboratories for specific scientific

investigation. From the perspective of

Kleisli, an ISDK is just a script written in

sSQL and performs a defined information

integration task. It takes an input data set

and parameters from the user, executes

and integrates the necessary

computational steps of database queries

and applications of analysis programs or

algorithms, and outputs a set of results for

specific scientific inquiry.

Example 4 The simple ISDK in Figure 2

demonstrates how to use an available ontology

data source to get around the problem of

inconsistent naming in genes and proteins, and

to integrate information across multiple data

sources. It is implemented in the sSQL script

below. With the user input of a gene name G,

the ISDK performs the following tasks: first, it

retrieves a list of aliases for G from the Gene

Nomenclature database provided by the

Human Genome Organization (HUGO).

Then it retrieves information for diseases

associated with this particular protein in the

Online Mendelian Inheritance of Man

Database (OMIM), and finally it retrieves all

relevant references from MEDLINE. Here,

s21 is a function that converts a set into a list;

list-sum is a function to sum a list of

numbers; ml-get-count-general is

a function that accesses the MEDLINE

database in Bethesda and computes the number

of MEDLINE reports matching a given

keyword; ml-get-abstract-by-uid
is a function that accesses MEDLINE for a

report given a unique identifier; webomim-
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get-id is a function that accesses the

OMIM database in Bethesda to obtain unique

identifiers of OMIM reports matching a

keyword; webomim-get-detail is a

function that accesses OMIM for a report given

a unique identifier; and hugo-get-by-
symbol is a function that accesses the

HUGO database and returns HUGO reports

matching a given gene name.

create function get-info-by-genename (G)

as

Select

hugo: w, omim: y, pmidl-abstract: z,

num-medline-entries: list-sum(lselect

ml-get-count-general (n) from

x.Aliases.s21 n)

from

hugo-get-by-symbol (G) w,

webomim-get-id (searchtime:0,

maxhits:0, searchfields:{},

searchterms:G) x,

webomim-get-detail (x.uid) y,

ml-get-abstract-by-uid(w.PMID1) z

where

x.title like ("%" ^ G ^ "%");

Such queries fulfil many of the requirements for

efficient in silico discovery processes: (1) their

modular nature gives scientists the flexibility to

select and combine specific queries for specific

research projects; (2) they can be executed

automatically by Kleisli in batch mode and can

handle large data volume; (3) their scripts are

reusable to perform repetitive tasks and can be

shared among scientific collaborators; (4) they

form a base set of templates that can be readily

modified and refined to meet different

specifications and to make new queries; and (5)

new databases and new computational tools can

be readily incorporated to existing scripts. h

The flexibility and power shown in

these sSQL examples can also be

experienced in OPM, and to a lesser

extent in DiscoveryLink. With good

planning, a specialised data integration

system can also achieve great flexibility

and power within a narrower context.

For example, the EnsMart tool of

EnsEMBL is a very well-designed

interface that helps a non-programmer

build complex queries in a simple way. In

fact, an equivalent query to the first sSQL

query in Example 3 can also be specified

using EnsMart with a few clicks of the

mouse. Nevertheless, there are some

unanticipated cases that cannot be

Figure 2: An in silico discovery kit that uses an available ontology data source to get around
the problem of inconsistent naming in genes and proteins, and integrates information across
multiple data sources
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expressed, such as the second sSQL query

in Example 3.

Application programming
interfaces
The high-level query languages of the

more general data integration systems

surveyed are all SQL-like and are thus

designed to express traditional (nested

relational) database-style queries. Not

every query in bioinformatics falls into

this class. For these non-database-style

queries, some other programming

languages can sometimes be a more

convenient or more efficient means of

implementation. Therefore, it is useful to

develop some application programming

interfaces to these more general data

integration systems for various popular

programming languages.

In the case of Kleisli, there is the

Pizzkell suite22 of interfaces to the Kleisli

Exchange Format for various popular

programming languages. Each of these

interfaces in the Pizzkell suite is a library

package for parsing data in Kleisli’s

exchange format into an internal object of

the corresponding programming

language. It also serves as a means for

embedding the Kleisli system into that

programming language, so that the full

power of Kleisli is available within that

programming language in a manner

similar to that achieved by JDBC and

ODBC for relational databases. The

Pizzkell suite currently includes CPL2Perl

and CPL2Java, for Perl and Java.

The presence of such application

programming interfaces may be even

more crucial for the more specialised

integration solution. While a point

solution such as EnsEMBL is typically

designed with a specific aim in mind, it is

not unusual to subsequently discover that

a user wants to use the integrated data in

an unanticipated way. In such a situation,

it would be convenient if an application

programming interface is available on the

integrated data. For example, in the case

of EnsEMBL, as EnsEMBL is

implemented in Perl using BioPerl as the

backbone, the same library of routines

that have been accumulated in the course

of implementing EnsEMBL would be the

perfect application programming interface

to EnsEMBL.

CONCLUDING REMARKS
Let us first summarise our opinion on

how well each of the surveyed systems

satisfies the requirements of a general data

integration system for biomedicine.

