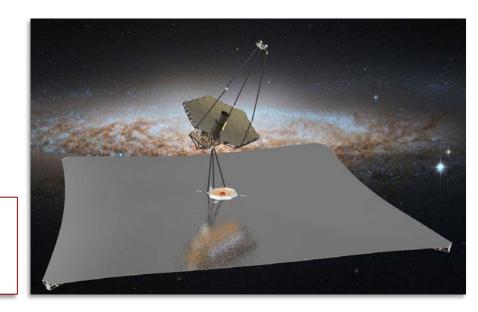


Technology Development for the Advanced **Technology Large Aperture Space Telescope** (ATLAST) as a Candidate Large UV-Optical-Infrared (LUVOIR) Surveyor

Presented by: Matthew R. Bolcar NASA Goddard Space Flight Center

ATLAST Technology Development Team:

M. R. Bolcar, K. Balasubramanian, M. Clampin, J. Crooke, L. Feinberg, M. Postman, M. Quijada, B. J. Rauscher, D. Redding, S. Shaklan, H. P. Stahl, C. Stahle, H. Thronson


Background

- 2009
 - ATLAST initial design study; proposed to 2010 Decadal Survey
- 2010
 - Decadal Committee recommends "a New Worlds Technology Development Program" as the highest priority medium-scale activity
- 2014
 - NASA Astrophysics 30-year Roadmap recommends a large UV-Optical-Infrared (LUVOIR) telescope in the "Formative Era"
- 2015
 - AURA releases From Cosmic Birth to Living Earths; recommends the High Definition Space Telescope (HDST) as a general astrophysics observatory with the "killer app" of detecting and characterizing habitable exoplanets
- Early to mid-2016
 - NASA Astrophysics Division initiates Science and Technology Definition Teams (STDTs) to perform detailed mission concept studies in preparation of the 2020 Decadal Survey: LUVOIR is one of four missions to be studied

What Is ATLAST?

- ATLAST, LUVOIR, HDST are all mostly interchangeable
 - LUVOIR is architecture non-specific
 - HDST advocates for a large segmented aperture
 - ATLAST has engineering reference designs for segmented and monolithic systems
 - All have very similar science goals
- A multi-institutional team to continues to study ATLAST
 - Multiple engineering reference designs, discussed in:

N. Rioux, "A future large-aperture UVOIR space observatory: reference designs", paper 9602-4

ATLAST Science

- Detect and characterize a statistically significant population of habitable exoplanets
 - Discover dozens of exoEarths
 - Look for, and potentially confirm, presence of life
 - Observe general planet populations for comparative studies
- Perform a broad array of UVOIR general astrophysics:
 - Galaxy, star, and planet formation
 - Flow of material between galaxies
 - Observations within our own solar system
- ATLAST's science portfolio is very similar to that outlined in AURA's From Cosmic Birth to Living Earths report

Top-Level System Requirements

Parameter		Requirement	Stretch Goal	Traceability	
Primary Mirror Aperture		≥8 meters	12 meters	Resolution, Sensitivity, Exoplanet Yield	
Telescope Temperature		273 K – 293 K	-	Complexity, Fabrication, Integration & Test,	
				Contamination, IR Sensitivity	
	UV	100 nm- 300 nm	90 nm – 300 nm	-	
Wavelength	Visible	Visible 300 nm – 950 nm -		-	
Coverage NIR MIR		950 nm – 1.8 μm 950 nm – 2.5 μm		-	
		Sensitivity to 5.0 μm -		Transit Spectroscopy	
Image	UV	< 0.20 arcsec at 150 nm	-	-	
Quality	Vis/NIR/MIR	Diffraction-limited at 500 nm	-	-	
Stray Light		Zodi-limited between 400 nm – 1.8 μm	Zodi-limited between 200 nm – 2.5 μm	Exoplanet Imaging & Spectroscopy SNR	
Wavefront Error Stability		< 10 pm RMS uncorrected system WFE per control step	· -		
Pointing	Spacecraft	≤1 milli-arcsec	-	-	
Folliting	Coronagraph	< 0.4 milli-arcsec	-	-	

