TECHNOLOGY AND ENTERPRISE DEVELOPMENT

Also by Sanjaya Lall

ALTERNATIVE DEVELOPMENT STRATEGIES IN SUB-SAHARAN AFRICA

(editor with F. Stewart and S. Wangwe)

CURRENT ISSUES IN DEVELOPMENT ECONOMICS (editor with V. N. Balasubramanyam)

DEVELOPING COUNTRIES IN THE INTERNATIONAL ECONOMY

MULTINATIONALS, TECHNOLOGY AND EXPORTS THEORY AND REALITY IN DEVELOPMENT (editor with F. Stewart) THE MULTINATIONAL CORPORATION

Also by Giorgio Barba Navaretti

TRADE POLICY, PRODUCTIVITY AND FOREIGN INVESTMENT: The Textile and Clothing Industry in Europe (with R. Faini and A Silberston)

Also by Simón Teitel

INDUSTRIAL AND TECHNOLOGICAL DEVELOPMENT TRADE, STABILITY, TECHNOLOGY AND EQUITY IN LATIN AMERICA (with M. Syrquin) TOWARDS A NEW DEVELOPMENT STRATEGY FOR LATIN AMERICA

Also by Ganeshan Wignaraja

THE POSTWAR EVOLUTION OF DEVELOPMENT THINKING (with C. Oman)
PARTICIPATORY DEVELOPMENT: Learning from South Asia (with P. Wignaraja, A. Hussain and H. Sethi)

Technology and Enterprise Development

Ghana under Structural Adjustment

Sanjaya Lall

Lecturer in Development Economics University of Oxford

Giorgio Barba Navaretti

Lecturer in Economics University of Milan

Simón Teitel

Research Consultant World Bank Washington, DC

and

Ganeshan Wignaraja

Economist, Magdalen College University of Oxford

© Sanjaya Lall, Giorgio Barba Navaretti, Simón Teitel and Ganeshan Wignaraja 1994

All rights reserved. No reproduction, copy or transmission of this publication may be made without written permission.

No paragraph of this publication may be reproduced, copied or transmitted save with written permission or in accordance with the provisions of the Copyright, Designs and Patents Act 1988, or under the terms of any licence permitting limited copying issued by the Copyright Licensing Agency, 90 Tottenham Court Road, London W1P 9HE.

Any person who does any unauthorised act in relation to this publication may be liable to criminal prosecution and civil claims for damages.

First published in Great Britain 1994 by MACMILLAN PRESS LTD Houndmills, Basingstoke, Hampshire RG21 2XS and London Companies and representatives throughout the world

A catalogue record for this book is available from the British Library.

ISBN 978-0-333-64849-0 ISBN 978-1-349-13925-5 (eBook) DOI 10.1007/978-1-349-13925-5

11 10 9 8 7 6 5 4 3 2 04 03 02 01 00 99 98 97 96 95

Contents

List	t of Tables	viii
List	t of Figures	хi
Pre	Preface	
PA	RT A APPROACH AND BACKGROUND	
1	Introduction and Analytical Approach	3
	Setting the Scene	3
	What are 'Technological Capabilities'?	5
	Functional Categorisation of Technological Capabilities	10
	Determinants of Technology Development	14
2	Background to Technology Development in Ghana	24
	The Historical Setting	24
	Industrial Structure	25
	Recent Manufacturing Performance	29
	Manufactured Exports	30
	Reasons for Poor Performance	33
3	Methodology and Sample Characteristics	46
	Introduction	46
	Methodology	46
	Sample Characteristics: The Technology Case Studies	50
	Sample Characteristics: The Panel	56
4	Technological Characteristics of the Panel Sample	61
	Introduction	61
	Theoretical Framework	61
	Mapping Out Technological Inputs	63
	Technological Clusters and Market Segmentation	84
	Growth and Investments	94
	Conclusions	101
	Technical Appendix	104

vi Contents

PART B PROCESS AND DETERMINANTS OF TECHNOLOGICAL DEVELOPMENT

5	Technological Capabilities: A Summary Evaluation	111
	Introduction	111
	Investment Capabilities	111
	Production Capabilities	123
	Linkage Capabilities	132
	Conclusions	135
6	Technologically 'Competent' Firms	137
	Introduction	137
	List of 'Competent' Firms	137
	Statistically Significant Features	139
7	Human Capital and Technology Development	143
	Introduction	143
	Entrepreneurs	143
	Production Managers	148
	Technical Manpower	152
	Worker Skills	157
	Training, Recruitment and Turnover of Labour	159
	Summary	167
8	Technical Effort	170
	Introduction	170
	Technology Licensing and Technical Assistance	170
	Manpower in QC and Maintenance	172
	Linkages with Technology and Other Institutions	175
9	Incentives and Other Influences on TC Development	178
	Introduction	178
	Incentives	178
	Access to Inputs and Finance	183
	Conclusions	184

