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Abstract 
 
This paper examines the relationships between technology, capital spending, and capacity 
utilization. Recent technological changes have increased the flexibility of relationships 
between inputs and outputs in manufacturing, which may have eroded the predictive value 
of the utilization rate. This paper considers how technology might be expected to affect 
utilization. We show that recent changes could either lower average utilization by making it 
cheaper to hold excess capacity, or raise utilization by making further changes in capacity less 
costly and time-consuming. We then examine the effects of technology on utilization, using 
data on 111 manufacturing industries from 1974 to 2000. The results suggest that, for the 
average industry, the technological change of that period had a modest but appreciable 
effect, shaving between 0.2 percentage point and 2.3 percentage points off the utilization 
rate.   
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Introduction 
 

Capacity utilization is a variable of longstanding macroeconomic interest. Many studies 

have found it to be a valuable indicator of inflationary pressure. For example, Cecchetti 

(1995) finds that capacity utilization works as well as or better than other variables in 

predicting inflation over the next year or two. Similarly, in models of the level of 

resource utilization above which inflation accelerates, the utilization rate does as well as, 

and sometimes better than, the unemployment rate in predicting this level.1 This 

predictive value may reflect capacity utilization’s ability to do “double-duty,” picking up 

the extent of slack in both labor and product markets (Corrado and Mattey 1997).  

 

However, in recent years, the capacity utilization and unemployment rates have at times 

provided different signals about the degree of tightness in resource markets. Notably, in 

the late 1990s, the decline in the unemployment rate below 4 percent suggested a 

relatively tight labor market, but the capacity utilization rate remained unexpectedly flat 

(figure 1). Part of this divergence may be due to effects of technology on capacity 

utilization, as the 1990s saw both an investment boom that broadly increased 

manufacturing capacity and a shift in the composition of capacity toward high-tech 

machinery and equipment. In the 1940s and 1950s, manufacturing methods typically 

involved assembly-line production with large-scale, fixed units of machinery and 

equipment. Relationships between inputs and outputs were relatively fixed, and 

adjustments in capacity were both costly and slow. Modern manufacturing methods, 

however, build considerable flexibility into the management of capacity. Technologies 

like numerically-controlled machines, programmable controllers, and modular assembly 

make it easier to adjust the level and composition of output. At the same time, the use of 

automated design and modular tooling lowers the cost and time needed to expand 

capacity. While the use of advanced technologies is far from universal, it is increasingly 

widespread. For example, about three-quarters of plants in equipment-producing 

                                                 
1 See McElhattan (1978), Corrado and Mattey (1997), and Brayton, Roberts and Williams (1999).  
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industries used at least one advanced technology in 1993; about 30 percent used five or 

more.2 With the investment boom that took place in the second part of the 1990s, these 

shares are likely higher now.  

 

Conceptually, how these advances in technology would affect capacity utilization is not 

clear a priori. On one hand, flexible manufacturing makes it easier to ramp production up 

and down. This may encourage firms to install a broader margin of excess capacity – that 

is, to operate at lower average utilization – in order to be able to handle upswings in 

demand. Such a strategy would be favored by declining prices of high-tech capital, which 

make excess capacity cheap. On the other hand, automated design and modular tooling 

make it faster and cheaper to for firms to expand capacity. This may permit them to 

reduce the amount of excess capacity they maintain, and to operate at higher utilization 

on average. With these two offsetting forces at work, determining how advances in 

technology affect capacity utilization is ultimately an empirical question.  

 

This paper investigates the relationship between capacity utilization and high-tech 

investment. The next section discusses conceptual considerations in the relationship 

between technological change, capital spending, and capacity utilization. We show how 

technological change may lead either to lower average utilization by making it cheaper to 

hold excess capacity, or to higher utilization by making further changes in capacity less 

costly and time-consuming. The third section discusses the data and specification used 

for our study. The extent of investment in high-tech machinery and equipment has varied 

importantly across industries and over time. Thus, we use data on 111 manufacturing 

industries from 1974 to 2000 and panel data techniques to investigate effects of 

technology on utilization. We find significant negative effects of technological change on 

utilization, controlling for output growth, investment level, and other factors. Our 

estimates suggest that, ceteris paribus, for the average industry, the technological change 

of the past 25 years would shave between 0.2 percentage point and 2.3 percentage points 

                                                 
2 U.S. Census Bureau (1994). ‘Advanced technologies’ included numerically-controlled machines, 
computer-aided design or engineering technologies, programmable controllers, local area networks, 
robotics, and other advanced methods.  
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off the utilization rate by the time the effects are fully realized. The final section of the 

paper discusses implications and concludes.   

 

Conceptual framework 

 

Recent research on resource utilization emphasizes the levels of capital and labor used in 

production, relative to their total stocks, rather than the level of output relative to its 

potential (see, for example, Basu, Fernald and Shapiro 2001). This emphasis is clearly 

important for understanding factor productivities and how they may change over time. 

However, as Corrado and Mattey (1997) and Gordon (1998) have explained, the broader 

notion of capacity utilization remains an important alternative indicator of conditions in 

resource markets, gauging the extent to which firms could meet an increase in demand 

without additional capital investment.  

 

Existing theoretical and empirical work has tended to view capacity utilization and 

capital investment decisions as independent, with utilization decisions made in the short-

run, and capital investment decisions made in the long-run. In practice, it is unclear that 

these decisions are so independent: In response to all but the most transitory demand or 

cost shocks, firms may change their utilization of existing capacity, change the level of 

capacity using existing technology, or change capacity and technology at the same time. 

Especially in an era when new vintages of capital equipment offer opportunities for 

significant efficiency gains, these interrelations between capacity, capital investment, and 

technological change may be particularly important. 