Technology Development for ATLAST

- Our team identified 5 key technology areas to enable the ATLAST mission:
 - Internal Coronagraph
 - Starshade
 - Ultra-stable large aperture systems
 - Detectors
 - Mirror Coatings
- Established a technology development roadmap
 - Identifies technology gaps
 - Includes current TRL and gap-type (e.g. technology, engineering, manufacturing)
 - Recommends development activities

Assumptions

- Assume a new mission start with PDR circa 2024
 - Technologies must be TRL 5 by PDR
 - Technology development plan must be credible in time for 2020
 Decadal Survey
- Assume flexibility with respect to ATLAST architecture
 - Explore multiple solutions at this early stage of development
 - i.e. develop for both monolithic and segmented apertures, develop both internal coronagraphs and starshades, etc.
- Adopt a conservative approach in identifying gaps
 - This a systems-level problem: every technology impacts every other
 - Requires detailed integrated design cycles
 - For now, assume "worst case" and refine as technologies develop and modeling is performed

Technologies

Internal Coronagraph	Parameter	Need	Capability	Current TRL	Technology, Engineering, or Manufacturing	
	Raw Contrast	1×10 ⁻¹⁰ (detect) 5×10 ⁻¹⁰ (char.)	3.2×10 ⁻¹⁰			
Broadband High-Contrast Coronagraph includes Wavefront Sensing & Control (WFSC)	IWA	3.6 λ/D (detect) 2.0 λ/D (char.)	3 λ/D		Technology	
	OWA	~ 64 λ/D	16 λ/D			
	Bandpass	10-20% (instantaneous) 400 nm – 1.8 μm (total) 200 nm – 2.5 μm (goal)	10%	3		
	Aperture	Obscured, segmented	Unobscured			
	WFSC	Fast, low-order, at stellar photon rates	Slow, tip/tilt, bright lab source			
Deformable Mirrors	Actuator count	128×128 (continuous) >3000 (segmented)	64×64 (continuous) <200 (segmented)			
	Environmental	Robust, rad. hard	Testing underway	3	Engineering, Manufacturing	
	Electronics	>16 bits, high-throughput	~16 bit, dense cabling			

Closed-loop > a few Hz

Factor of 50-100×

Rad. hard, >100 GFLOPS/W

improvement in contrast

Human-in-the-loop

<20 GFLOPS/W

25× demonstrated

30× goal for WFIRST

Engineering, Manufacturing

Engineering

3

Bandwidth

Electronics

PSF Calibration

Autonomous Onboard

Computation

Starlight Suppression

Image Processing

Internal Coronagraph

Multi-institution study of new &

existing

coronagraph

techniques

Leverage

WFIRST/AFTA investment in **WFSC**

Leverage

WFIRST/AFTA

investment

Industry Engagement; Improve actuator

counts, yield, electronics precision

Leverage WFIRST/AFTA investment

Development of high-speed, low-power

processing architectures

Leverage WFIRST/AFTA investment

Select

Mirror

Arch.

2020 Decadal Review

Development of

top 3-4 candidates

to TRL 4

FY16 | FY17 | FY18 | FY19 | FY20 | FY21 | FY22 |

Downselect to ~2

candidates:

Develop to TRL 5

FY23 | FY24 |

TRL 5

Environmental qualification

Develop flight electronics & software

Implement WFSC software on hardware;

perform radiation & environmental testing;

Support coronagraph testbed ops.

Extend PSF calibration techniques to gain factors of

50-100× in contrast improvement

FY25

Select mission primary

and backup;