~	••
Contents	V11
Comens	V 1 1

PART C POLICY IMPLICATIONS

10 Lesson of the Case Studies	187
Introduction	187
Trade Policy	187
Industrial Policies	190
Human Resource Development	191
Industrial Infrastructure	193
Support Services	193
Conclusions	193
Appendix A: Textiles and Garments	200
Appendix B: Food Processing	208
Appendix C: Wood Working	216
Appendix D: Metal Working	224
Notes	240
References	250
Index	255

List of Tables

1.1	Illustrative matrix of technological capabilities	11
2.1	MVA structure in selected countries by light and heavy	
	industry, 1980 and 1990	26
2.2	Index numbers of manufacturing production (1977=100)	31
2.3	Ownership of Ghanaian enterprises, 1986	35
2.4	Branch distribution of foreign investment approvals in	
	Ghana, 1986-90	36
2.5	Educational attainments in selected African countries	38
2.6	Tertiary level students in technical fields in selected	
	African countries	39
2.7	Pupils enrolled in vocational education in selected	
	African countries	40
2.8	University engineering graduations in Ghana, number	
	and by specialization	41
2.9	R&D expenditures in Ghana, 1975-1987	43
3.1	Background: location, size, age in production, ownership	
	structure and principal products	48
3.2	Market performance: A comparison of the case study	
	firms and the panel data firms by industry	52
3.3	Performance indicators for individual case study firms	54
3.4	Summary characteristics of the 32 case study firms and	
	the 164 panel data firm by industry	57
4.1	Distribution of sample by size and industry	65
1.2	Human capital and technology by size groups:	
	the whole sample	67
1.3	Correlation matrix: technology and size	68
1.4	Description of firms investment decisions: the whole	
	sample	69
1.5	Labour, finance, and product market segmentation:	
	the whole sample	70
1.6	Variables used for the derivation of the clusters	72
1.7	Rotated factor matrix by industry	73
1.8	Major clusters' characteristics: metal working	78
1.9	Major clusters' characteristics: wood working	79
1.10	Major clusters' characteristics: food processing	80
1.11	Major clusters' characteristics: textiles and garments	81

	List of Tables	ix
4.12	Technological clusters and market segmentation: metal working	85
4.13	Technological clusters and market segmentation: wood working	86
4.14	Technological clusters and market segmentation: food processing	87
4.15	Technological clusters and market segmentation: textiles and garments	88
4.16	Technological clusters and market segmentation: metal working	89
4.17	Technological clusters and market segmentation: wood working	90
4.18	Technological clusters and market segmentation: food processing	91
4.19	Technological clusters and market segmentation: textiles and garments	92
4.20	Clusters' long run growth rates: metal working	95
4.21	Clusters' long run growth rates: wood working	96
4.22	Clusters' long run growth rates: food processing	97
4.23	Clusters' long run growth rates: textiles and garments	98
5.1	Investment in plant and equipment	113
5.2	Linkages with science and technology institutions	134
6.1	Technologically competent firms in sample	138
6.2	T-test to compare means of technologically competent	
	firms and other firms	140
7.1	Background of entrepreneur	144
7.2	Characteristics of entrepreneurs of technologically	
	capable African firms	147
7.3	Background of production manager	150
7.4	Technical manpower indicators and wages	153
7.5	Personnel sent on external training and labour turnover	
	rates	161
7.6	Traditional apprenticeship system	162
8.1	Technological indicators	171
8.2	Full-time personnel in quality control and maintenance	173
8.3	Full-time personnel in quality control and personnel	
	sent on external training in firms in Sri Lanka	174
9.1	Entrepreneur's perceptions of the degree of competition	- • •
	faced since 1986 from local producers and imports	181
A .1	Characteristics of textile and garments enterprises by	
	employment size (1087)	201

B.1	Characteristics of food processing industry by	
	employment size (1987)	209
C.1	Characteristics of furniture enterprises by employment	
	size (1987)	217
D.1	Distribution of metal working firms by activity and	
	employment size (1987)	225

List of Figures

2.1	Manufactured exports, US\$m. (1986–1991)	32
4.1	Structural cluster in metal working	75
4.2	Structural cluster in wood working	76
4.3	Structural cluster in food processing	76
4.4	Structural cluster in textiles and garments	77
4.5	Rotated factor matrix: metal working	99
4.6	Rotated factor matrix: wood working	100
4.7	Rotated factor matrix: food processing	100
4.8	Rotated factor matrix: textiles and garments	101
4.9	Metal working: plot of components	102
4.10	Wood working: plot of components	103

Preface

Technology is one of the primary determinants of the competitiveness of manufacturing firms. This is well understood in industrialised economies, where technological effort, generally in the form of developing new process or product know-how, is taken to be a vital basis of market success. In less industrialised countries, however, the significance of technological effort is generally less well appreciated. Since practically all the technologies in use are imported from the developed countries, and their application is known and understood, it is widely believed that developing country firms need to invest little on their own in technological effort. As passive recipients of technology, they only have to choose techniques that are appropriate to their factor endowments. It is assumed that thereafter they can use the technologies efficiently.