EnsEMBL and GenoMax are point

solutions and thus naturally do not satisfy

the requirements of a general data

integration system well. SRS and

DiscoveryLink were claimed by their

inventors as general data integration

systems for biomedicine. However, in

reality, SRS is a form of user interface

integration and hence it does not satisfy

the requirements well. On the other

hand, while DiscoveryLink has most of

the components required, these

components come in the wrong flavour –

the adoption of the flat relational model

causes it to be impotent in the biomedical

data integration arena. OPM is a well-

designed system for the purpose of

biomedical data integration, except for (1)

a problem in performance due to data

fragmentation as it unwisely maps all data

to the third normal form, (2) the lack of a

simple data exchange format, and (3) the

need of a global schema. XML and Kleisli

have all the qualities required for good

general data integration. However,

compared with Kleisli, XML still needs

more time to mature, especially in terms

of query optimisation and data

warehousing capabilities.

Let us next look at these surveyed

systems from the perspective of an average

biologist. While general data integration

systems such as DiscoveryLink, OPM and

Kleisli simplify the programming of ad hoc

queries, it must also be acknowledged that

the programming skills required are still

significant. In contrast, data integration

systems that are nearer to the point-

solution end of the spectrum – such as

EnsEMBL, GenoMax and SRS – have

considerably better user interfaces that

help a biologist to build the simpler type

It is useful to develop
some application
programming interfaces
to these more general
data integration
systems

The presence of such
application
programming interfaces
may be even more
crucial for the more
specialised integration
solution
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of queries. Of course, a biologist may find

it frustrating that the graphical user

interfaces of EnsEMBL, GenoMax and

SRS cannot let him or her express a

particular ad hoc query such as the one that

asks for the sequence of the first exon of

all genes in a database. However, it is very

likely that the same biologist may also find

it equally frustrating that they do not

know how to express that query in

DiscoveryLink, OPM and Kleisli, even

though they know that the query is

expressible in these systems. In other

words, the more general data integration

systems can directly increase the

productivity of a bioinformatics

programmer, but they probably cannot

directly increase the productivity of an

average biologist.

Drawing from the remarks above, we

see a dichotomy between expressiveness

and simplicity. Therefore, which type of

data integration system is preferred

necessarily depends on the trade-off

between these two factors. Many

problems in biomedical research on drug

targets and candidates require access to

many data sources that are voluminous,

heterogeneous, complex and

geographically dispersed. If these data

sources are successfully integrated into a

new database, researchers can then

uncover relationships that enable them to

make better decisions on understanding

and selecting targets and leads. Therefore,

a successful integration of data is crucial to

improving productivity in this research.

However, it is important to stress that a

successful data integration must be in

support of a specific research problem,

and different research problems are likely

to need different ways of integrating and

analysing data. Even though a point

solution such as EnsEMBL does not fare

well as a general data integration system, it

works much better than any general data

integration system in the specific context

of genome browsing. However, if one’s

data integration needs are of a more ad hoc

nature, a general data integration system

can often ease the implementation

significantly as such a system provides

greater adaptability. It is also worth

remarking that the more specialised

solutions may themselves be implemented

on top of a more general data integration

solution. One such example is

TAMBIS,29 which is built on top of

Kleisli.

The systems surveyed so far generally

do not consider the semantics aspect of

the underlying data sources. Let us end

this paper with a brief mention of

TAMBIS. TAMBIS29 is a data integration

solution that specifically addresses the

semantics aspect. The central

distinguishing feature of TAMBIS is the

presence of an ontology and a reasoning

system over this ontology. The TAMBIS

ontology contains nearly 2,000 concepts

that describe both molecular biology and

bioinformatics tasks. TAMBIS provides a

user interface for browsing the ontology

and for constructing queries. A query is

formulated by starting from one concept,

browsing the connected concepts and

applicable bioinformatics operations in

the ontology, selecting one such

connected concept or applicable

bioinformatics operation, and browsing

and selecting for further connected

concepts and applicable bioinformatics

operations. The ontology and the

associated reasoning component thereby

guide the formulation of the query,

ensuring that only a query that is logically

meaningful can be formulated. The query

is then translated by TAMBIS and passed

to an underlying Kleisli system for

execution. From the point of view of

TAMBIS, Kleisli significantly simplifies

the task of implementing TAMBIS, as the

TAMBIS implementers can concentrate

on the ontology and reasoning

components and leave the details of

handling the underlying data sources to

Kleisli. From the point of view of Kleisli,

TAMBIS makes it possible for a biologist

to ask more complicated ad hoc queries on

the data sources integrated by Kleisli

without the assistance of a programmer.

The ontology of TAMBIS is currently

being enriched by its inventors in the

University of Manchester to allow an

A biologist may find it
frustrating that the
graphical user
interfaces of EnsEMBL,
GenoMax and SRS
cannot let him or her
express a particular ad
hoc query

The central
distinguishing feature of
TAMBIS is the presence
of an ontology and a
reasoning system over
the ontology

We see a dichotomy
between expressiveness
and simplicity

A successful data
integration must be in
support of a specific
research problem
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even larger range of complicated queries

to be expressed.
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