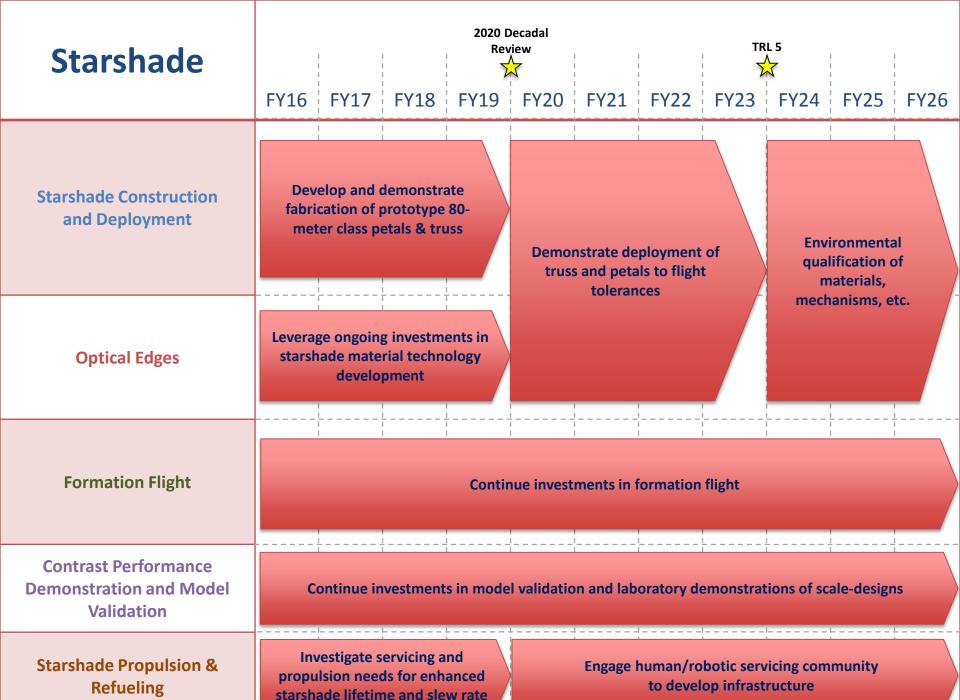
Develop to TRL 6

FY26

Broadband High-Contrast Coronagraph includes Wavefront Sensing & **Control (WFSC)**