 

To begin to think about relationships between technology and capacity utilization, it is 

helpful to sketch out a simple conceptual framework. The discussion that follows is 

largely intuitive; we hope to develop this framework in our future work. Suppose that 

firms have a certain amount of capacity in place initially. They receive information about 

demand at the outset of the current period; this information may also modify their 

expectations of future demand. Firms may then either: (a) change output without 

changing capacity, (b) change output and change capacity, using existing technology; or 
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(c) change output and change capacity, using new technology. Which strategy is chosen 

depends on expected profitability. We can broadly sketch out the factors affecting the 

choice of strategy. 

 

• Changing output without changing capacity enables firms to respond quickly to 

changes in demand, and does not involve costs of installing new capacity or 

reducing its excess. However, running at a high rate of utilization persistently may 

raise unit costs, and running at a low rate persistently is wasteful. When firms use 

this strategy to respond to demand shocks, utilization will fluctuate closely with 

demand.  

 

• Changing output and changing capacity using existing technology involves fixed 

costs of adjusting capacity and a lag till capacity reaches its new level; adjusting 

capacity may also divert resources from productive use in the short-run.3 

However, this strategy permits a higher level of output to be sustained without 

rising costs. Use of this strategy in response to a demand shock will set off a 

dynamic adjustment of utilization: for example, if a permanent increase in 

demand is accommodated by increasing capacity, the utilization rate may hold 

steady or rise initially, fall when new capacity comes online, then return to its 

previous average rate when adjustment is complete.  

 

• Changing output and changing capacity using new technology resembles the 

previous strategy, but involves a change in technique. As above, this strategy 

involves fixed costs, a lag till new capacity comes on line, and lost output in the 

short-run; however, the levels of costs and length of lag may be different. Also as 

above, this strategy permits a higher level of output without rising costs. 

However, the new technology may provide an opportunity to reduce unit costs, 

making profitability higher than it would be with the old technique once new 

capacity is online. Again, use of this strategy in response to a demand shock may 

                                                 
3 For example, see Cooper, Haltiwanger, and Power (1999). In terms of downward adjustments, Ramey and 
Shapiro (2001) document important costs of disposing of redundant capital in the aerospace industry.  
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set off a dynamic adjustment process. But here the utilization rate may not return 

to its previous average. Depending on capital costs and properties of the new 

technology, firms may want to hold more excess capacity than they did before if 

doing so is cheap; alternatively, they may want to hold less excess capacity on 

average if the new technology makes further changes in capacity less costly and 

time-consuming.  

 

These considerations point to several factors that would lead one strategy to be favored 

over the others. First, the persistence of the demand shock obviously matters: if upfront 

costs of adjusting capacity are appreciable, a firm would handle temporary changes in 

demand by increasing utilization, and permanent changes by adjusting the capacity level. 

Second, the extent to which capacity changes are favored over changes in utilization 

depends on the costs involved. Notably, capacity changes are more likely to be 

undertaken when: the loss in output from diverting productive resources is small, the lag 

till new capacity comes online is short, and/or the costs of installing new capacity are 

cheap [or cost savings from reducing capacity are large]. Third, the decision to adjust 

capacity with existing methods, as opposed to with new technology, depends on how the 

costs and lags of implementing each strategy compare, and on differences in operating 

cost once new capacity comes online.  

 

One can suggest several ways in which recent technological changes may have affected 

the relative returns to these strategies. First, automated design and modular tooling have 

reduced fixed costs of expanding capacity and have shortened lags till new capacity can 

be brought on line. This may generally raise the relative attractiveness of capacity 

adjustments over changes in utilization. Second, declining prices of capital goods also 

improve the profitability of capacity expansion over changes in utilization by making 

additions to capacity cheaper. Third, prices of capital goods embodying new technology 

have fallen disproportionately. This would particularly favor capacity changes with a 
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shift in technique. And finally, new technologies provide opportunities to lower unit costs 

significantly, again favoring capacity changes with a shift in technique.4

 

The high level of investment in the 1990s, especially in high-tech machinery and 

equipment, is consistent with an increase in the relative attractiveness of expanding 

capacity and changing technology, in response to strong demand. Even so, the 

implications of this shift for capacity utilization are less clear. As mentioned, new 

technologies may make it easier to ramp production up and down. Combined with falling 

prices of high-tech equipment, this may encourage firms to install a broader margin of 

excess capacity -- operating at lower average utilization – to be able to handle upswings 

in demand. But because automated design and modular units make capacity expansion 

faster and cheaper, firms may prefer to operate at higher average utilization, expecting to 

be able to boost capacity should demand turn out to be strong. With these two offsetting 

forces at work, determining how advances in technology affect capacity utilization is 

ultimately an empirical question. Yet as the above analysis indicates, detecting effects of 

technology may not be straightforward, partly because capital spending, utilization, and 

technology are related in complex ways, and partly because effects of technology on 

utilization may be different in the short-run than they are in the long-run. 

 

Data and specification
 

While many micro studies have examined how new technologies affect productivity,5 

there has been little direct investigation of effects of flexible manufacturing on capacity 

utilization. This in part reflects data availability. Micro data on capacity and its utilization 

are collected in the Survey of Plant Capacity (SPC), which is conducted annually by the 

U.S. Census Bureau.6 However, the SPC collects only a few variables needed to estimate 

capacity utilization, and has no information on capital spending or technology.7 Capacity 

                                                 
4 It can be noted that firms also cite greater volatility in demand as a reason for adopting flexible methods, 
with increased global competition and downstream adoption of just-in-time methods said to be responsible. 
See for example Abernathy et al (1999) and Dunlop and Weil (1996). 
5 See, for example, Berndt and Morrison (1995) and Ichniowski and Shaw (1995).  
6 See U.S. Census Bureau (2001) for a description of the survey.   
7 For years before 1995, data from the SPC can be linked to the more detailed information contained in the 
Annual Survey of Manufactures.    
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data are available for the auto industry, and have been analyzed by Van Biesebroeck 

(2000). He finds that auto-assembly plants using lean manufacturing methods have lower 

fixed and variable costs of adding shifts, compared to plants using traditional methods. 