A body of recent research on technological capabilities in developing countries has shown that the process by which firms become technically proficient is far more complex and demanding. The selection, assimilation and effective deployment of technologies cannot be a passive process. The search for suitable technologies in imperfect markets for knowledge is difficult. The use of the technologies that are imported requires firms to seek new information, skills, material inputs and investment resources, the markets for which are prone to a range of imperfections in developing countries. Some firms are better equipped to undertake these efforts than others, and the degree of market failure varies by country and over time. Government policies and interventions may add to market failures or help remedy them. The nature of factor and product market imperfections and government interventions interact with the firm's own skills and entrepreneurship to determine how competitive it can become.

Research on technological capabilities has been confined to the relatively industrialised developing countries of Asia and Latin America. Practically no detailed research has been conducted on the process of technological development in the least industrialised countries of Sub-Saharan Africa. Yet the process of industrialisation there is just as complex and demanding as in other regions – perhaps even more so, because though the technologies used are simpler the market failures that confront firms can be greater. African countries have invested

Preface xiii

considerable resources in their industrial sectors, and have looked to manufacturing as the main vehicle of structural transformation and reduction of dependence on primary product exports. In general, these investments have produced far poorer results than in other developing regions.

Many African countries are now launching sweeping structural adjustment programmes. They are liberalising trade and exposing their industrial firms to the rigours of import competition. Are their firms technologically equipped to deal with such exposure? If not, can they incorporate and deploy new technologies at a rapid enough pace to expand industrial output and exports? If many protected activities are basically inefficient and die out, can new dynamic industrial firms emerge in the liberal setting to compete internationally? Are these countries, in sum, set to become 'newly industrialising economies' in the East Asian mould by structural adjustment and the removal of past interventions with market forces? These are questions of vital policy interest, to which existing knowledge on industry and technology in Africa offers scant answer.

This book is the first detailed attempt to assess technological capabilities in an African country. It is a study of a sample of manufacturing enterprises in Ghana, a country undergoing structural adjustment since the mid-1980s. It refines and applies the methodology used in past analyses of technological capabilities in developing countries. Its findings cast fresh light on the problems of industrial development in Africa and on the effects of rapid liberalisation programmes. The policy conclusions drawn are of relevance to other countries at early stages of industrial development.

This study was part of the World Bank's Regional Programme for Enterprise Development (RPED), which was intended to analyse the dynamics of enterprise growth in several countries in Sub-Saharan Africa. Ghana is the first country to be studied in this programme. Apart from this study of technology, there were several modules dealing with different aspects of enterprise development: finance, labour markets, business strategy and regulations. This study does not, therefore, attempt to address the issues covered by these other modules. Its focus is deliberately on technology, but there is no implication that technology is the only, or the main, determinant of enterprise development.

A large study like this one, which is part of an even larger project, accumulates many debts which are difficult to acknowledge properly. We are very grateful to the World Bank's RPED for asking us to conduct this research and allowing us to publish the findings. The interpretation

xiv Preface

and analysis is that of the authors alone and the Bank bears no responsibility for them. The constant support, advice and comments of Tyler Biggs, RPED's manager, were invaluable for the study. Melanie Mbuyi managed the difficult task of administering the project in the World Bank.

The study of Ghana was sponsored by the United Kingdom's Overseas Development Administration (ODA). In addition, a significant part of the financing of the technology module was provided by the Directorate General for Development Cooperation of the Italian Ministry of Foreign Affairs. We are very grateful to the ODA and the Italian Foreign Ministry for their backing.

Part of the study was based at the Oxford University Institute of Economics and Statistics, with administrative support from Gillian Coates. Part was based at the Centro Studi Luca d'Agliano in Turin, with statistical advice provided by Paolo Giudici and research assistance by Daniele Coen Pirani. Logistical support was also given by the Fondazione Eni Enrico Mattei in Milan.

The field work in Ghana was greatly facilitated by the help given by Seth Adoo and K. A. Nuhu of the Ministry of Industry, who advised us on which firms to see and arranged for our interviews. We shared some of the data collected for a larger panel study by a team from the Oxford Centre for the Study of African Economies and the University of Ghana (Legon), which conducted the panel survey and is in charge of its analysis for the RPED. To all the members of this team, and particularly Francis Teal and Tracy Jones, our thanks for their help and cooperation in the field and for making available the panel data in Oxford.

The enterprises in Ghana that gave generously of their time and information are too numerous to mention individually; and in any case the confidentiality we promised them precludes this. However, we are greatly in their debt.

Finally, to our families and friends who supported us in this work, and bore patiently with our absence and our distraction, warm thanks.

SANJAYA LALL GIORGIO BARBA NAVARETTI SIMÓN TEITEL GANESHAN WIGNARAJA