Deformable Mirrors

Autonomous Onboard


Computation

Starlight Suppression

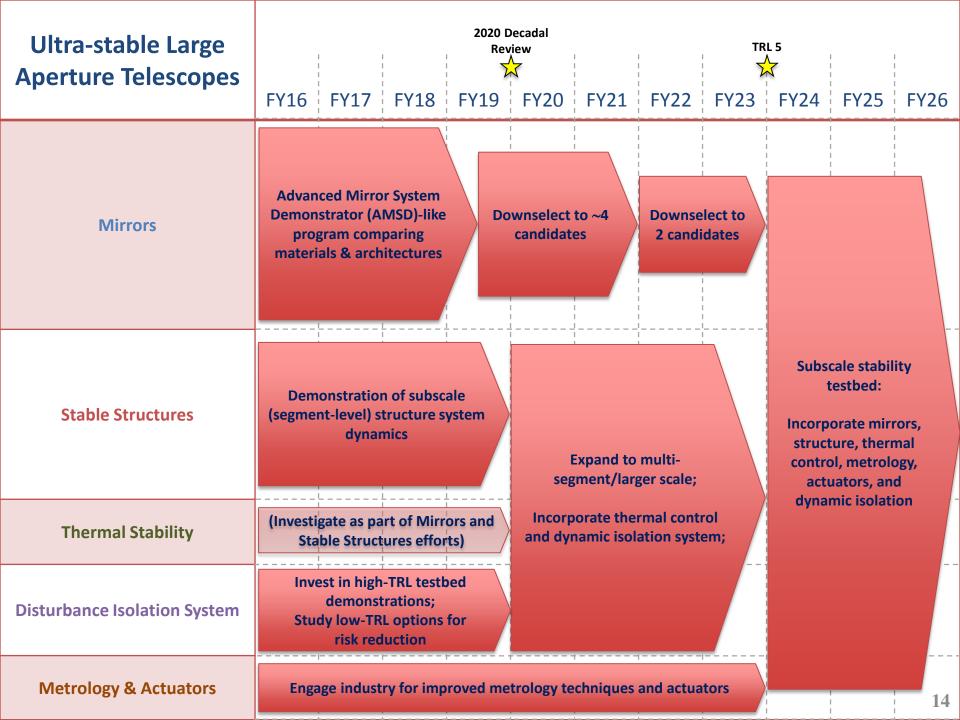
Image Processing

Starshade	Starshade Parameter Need		Capability	Current TRL	Technology, Engineering, or Manufacturing	
Starshade Construction and Deployment	-	Petal and central truss design consistent with an 80-m class starshade Demonstrate manufacturing and deployment tolerances with a 12-m Astromesh antenna with 4 petals		3	Engineering	
	Edge radius	≤ 1 µm	≥ 10 µm			
Optical Edges	Reflectivity	≤ 10%	-	3	Technology	
	Stowed radius	≤ 1.5 m	-			
	Lateral sensing error	≤ 20 cm	-			
Formation Flight	Peak-to-peak control	< 1 m	-	3	Engineering	
	Centroid estimation	≤ 0.3% of optical resolution	≥ 1%			
Demonstration and Model - contrast		1×10 ⁻¹⁰ broadband contrast at Fresnel numbers ≤ 50	3×10 ⁻¹⁰ contrast, excluding petal edges, narrowband, at Fresnel number of ~500	3	Technology	
Starshade Propulsion & Refueling	-	Propulsion & refueling to enable > 500 slews during 3 years of a 5-year mission	Requires study; robotic refueling appears feasible	3	Technology, Engineering	

mission

Ultra-stable Large Aperture Telescopes	Parameter Need Capability		Current TRL	Technology, Engineering, or Manufacturing		
	Areal Density	< 36 kg/m² (Delta IVH) < 500 kg/m² (SLS) ~12 kg/m² (SiC) ~35 kg/m² (ULE) ~70 kg/m² (JWST)				
	Areal Cost	< \$2 M/m ²	~\$6 M/m² (JWST)		Engineering,	
Mirrors	Areal Production Rate	30-50 m²/year	~4 m²/year (JWST) ~1 m²/year (HST) ~100-300 m²/year planned by TMT but not yet demonstrated	4	Manufacturing	
	Moisture Expansion	Zero after initial moisture release	Continuous moisture release		Technology	
Stable Structures	Lurch	< 10 pm / wavefront control step	Micro-lurch at joint interfaces	3		
	Metrology	High-speed picometer metrology to validate performance	Nanometer speckle interferometry on JWST			
Thermal Stability	Material Stability	~10 nm/K ~100 nm/K		3	Technology	
Disturbance Isolation System	curbance Isolation System End-to-end 140 dB at frequencies >		80 dB at frequencies > 40 Hz (JWST passive isolator only)	4	Technology, Engineering	
Metrology & Actuators	Sensing Accuracy	~1 pm	~1 nm	Д	Technology	