This is consistent with the idea that costs of adjusting output are lower under new 

technologies.  

 

To explore relationships between capacity utilization and technology, we make use of 

variation across industries and over time in adoption of new technologies. Although we 

think of high-tech investment as having picked up appreciably in the 1990s, some 

technologies like microcomputers and programmable automation have been gaining in 

use since the 1970s.8 Certain industries began investing in high-tech machinery and 

equipment early on; others have been latecomers. In some industries, adoption of high-

tech methods has been appreciable, while in others there has been very little. Figure 2 

provides some insight into cross-industry variation in high-tech capitalization. The data 

are for 111 three-digit manufacturing industries from 1974 to 2000. The figure shows two 

important measures of high-tech that we use in our econometric work: investment in 

computer, office and communication equipment as a share of total investment, and capital 

in computer, office and communication equipment as a share of total capital.9 These 

variables are taken from Federal Reserve data sources, as described in detail in the 

Appendix. Investment in computers is clearly an important component of automated 

design and flexible methods, and is likely well correlated with adoption of such practices. 

However, it does not capture the full range of high-tech machinery and equipment used in 

manufacturing. Notably, some high-tech items (e.g. pick and place robots) fall into the 

other categories of investment, like industrial machinery, that contain both high-tech 

capital and other types. Nonetheless, given the importance of computers in making use of 

such items, we suspect that variation in the computer series will capture variation in use 

of related items reasonably well.  

                                                 
8  See U.S. Congress, Office of Technology Assessment (1984).  
9 The computer and office equipment category is comprised of mainframes, personal computers and 
integrated devices, storage devices, printers, computer displays (monitors), and office and accounting 
machinery. The communications category includes telephone, telegraph, fax, modems, fiber optics, mobile 
communications, radio, television, aeronautical, and broadcast equipment.  
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As the top panel of the chart shows, the average industry had 4% to 6% of its investment 

in high-tech equipment in the mid-1970s. This share rose to almost 10% in the mid-

1980s, dropped back as that decade went on, then picked back up in the 1990s, reaching 

almost 12% by 2000. However, there was an appreciable spread around the average: for 

example, during this period, the investment share at the 25th percentile held steady at or 

below 5%, while at the 75th percentile it has been as high as 14%. At the lower-end of the 

range are industries processing raw materials, largely ‘old’ manufacturing sectors (e.g. 

fabric mills, yarn and thread, logging, saw mills, miscellaneous primary metals, etc.). At 

the high-end of the range are industries that themselves produce high-tech goods (e.g. 

computers and office equipment, communications equipment, electrical industrial 

apparatus, guided missiles and space vehicles). As shown in the lower panel of the chart, 

results are qualitatively similar for the high-tech share of capital stock.10  

 

We use this variation across industries and over time to investigate relationships between 

capacity utilization and technological change. The basic specification estimated in our 

work is as follows: 

          CU jt  =  α +  β1 CU jt-1  +  β2 ∆ IP jt-1  +  β3 I/K jt -1  +  β4  STDEVjt-1    +  

                                            β5   ∆ AGE jt-1 x.ht    +   β6   ∆ AGE jt-1 ht    +  δ89 D89 t +   δ95 D95 t  + 

                                        Z jt-1 φ   +  ε jt 
 

where the subscript j refers to sector j = 1 to 111 and t refers to years t = 1974 to 2000 

and the other variables are defined as follows: 

                CU jt        = capacity utilization   

               ∆ IP jt         = change in industrial output  

                I/K  jt        = ratio of investment to capital  

                                                 
10 Note that there is a fair amount of persistence over time in industries’ investment and capital shares. For 
example, over our sample period, correlations in five-year averages of investment shares are 0.80-0.90 
from one five-year period to another; e.g. there is a correlation of 0.93 in industries’ average investment 
shares for 1976-80 and 1981-85. But the correlation declines for periods farther apart; e.g. the correlation in 
average investment shares for 1976-80 and 1996-2000 is 0.68. 
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           STDEV jt      = standard deviation of IP [10-year rolling window] 

        ∆ AGE jt x.ht        = change in average age of capital equipment, excluding high-tech 

        ∆ AGE jt ht          =  change in average age of the high-tech capital equipment 

               D89 t     = dummy variable equal to 1 for years 1989 and after; 0 otherwise  

               D95 t       = dummy variable equal to 1 for years 1995 and after; 0 otherwise  

                  Z jt           = some measure or set of measures of high-tech capital or investment 

 

The data on capacity utilization are industry averages tabulated from the SPC.11 The 

lagged dependent variable is included to address the presence of autocorrelated errors. 

The variables ∆IP, I/K, and STDEV are intended to capture effects on utilization of output 

growth, investment level, and output volatility respectively; they are included in lagged 

form to avoid problems with simultaneity. We include two measures of the change in 

average age of capital stock: one for capital excluding high-tech equipment and 

structures, and the other for high-tech equipment.12 These variables will reflect changes 

in utilization that may be associated with aging or with vintage effects. The dummy 

variables D89 and D95 are included because survey questions and methods were revised 

appreciably in 1989 and again in 1995, potentially affecting measured utilization.13 To 

measure variation in the prevalence of new technologies, we rely primarily on two 

variables: the share of high-tech equipment in total investment, and the share of high-tech 

equipment in the capital stock. For each of these variables, we run the above regression 

using the lagged variable, the lagged change in the variable, and both the lagged variable 

and its lagged change. Details of variable definitions and data sources are given in the 

appendix.  

                                                 
11 In that survey, a panel sample of manufacturing establishments is asked a brief set of questions about 
actual production and production at capacity. The sample is re-drawn every five years. Although the survey 
questions have changed somewhat over time, in general they are intended to measure the notion of 
‘capacity’ underlying Federal Reserve statistics on capacity utilization, namely the “maximum level of 
production [a plant] could reasonably be expected to attain under normal and realistic operating 
conditions,” assuming normal downtime for maintenance and repair, a representative product mix, and 
sufficient availability of inputs to operate capital in place. The survey data are used as inputs into Fed 
statistics on capacity utilization for sectors for which physical product measures are not available. 
12 Structures are omitted since our interest is in productive capital, for which aging would be overstated by 
including buildings.     
13 See the appendix for details. In brief, the wording of the questions on capacity was changed in 1989, and 
in 1995 the sample was expanded considerably.   
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To accommodate the panel aspect of the data, we ran the model using both fixed- and 

random-effects. The fixed-effects version estimates separate intercepts that vary across 

industries; the random-effects version takes variation across industries to be normally 

distributed.14 Accounting for this variation is clearly important, as there are persistent 

differences in average utilization across industries.15 However, both the fixed- and 

random-effects models will be biased in the presence of a lagged dependent variable 

(Greene 2002). In the fixed effects model, Nickell (1981) has shown that, while this bias 

is appreciable when the time dimension of the panel is small, it declines as the time 

dimension increases, approaching zero as T approaches infinity (see also Anderson and 

Hsiao 1982). As we have 26 years of data, we expect the size of the bias to be relatively 

small, although some studies have suggested that it may still be appreciable in a panel of 

such length.16  

To address the potential bias in the fixed effects model from lagged dependent variables, 

we utilized the GMM estimator proposed by Arellano and Bond (1991). The Arellano-

Bond estimator (hereafter A-B) uses as instruments the lagged levels of the lagged 

dependent variable and predetermined variables and first differences of strictly 

exogenous variables. In principle, this method results in a potentially very large 

instrument matrix; in practice, this can make the problem to impractical to estimate, in 

which case a maximum number of lags on the predetermined variables can be specified 

(in our case 4). As predetermined variables, we used the change in IP, the ratio of 

investment to capital, and the standard deviation of IP.17 In one-step estimation, the 

                                                 
14 In general, the fixed-effects model is more appropriate when the units of observation constitute the 
population or a large part of it, rather than a random sample of units drawn from it (Hsiao 1986, Greene 
2002). The units of observation in our data constitute virtually all 3-digit manufacturing sectors; only a few 
very small ones are not covered. The random-effects model relies on the assumption of no correlation 
between the regressors and the unobserved individual effects. Estimated effects will be inconsistent if this 
assumption is violated.  
15 In our data, average capacity utilization rates range from the 60s to the mid-80s. Those on the lower end 
include transportation industries, while those on the upper end include many ‘continuous processors’ like 
pulp, paperboard, and petroleum manufacturing. See Mattey and Strongin (1995). 
16 Judson and Owen (1996) find that even in panel data with the time dimension as large as 30, the bias can 
be significant – on the order of 3% to 20% of the value of the true coefficient on the lagged dependent 
variable. However, the estimate of this coefficient would still have the right sign, and the bias in estimated 
coefficients on other variables would be relatively small.  
17 We also tried other sets of predetermined variables, of which some did not appear to be valid based on 
the Sargan statistic testing the null that the overidentifying restrictions are valid, and/or there was evidence 
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Sargan test of overidentifying restrictions rejected the null hypothesis that the over-

identifying restrictions were valid. However, the Sargan test is known to overreject in the 

presence of heteroskedasticity, in which case there may be large efficiency gains from 

using the two-step estimator. The two-step Sargan test could not reject the null hypothesis 

that the over-identifying restrictions were valid. Following the recommendation of 

Arellano and Bond, we use the one-step results for inference, with standard errors 

estimated robustly. In both one- and two- two-step estimation, it was not possible to 

reject the null of no second-order autocorrelation in the differenced residuals, which 

would render the estimates inconsistent.18 Selected diagnostic statistics from the A-B 

models are presented in Appendix Table A2. As will be seen below, results from the A-B 

models turned out to be qualitatively very similar to those of the fixed- and random-

effects models.  Table 1 shows results for the specifications using the high-tech share of 

total investment as the measure of new technology, while Table 2 uses the high-tech 

share of total capital as this measure.  

 

Not surprisingly, in all versions of the regression, higher output growth is associated with 

increased capacity utilization, ceteris paribus. Also as one would expect, the investment-

to-capital ratio has a significant negative effect: when investment has been high relative 

to the capital stock, ceteris paribus, the utilization rate tends to be lower. The measure of 

output volatility was included to gauge whether industries facing relatively high 

variability in demand might have relatively low utilization, for example, if firms keep 

wider margins of excess capacity on average. Results suggest that effects of volatility 

vary across specifications: greater volatility tends to be associated with lower utilization, 

although there are a few cases in which the effect is not significant.  

 

An increase in the average age of an industry’s non-high-tech capital stock is associated 

with significantly lower utilization; this is consistent with either a ‘vintage’ effect and/or 

                                                                                                                                                 
of second-order autocorrelation in which case the estimates would be inconsistent (see Arellano and Bond 
1991: 281-282).  
18 The null of no first-order autocorrelation is rejected, although this does not imply that the estimates are 
inconsistent (Arellano and Bond 1991: 281-282).  
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a tendency to reduce utilization of older capital stock. In contrast, aging of the high-tech 

capital stock does not have significant effects in most specifications.  