~1 pm

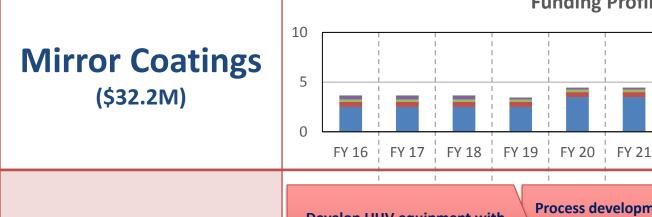

4

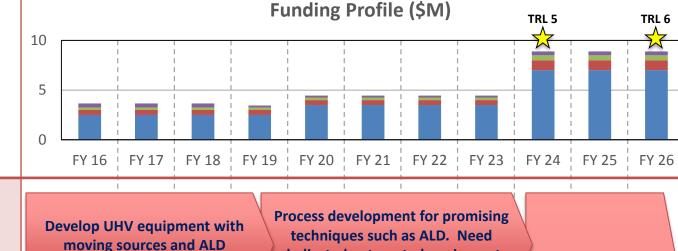
~5 nm

Technology

Metrology & Actuators

Control Accuracy




Detectors	Parameter	Need	Capability	Current TRL	Technology, Engineering, or Manufacturing	
	Bandwidth	idth 400 nm – 1.8 μm (2.5 μm goal) EMCCD is pron				
	Read Noise	<< 1 e ⁻	has hard cutoff at 1.1			
Visible-NIR Single-photon	Dark Current	< 0.001 e ⁻ /pix/s	μm; HgCdTe APDs good for	2 5	Technology,	
Detectors for Enabling Exoplanet Science	Spurious Count Rate	Small compared to dark current	NIR but need better dark current; MKID & TES meet	3-5	Engineering, Manufacturing	
	Quantum Eff.	> 80% over bandwidth	requirements but			
	Format	> 2k × 2k	require cryo ops.			
	Bandwidth	200 nm – 400 nm				
	Read Noise // 1 a-		EBCMOS and MCP detectors need better			
UV Single-photon Detectors	Dark Current	< 0.001 e ⁻ /pix/s	quantum eff., and	2-4	Technology, Engineering, Manufacturing	
for Enhanced Exoplanet Science	Spurious Count Rate	Small compared to dark current	improvements in lifetime;			
	Quantum Eff.	> 50% over bandwidth	MKID & TES detectors also apply here			
	Format	> 2k × 2k	also apply here			
	Bandwidth	90 nm – 300 nm	Same as above;			
Large-Format High-Sensitivity UV Detectors for General Astrophysics	Read Noise	< 5 e ⁻	δ-doped EMCCD also a candidate, but needs	4	Technology, Engineering,	
	Quantum Eff.	> 70%	radhard testing and lower clock-induced		Manufacturing	
	Format	> 2k × 2k	charge			

Detectors	FY16	FY17	FY18		Pecadal view FY20	FY21	FY22	FY23	FY24	FY25	 FY26	5
Visible-NIR Single-photon Detectors for Enabling Exoplanet Science	purs	uing EMC	elected te CD, HgCdT ng techs, e	Ге ,	Y	select to f esources	ocus	Final	developm tec		ected	
UV Single-photon Detectors for Enhanced Exoplanet Science	Collaboration between NASA, Industry, Universities Pursue parallel detector technologies (EB-CMOS, MCP, etc.)							candid	wnselect late detec	tor &		
Large-Format High-Sensitivity UV Detectors for General Astrophysics	Radia testin EMCCD prior	g of s first	Recom short- candida Deca	list of ates to		FI	light-quali	fy; Develo	op to TRL	5	16	6

Mirror Coatings	Parameter	Need	Capability	Current TRL	Technology, Engineering, or Manufacturing	
	90 nm – 120 nm	> 70%	< 50%	2		
Reflectivity	120 nm – 300 nm	> 90%	80%	3	Technology, Engineering	
	> 300 nm	> 90%	> 90%	5		
	90 nm – 120 nm	< 1%	TBD	2		
Uniformity	120 nm – 250 nm	< 1%	> 2%	3	Engineering, Manufacturing	
	> 250 nm	< 1%	1-2%	4		
Polarization	Polarization ≥ 90 nm < 1% Not yet assessed; requires study		1 · · · · · · · · · · · · · · · · · · ·	2	Technology	
Durability	-	Stable performance over mission lifetime (10 years minimum)	Stable performance, but with limited starting reflectivity below 200 nm	4	Engineering, Manufacturing	

Mirror	2020 [Rev	1	TRL 5								
Coatings	FY16 FY17 FY18 FY19	FY20 FY21	FY22	FY23	FY24	FY25	FY26				
Reflectivity	Develop UHV equipment with moving sources and ALD capabilities.	Process develop for promisin techniques such	ng 📄								
Uniformity	Develop automated instruments, test methods, and analyses.	Uniformity studie a large numbe samples.	TRL 5 & 6 demonstrations of			of					
Polarization	Theoretical Analysis & Estimate of Requirements	Focused, practical measurements to guide development.		Focused, practical measurements to guide			-m mirror	1			
Durability	Detailed tests & analysis	Large-scale test development protected coat	of				18				

UV Coating Reflectivity

capabilities. **Develop automated** dedicated automated equipment for performance evaluation.

TRL 5 & 6

UV Coating Uniformity

instruments, test methods, and analyses.

Demonstration of coating on 1.5-m mirror substrate.

Focused, practical measurements to guide development.