 

The dummy variables suggest that, other things being equal, average utilization rates 

were significantly lower from 1995 on. While this effect may partly capture differences 

in aggregate economic conditions, it probably primarily reflects the changes in survey 

methods mentioned earlier. This is suggested by comparisons of survey and physical-

product data on utilization for the sectors that have both types of data. Notably, after 

1995, survey-based rates often had flatter profiles than rates based on physical-product 

data. Considering that the later 1990s were also years of strong high-tech investment, 

failing to adjust for the change in survey method risks attributing too much of the flatness 

in measured utilization rates to technological change.  

 

Turning to results on technological change, our results provide fairly robust evidence of a 

negative association between use of new technologies and capacity utilization. As shown 

in Table 1, having a relatively high share of investment in high-tech was associated with 

a lower utilization rate in the random-effects and A-B models, although not in the fixed-

effects model (column 1). An increase in this share was also associated with lower 

utilization, whether or not we control for the level of the share (columns 2 and 3). As 

shown in Table 2, having a high share of capital stock in high-tech had a negative effect 

on the capacity utilization rate, ceteris paribus (column 1). An increase in the high-tech 

share of capital also had a negative effect, with or without controlling for the level of this 

share (columns 2 and 3).  

 

Thus, by most measures our results show that increased use of technology is associated 

with a reduction in capacity utilization, controlling for output growth, investment, and 

other factors. Above we suggested that a change in technology may reduce utilization in 

the short-run, possibly in part because of diversion of resources from productive use. 

However, in the long-run, it could lead either to lower utilization by making it cheaper to 

hold excess capacity, or to higher utilization by making further changes in capacity less 
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costly and time-consuming. Drawing the implications of our results in this respect 

requires understanding the dynamic properties of capacity utilization.  

 

As can be seen in Tables 1 and 2, the coefficients on lagged capacity utilization are about 

0.50 to 0.60.19 Thus, although a temporary increase in a technology measure would lead 

to lower utilization in the short-run, the effect would dwindle over time, and utilization 

would return to its original level in the long run. But important technological changes, 

such as automated design and flexible methods, are more likely to involve persistent 

increases in the technology measures. In the case of a permanent change in a technology 

measure (or set of measures) of ∆ Z , the long-run effect on capacity utilization would be 

given by:         

         ∆ CU  =  [ 1 / ( 1 - β1 ) ]  ∆ Z  φ  

Our estimates imply that, with the term in brackets equal to about 2, utilization would 

decline in the long run, with the magnitude of the decline eventually about twice what it 

is in the short-run. This finding is consistent with the notion that new technologies make 

it cheaper to keep excess capacity on hand.20

 

The question arises, by how much has technological change held down utilization, other 

things being equal? To provide some estimates relevant to this question, we make use of 

the fact that, between 1974-79 and 1995-2000, for the average industry, the computer 

share of investment rose by 5.1 percentage points, while that of the capital stock rose 

about 4.4 percentage points. Both shares rose by an average of 0.3 percentage point per 

year. Table 3 uses our estimated coefficients to compute effects of these changes on 

utilization, assuming that these changes are permanent. The fixed- and random-effects 

estimates suggest that, for the average industry, the technological change that occurred in 

                                                 
19 Using the Levin and Lin (1992) panel unit root tests, we strongly reject the unit-root null hypothesis in 
the panel of utilization rates. 
20 Conceivably, our results may substantially reflect the unusual declines in prices of capital goods in the 
1990s. To test the importance of the 1990s experience in accounting for our results, we re-ran the models 
on data from the 1970s and 1980s only. The results were qualitatively similar; if anything, the negative 
influence of technology on utilization was somewhat larger in magnitude with the 1990s left out. This 
suggests that the negative influence is not a unique function of that decade.   
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the last 26 years will shave between 0.2 percentage point and 1.4 percentage points off 

the utilization rate, by the time the effects are fully realized. Estimated effects for the A-B 

models are somewhat larger, including estimated declines of about 5 percentage-points in 

the models using the high-tech share of capital stock as the technology measure. Thus, 

while our estimates leave some uncertainty about the magnitude of the effect, they 

consistently suggest that technological change has led to declines in the utilization rate, of 

modest but appreciable magnitudes.  

 

Discussion and concluding remarks 

 

In sum, our results suggest significant negative effects of technological change on 

utilization, controlling for output growth, investment level, and other factors. This is 

consistent with the notion that flexible manufacturing encourages firms to install a 

broader margin of excess capacity, in order to be able to handle upswings in demand. As 

we have pointed out, this strategy has also been favored by declining prices of high-tech 

capital, which reduce the costs of holding excess capacity. Nonetheless, our current 

estimates suggest that effects of technology on utilization have been relatively modest, 

with most estimates placing the effect of technological change of the 1974-2000 period 

on the utilization rate of the average industry in the 0.2 to 2.3 percentage-point range.  

 

Changes in the relationships between technology and utilization may in turn imply 

changes in the relationship between utilization and inflation. While this paper has not 

specifically examined the full set of interrelations between technology, utilization and 

inflation,21 our findings may shed some light on widely-noted changes in relationships 

between growth and inflation in the second half of the 1990s. Notably, our results suggest 

that technological change may have permitted firms to maintain wider margins of excess 

capacity. If this is indeed the case, the average firm may be better able to handle a period 

of strong demand, without moving onto a steeply-sloped part of the marginal cost curve. 

This may, in part, explain why manufacturing output grew strongly in the later 1990s 

                                                 
21 See Shapiro (1989) and Gordon (1989) for discussion of the relationship between utilization and 
inflation. 
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with little appreciable increase in inflation. Other factors, however, clearly were also 

involved, including the broad-based expansion of manufacturing capacity.  

 

Finally, while our results suggest that technological advances have so far, on balance, 

favored installation of wider margins of extra capacity, we have pointed out that such 

changes as automated design and modular tooling make it faster and less costly to add to 

capacity. This may make it easier for firms to respond to a period of strong demand by 

boosting capacity in a timely way, again rather than increasing utilization into the region 

of rising marginal costs. Conceivably, this may imply that, at any given level of capacity 

utilization, the degree of inflationary pressure may be lower than it was in the past. 

Indeed, improved ability to use capacity expansion to respond to strong demand may 

have helped keep utilization and inflation moderate in the later 1990s, even while output 

grew strongly. Further evidence would be needed, however, to establish this link.  
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Table 1. Results using High-Tech Share of Investment 
 
       
 (1) (2) (3) 

 Coeff. SE Coeff. SE Coeff. SE 
FIXED EFFECTS       

CU{t-1} .52* .02 .52* .02 .52* .02 

∆ IP{t-1} .09* .01 .09* .01 .09* .01 

I/K{t-1} -.52* .11 -.51* .11 -.51* .11 

STDEV{t-1} -.16* .05 -.17* .05 -.17* .05 

∆ age cap x HT{t-1} -3.77* 1.03 -3.16* 1.01 -3.07* 1.04 

∆ age cap HT{t-1}            .04 .48          -.77 .53          -.76 .53 

Dummy89           .47 .31           .45 .30            .47 .31 

Dummy95 -2.89* .33 -2.99* .32 -2.97* .33 

Tech{t-1}          -.02 .03            -.01 .03 

∆ Tech{t-1}   -.32* .08 -.32* .08 

       

RANDOM EFFECTS       

CU{t-1} .58* .02 .58* .02 .58* .02 

∆ IP{t-1} .08* .01 .08* .01 .08* .01 

I/K{t-1} -.32* .08 -.36* .08 -.32* .08 

STDEV{t-1} -.16* .04 -.18* .04 -.17* .04 

∆ age cap x HT{t-1} -1.82* .83 -1.75* .80 -1.33 .84 

∆ age cap HT{t-1}            .36 .48          -.42 .52          -.39 .52 

Dummy89           .48 .30           .36 .29            .48 .30 

Dummy95 -2.74* .32 -2.87* .32 -2.80* .32 

Tech{t-1}          -.05* .03            -.04 .03 

∆ Tech{t-1}   -.31* .08 -.30* .08 

       

ARELLANO-BOND       

CU{t-1} .51* .04 .51* .03 .51* .04 

∆ IP{t-1}           .05* .02 .05* .02 .05* .02 

I/K{t-1} -1.14* .27 -1.21* .27 -1.17* .27 

STDEV{t-1} -.18* .08 -.26* .08          -.23* .08 

∆ age cap x HT{t-1} -7.48* 1.78 -6.97* 1.85 -6.57* 1.81 

∆ age cap HT{t-1}          -.92  .70         -2.13* .75         -2.18* .74 

Dummy89 -0.68* .78          -.17 .75          -.28  .76 

Dummy95 -2.87* .43 -2.71* .41 -2.78* .42 

Tech{t-1}          -.22* .10            -.09  .09 

∆ Tech{t-1}   -.50* .11 -.46* .10 

       

 
 
* = significant at 5% level. 
+ = significant at 10% level. 
 

Notes: All models included constants. Standard errors in the AB models were estimated robustly. 
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Table 2. Results using High-Tech Share of Capital 
 
       
 (1) (2) (3) 

 Coeff. SE Coeff. SE Coeff. SE 
FIXED EFFECTS       

CU{t-1} .51* .02 .52* .02 .51* .02 
∆ IP{t-1} .09* .01 .09* .01 .09* .01 
I/K{t-1} -.42* .11 -.45* .11 -.36* .11 
STDEV{t-1} -.15* .05 -.14* .05 -.13* .05 
∆ age cap x HT{t-1} -3.53* .99 -3.52* .99 -3.23* .99 
∆ age cap HT{t-1}            .55 .51          -.87 .54          -.35 .57 
Dummy89           .58+ .31           .46 .30 .59+ .30 
Dummy95 -2.75* .33 -2.83* .32 -2.70* .33 
Tech{t-1}          -.13* .04   -.10* .04 
∆ Tech{t-1}   -.55* .14 -.48* .14 
       

RANDOM EFFECTS       
CU{t-1} .58* .02 .59* .02 .58* .02 
∆ IP{t-1} .08* .01 .08* .01 .09* .01 
I/K{t-1} -.22* .09 -.31* .08 -.19* .09 
STDEV{t-1} -.16* .04 -.16* .04 -.15* .04 
∆ age cap x HT{t-1} -1.71* .80 -2.14* .78 -1.59* .80 
∆ age cap HT{t-1}           .82+ .49          -.62 .53          -.11 .55 
Dummy89           .55+ .29           .34 .29 .52+ .29 
Dummy95 -2.68* .32 -2.71* .32 -2.60* .32 
Tech{t-1}          -.11* .03   -.10* .03 
∆ Tech{t-1}   -.58* .14 -.51* .14 
       

ARELLANO-BOND       
CU{t-1} .50* .04 .52* .04 .51* .04 
∆ IP{t-1}           .05* .02 .06* .02 .06* .02 
I/K{t-1} -.78* .26 -.99* .26 -.70* .26 
STDEV{t-1}          -.10  .10 -.19* .08          -.10  .09 
∆ age cap x HT{t-1} -7.59* 1.70 -7.55* 1.87 -6.90* 1.73 
∆ age cap HT{t-1}           .95  .84         -2.19* .84          -.51 .96 
Dummy89 -1.92* .77          -.43 .74         -1.54*  .75 
Dummy95 -3.23* .44 -2.74* .40 -3.13* .42 
Tech{t-1}          -.58* .14            -.45*  .11 
∆ Tech{t-1}   -.98* .23          -.69* .19 
       
 
 
* = significant at 5% level. 
+ = significant at 10% level. 
 