Uniformity studies with a large number of

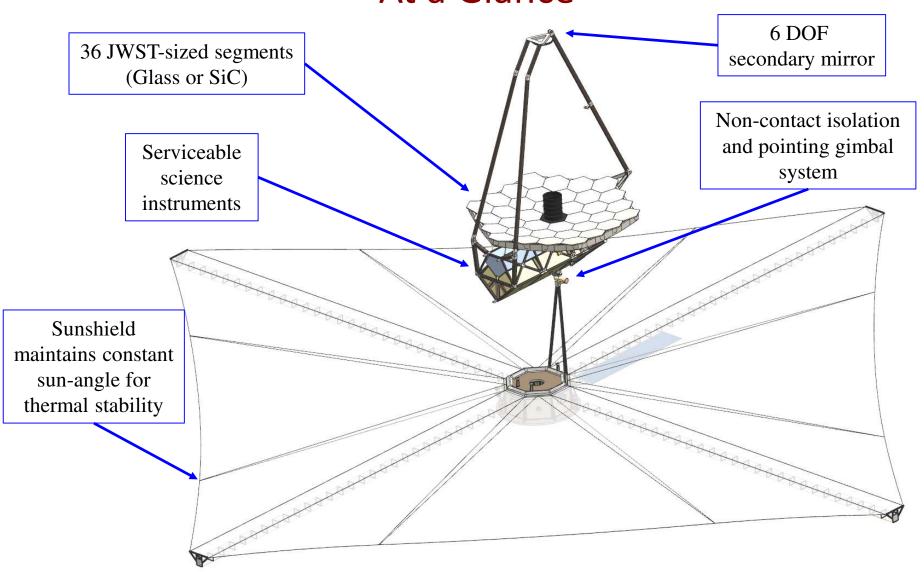
samples.

UV Coating Polarization

Coating Environmental Durability

Theoretical Analysis & Estimate of Requirements

Detailed tests & analysis


Large-scale tests and development of protected coatings.

Conclusions

- A multi-institutional, studying a large UV-Optical-IR telescope with two science goals:
 - Detect and characterize habitable exoplanets
 - Broad array of general astrophysical observations
- Identified 5 key technologies to enable ATLAST
 - Internal Coronagraph
 - Starshade
 - Ultra-stable large-aperture telescopes
 - Detectors
 - Mirror Coatings
- Recommended actions for developing technologies to TRL 5 in time for a new mission start in 2024

BACKUP

ATLAST Segmented Architecture: At a Glance

Notional Instrument Requirements

Science Instrument	Parameter	Requirement	Stretch Goal
	Wavelength Range	100 nm – 300 nm	90 nm – 300 nm
UV Multi-Object	Field-of-View	1 – 2 arcmin	-
Spectrograph	Spectral Resolution	R = 20,000 – 300,000 (selectable)	-
	Wavelength Range	300 nm – 1.8 μm	300 nm – 2.5 μm
Visible-NIR	Field-of-View	4 – 8 arcmin	-
Wide-field Imager	Image Resolution	Nyquist sampled at 500 nm	-
	Wavelength Range	300 nm – 1.8 μm	300 nm – 2.5 μm
Visible-NIR Integral	Field-of-View	4 – 8 arcmin	-
Field Spectrograph	Spectral Resolution	R = 100 – 10,000 (selectable)	-
	Wavelength Range	Sensitivity to 5 μm	-
MIR Transit Spectrograph	Field-of-View	TBD	-
special op	Spectral Resolution	R = 200	-
	Wavelength Range	400 nm – 1.8 μm	200 nm – 2.5 μm
Starlight Suppression	Raw Contrast	1×10 ⁻¹⁰	-
System	Contrast Stability	1×10 ⁻¹¹ over integration	-
System	Inner-working angle	36 milli-arcsec @ 1 μm	-
	Outer-working angle	> 0.5 arcsec @ 1 µm	-
Multi-Band Exoplanet	Field-of-View	~0.5 arcsec	-
Imager	Resolution	Nyquist sampled at 500 nm	-
Exoplanet Spectrograph	Field-of-View	~0.5 arcsec	-
Evolution Shectrostabil	Resolution	R = 70 – 500 (selectable)	-