Notes: All models included constants. Standard errors in the AB models were estimated robustly. 



 

Table 3. Estimates of effects of technological change on capacity utilization 

 

                                               Estimated effects on capacity utilitization rate 

 

                              Investment                           Capital     

 (1) (2) (3) (1) (2) (3)
 
Fixed -0.2 -0.2 -0.3 -1.2 -0.3 -1.2

Random -0.6 -0.2 -0.7 -1.3 -0.4 -1.4

Fixed-AB -2.3 -0.3 -1.2 -5.1 -0.6 -4.5

 

Note: These are estimated effects of technological change on the capacity utilization rate, based on 

observed increases in shares of computers in total investment and in total capital respectively, for the 

average industry, for the 1974-2000 period. (See text for details). 
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Figure 1.  Capacity utilization and employment rates, 1974-2000
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Figure 2.  Shares of computers in investment and in total capital, 1974-2000 
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Data appendix 
 
The empirical analysis was performed using 111 industries, largely at the 3-digit SIC 

level for manufacturing industries; there are 140 3-digit SIC industries in manufacturing, 

but we were unable to perform the analysis strictly at the 3-digit SIC level because of the 

coverage of the lowest-level series in industrial production. Although Industrial 

Production (IP) statistics completely cover manufacturing, generally at the 3- or 4-digit 

SIC level, for a few industries, the most detailed individual IP series are combinations of 

two to five 3-digit SIC industries.  

 

Utilization rates: The Survey of Plant Capacity (SPC) from the Bureau of the Census 

collects utilization rate data at the 4-digit SIC (from 1974 to 1996) and 6-digit NAICS 

level (from 1997 on).  The SPC utilization rate data on an SIC basis were aggregated to 

the 3-digit SIC level using value-added weights from the Annual Survey of 

Manufacturers (ASM) and Census of Manufactures (COM). The SPC data on a 6-digit 

NAICS basis were converted to the 4-digit SIC level using ASM/COM shipments 

weights from the Census NAICS-to-SIC bridge tables and the 1997 COM, which was 

reported both on an SIC and a NAICS basis; the resulting 4-digit SIC data were 

aggregated to the 3-digit SIC level as above. The two dummy variables in the regressions 

(from 1989 on and from 1995 on) were included to account for possible effects of 

changes in the SPC design. Prior to 1989, establishments were asked questions about 

preferred and practical capacity; from 1989, the respondents were asked about full 

capacity and national emergency capacity (see Doyle, 2000); the definitions for preferred 

and full capacities were fairly close, but we included the 1989 on dummy to account for 

possible differences. Prior to 1995, the SPC form was sent to between 9,000 and 10,000 

establishments; from 1995 on, the survey was sent to between 16,000 and 17,000 

establishments. A dummy variable from 1995 on was included to account for possible 

systematic effects on utilization rates from the sample expansion. 

 

Nominal investment: ASM/COM data on capital expenditures on new equipment and 

structures are compiled at the 4-digit SIC through 1996. From 1997, data were compiled 

on total capital expenditures on equipment and on structures at the 6-digit NAICS 
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industry levels. The data were summed to the appropriate 3-digit level through 1996; 

bridge tables from the Census, the 1997 COM, and historical averages of the share of 

investment in new equipment and structures in total investment were used to convert the 

1997 to 2000 6-digit NAICS total capital expenditures data to new capital spending on a 

4-digit SIC basis. 

 

Real investment: Real investment measures require estimating real industry-by-asset 

investment and aggregating these data to the industry level with asset-specific price 

deflators (see Mohr and Gilbert, 1996, for details). This is performed in four steps. First, 

US-level asset totals are taken from the NIPA data. Second, industry-level investment 

totals are taken from the ASM/COM; US-level investment less manufacturing is 

constructed by summing over the NIPA investment categories and subtracting the 

manufacturing total. Third, given the estimates of total investment by each manufacturing 

industry (and total US excluding manufacturing) and the total US investment in each 

asset category, industry-by-asset investment is estimated using the biproportional matrix 

balancing (or RASing) technique of Bacharach (1965); the initial estimates of the asset 

distribution of industry investment were taken from the roughly quinquennial Capital 

Flows Tables (CFT) of the BEA.22 The industry-level real investment measures are 

Fisher chain-weighted aggregates of the asset-level investment flows. 

 

Industry-by-asset capital stocks: Asset-level net capital stocks are constructed using the 

perpetual inventory model system (PIMS) methodology (see BLS, 1983, and Mohr and 

Gilbert, 1996). Each asset is assigned a specific age-efficiency profile that describes the 

proportion of its original efficiency that remains in each period as the asset ages.23 For a 

                                                 
22 Given row (asset investment) and column (industry investment) totals that sum to the same value; non-
negativity constraints on investment; and an initial guess on the asset allocation of industry investment, the 
RASing procedure converges to a unique industry-by-asset investment flow. For the years a CFT exists, it 
is used as the initial guess for the RASing procedure; for years between CFTs, a linear interpolation of the 
adjacent CFTs are used; for years after the most recent CFT, the final allocation from the previous year is 
used as the initial guess for the current year; for years before the first CFT, the final allocation from the 
following year is used as the initial guess. 
23 The age efficiency profile is based on integrating over all possible asset service lives given a stochastic 
mean service life and standard deviation (for asset discards) and a hyperbolic beta-decay function (for asset 
decay). See Mohr and Gilbert (1996) for details. 
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given industry, the capital stock in a particular asset category is a weighted sum of all 

past investment flows, where the weights are given by the age-efficiency profile. 

 

Capital stocks:  Industry-level net capital stocks are constructed as a Fisher index of the 

industry-by-asset capital stocks, where the weights are the asset-specific prices (see BLS, 

1983).   

 

Current-cost capital stocks: The replacement value, in current dollars, of the net capital 

stock is constructed by taking the real capital stock levels for each asset category, 

multiplying them by the asset price deflators for that year, and summing to the industry 

level.   

 

Capital input: Industry-level capital input measures estimate the potential flow of 

services derived from the net capital stocks in the various asset categories. They are 

constructed as a Tornqvist index of the industry-by-asset capital stocks where the weights 

are the asset-specific rental prices or user costs (see BLS, 1983). The rental price for a 

particular asset, ( )τδ pprp &−+ , is the marginal product of that asset, where p is the asset 

price, r is a required rate of return, δ is a depreciation rate, and τ is a tax term (see BLS, 

1983). As indicated by the formula, an asset that depreciates more quickly will receive a 

correspondingly higher weight in the aggregation, as will an asset whose price is 

declining. The computer asset categories, which do both, consequently receive a higher 

weight in aggregating asset-level capital stocks to an aggregate capital input measure than 

aggregating asset-level capital stocks to an aggregate capital stock measure.  

 

Age of capital: With the PIMS methodology, the entire vintage history of industry-by-

asset investment is used. It is a simple matter, then, to construct the average age of capital 

by weighting each vintage’s contribution to a year’s current-cost capital stock by the age 

of that vintage, and dividing the overall sum by the total current cost stock for the 

industry.  
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High-tech share of investment and the high-tech share of capital: The high-tech share of 

investment is the ratio of current dollar capital spending on computer, office and 

communication equipment to total current dollar capital spending on all equipment and 

structures categories.  The high-tech share of capital input is the share of capital services 

derived from the high-tech asset categories; it is calculated by multiplying the asset level 

capital stocks in the high-tech asset categories by their rental prices and dividing the sum 

by the sum over all asset categories of the products of the asset level capital stocks and 

their rental prices. See Whelan (2000) for a lucid explanation of why these sorts of ratios 

should be formulated in current dollar (for investment) or current cost (for capital) terms. 
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Table A1. Variable names and definitions 

 

 
 
Variable name 

 
Definition 

 
CU   

 
CU*100, where CU is the Q4 utilization rate for the 3-digit industry 
from the Survey of Plant Capacity 
 

 
∆IP 

 
100 times the difference of the log of IP, where IP is industrial 
production in Q4 (a physical measure) 
 

 
I/K[t-1] 

 
Nominal investment divided by the current cost lagged capital stock, 
times 100  

STDEV         Standard deviation of the log of IP, 10-year moving average 

∆ AGE  x.ht        Change in average age of capital equipment, excluding high-tech and 
structures. 

∆ AGE ht        Change in average age of high-tech capital equipment 

 
High-tech % 
inv.  

 
Investment in computer, office and telecommunications equipment 
divided by total investment, times 100, where both are nominal. 
 

 
∆ high-tech % 
of inv.  

 
The change in high-tech share of high-tech equipment in total 
investment, times 100. 
 

 
High-tech % 
cap. 

 
Capital stock in computer, office and telecommunications equipment 
divided by total capital stock, times 100, where high-tech capital stock 
is the current- cost rental value of these types of equipment, and the 
denominator is the total value of services derived from the capital 
stock . 
 

∆high-tech % 
cap.  

 
The change in share of high-tech equipment in the capital stock, times 
100 
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Table A2. Diagnostic statistics for Arellano-Bond models 

 

 

 High-tech share of: 
 Investment Capital 
 (1) (2) (3) (1) (2) (3) 

One-step       

Sargan test of 
overidentifying 
restrictions * 

1267.51 
(0.0000) 

1254.68     
(0.0000) 

1257.29     
(0.0000) 

1250.61     
(0.0000) 

1240.35     
(0.0000) 

1237.93     
(0.0000) 

First-order 
autocorrelation ** 

-7.23   
(0.0000) 

-7.19    
(0.0000) 

-7.18    
(0.0000) 

-7.13   
(0.0000) 

-7.18   
(0.0000) 

-7.13   
(0.0000) 

Second-order 
autocorrelation *** 

-1.07    
(0.2855) 

-1.15   
(0.2485) 

-1.12   
(0.2624) 

-1.14   
(0.2549) 

-0.93   
(0.3503) 

-1.00   
(0.3151) 

Two-step       

Sargan test of 
overidentifying 
restrictions * 

106.58     
(1.0000) 

107.28  
(1.0000) 

106.58  
(1.0000) 

105.54     
(1.0000) 

105.86   
(1.0000) 

107.09 
(1.0000) 

First-order 
autocorrelation ** 

-7.05   
(0.0000) 

-7.05   
(0.0000) 

-7.05   
(0.0000) 

-6.94   
(0.0000) 

-6.97   
(0.0000) 

-6.95   
(0.0000) 

Second-order 
autocorrelation *** 

-1.10   
(0.2718) 

-1.14    
(0.2536) 

-1.10   
(0.2718) 

-1.10   
(0.2692) 

-0.93   
(0.3525) 

-0.96    
(0.3363) 

 
 
*    Sargan test statistic is distributed chi-square with 603 degrees of freedom. The 
number is parentheses is Prob > chi-square.  
 
**   Arellano-Bond test that average autocovariance in residuals of order 1 is 0. The 
number is parentheses  is Pr > z = 0.0000. The one-step estimates come from robust 
estimation.  
 
***  Arellano-Bond test that average autocovariance in residuals of order 2 is 0. The 
number is parentheses is Pr > z = 0.0000. The one-step estimates come from robust 
estimation.  
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