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Abstract

In Smart Learning Environments, students need to be aware of their academic

performance so they can self-regulate their learning process. Likewise, the teaching

process can also be improved if instructors are able to supervise the progress of

students, both individually and globally, and anticipate proper pedagogical strategies.

Thus, effective Student Models, capable of identifying and predicting the level of

knowledge of students, are a key requirement in modern educational systems. In this

article, we revisit OSM-V, an Open Student Model with Information Visualization

capabilities that allow students and instructors to assess performance-related

information in educational systems. We detail its architecture and how it was integrated

into Classroom eXperience, a Smart Learning Environment with multimedia capture

capabilities. We also present extended results from experiments that evaluate both the

perception of utility and behavioral changes in students who used OSM-V, showing that

it can positively impact students’ learning and positively influence their study habits.

Keywords: Open student model, Information visualization, Technology-enhanced

assessment, Smart learning environment

Introduction

Intelligent interfaces can enable learning to be clearer and easier, fostering interaction

according to the cognitive abilities of those directly involved in the process (Lindstaedt

et al., 2009). A myriad of computational resources can be used to support pedagogical

strategies that make teaching and study activities simpler, more dynamic and attractive

to students. A major challenge for such scenario relies on the proper identification of the

capabilities and limitations of students (Greiff et al., 2016, Nguyen et al., 2017). According

to Brusilovsky (2001), the teaching process would have a better efficacy if it were possible

to identify the real state of knowledge of each student individually, allowing instructors to

address the individual limitations of each student.

Over years, StudentModels (SM) have been used tomap the cognitive characteristics of

students (Self 1990). This method has proved to be effective in many situations (Mitrovic

and Thomson 2009; Li et al. 2011), thus allowing automated systems to guide new actions

to intervene in the teaching process of each student. However, neither instructors nor

students often have the ability to view the information proposed by this model, without

contributing to the process of personalizing pedagogical strategies.

In order to assist instructors and students in the process of knowledge identification,

Open Student Models (OSMs) have been proposed as tools to “outsource” information
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manipulated by SMs (Hartley and Mitrovic 2002; Mitrovic and Martin 2002; Mabbott

and Bull 2006). The open models seek to expand the capacity of traditional SMs, allowing

information, which was previously treated only internally by the system, can now bemade

available to all those involved in the teaching process. This allows for more interaction

between instructors and students in how new attitudes are taken to improve teaching.

OSMs have gained popularity due to their strong psychic-pedagogical foundation and

also because they present positive results from the educational point of view, such as

metacognitive support (Bull and Wasson 2016), persuasion (Ginon et al., 2016) and self-

regulated learning (Long and Aleven, 2016).

The integration of Information Visualization tools into the context of educational con-

tent adaptation provides new characteristics to SMs, thus allowing the emergence of

open and intelligent models, where data can be inferred and stored to aid the individ-

ualized adaptation of educational content. In such scenario, this article revisits OSM-V,

a technology-enhanced assessment visualization OSM for Smart Learning Environments.

OSM-V acts as an intelligent visualization tool, combining probabilistic information —

through Bayesian Networks — with semantic information — through the use of

ontologies.We carry out extended experiments with regular classes of face-to-face courses

in order to evaluate the impact of the use of the tool both on students’ satisfaction and

study behavior.

The remainder of this article is structured as follows: the “Research background” section

describe the smart learning environment used as a case study in this project, Classroom

eXperience, and present some considerations regarding the use of information visual-

ization concepts in education; the “Related work” section presents a survey of the state

of the art related to this study; the “OSM-V” section describes the OSM-V architecture,

detailing its modules, repositories and communication channels, as well as its integration

procedure; the “Experiments and results” section presents two experiments regarding the

impact of our proposal; and, finally, the “Conclusions” section presents our final remarks

and future work.

Research background

Classroom eXperience

Classroom eXperience (CX) is a smart learning environment with content recommenda-

tion and personalization capabilities (Araújo et al., 2013; Dorça et al., 2016; Ferreira et al.,

2017a), semantic (Ferreira et al., 2016), social and collaborative features (Araújo et al.,

2017). It comprises a multimedia capture platform for automatically recording lectures in

a classroom equipped with ubiquitous computational devices, such as electronic white-

boards, microphones, video cameras, and multimedia projectors – an infrastructure

common today in many schools and universities.

CX was developed for capturing, storing, synchronizing, and making different medias

available to students by means of hypermedia documents generated in different presen-

tation formats. CX has been in use since 2012 at a few Colleges and Universities in Brazil.

Currently, the environment has approximately 850 registered users and content of about

75 courses have been captured using the platform (Fig. 1).

Smart Learning Environments, such as CX, have the potential to generate a huge

amount of data that is often not fully understandable to human users, thus requiring

additional tools to be properly visualized and useful.
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Fig. 1 CX access interface. List of courses and captured lectures in the CX Web access interface

Information visualization

The synergy between the areas of Computer Graphics, Human-Computer Interaction

and Data Mining leverages research in Information Visualization, aimed at present-

ing information graphically and so that the user can use their visual perception for

better analyze and understand them. It is a topic characterized by the need to cre-

ate mechanisms to transform data into information, and whose representation must

express important properties of the data and how different items are related to each

other.

Educational environments are one among many of the possible application scenarios

for information visualization techniques. In such environments, huge amounts of data are

generated. In most cases, information is inferred and stored with the purpose of support-

ing the individualized adaptation of content. This capacity is often enabled by means of

some SM, which is responsible for storing relevant information for the individualized rec-

ommendation and content personalization process concerning the student. Information

such as knowledge level, interests, preferences and objectives is stored over the whole stu-

dent learning process (Clemente et al., 2011). A large part of the information stored in the

SM is automatically inferred during the interactions between the student and the system

(Bull and Wasson, 2016).

Related work

Traditionally, data processed by the SM is “closed” for users, providing information only

for the system itself, for personalization purposes. However, several research projects

have proposed tools to “outsource” this information, i.e. to leave the data “open” to the

users involved in the educational process (Long and Aleven 2013; Bull and Kay 2013).

This ability to “open” the information inferred by the SM is a key characteristic of OSMs,

which explore the area of Information Visualization to produce tools that can provide
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mechanisms for students and instructors to visualize, explore and even modify the way

knowledge is created and processed by the SM.

Several approaches are proposed with the purpose of assisting in the personalization,

integration and visualization of educational resources. Bull and Kay (2013) present an

OSM with capacity to treat and analyze the process of metacognition. Other studies, in

turn, seek to verify the impact of OSMs on student engagement (Hsiao et al., 2013) and

questions of self-regulation and self-assessment (Mitrovic and Martin 2007; Guerra et al.

2016). There are also those who check questions about learning improvement (Bull and

Wasson 2016). Some studies differ in the way the data is presented to the target users, for

example: graphs (Jacovina et al. 2015), skillometers (Mitrovic andMartin 2007) or knowl-

edge maps (Lindstaedt et al. 2009). By visualizing (and sometimes interacting with) their

own learning or performance representation, students have a powerful feedback tool for

managing their expertise (Guerra et al. 2016). Ilves et al. (2018) studied how textual and

radar visualizations could be used to support students’ self-regulation in online learning.

ProTuS (Vesin et al. 2018) comprises a interactive learning analytics component which

allow students to compare grades, activities and trajectories of other students who are

enrolled in the same course.

Most of these studies, however, do not exploit intelligent techniques for processing and

structuring the processed information, allowing only the presentation of the content. A

key benefit of our approach lies precisely in the fact that it explores intelligent strategies

to deal with uncertainties, through joint probability structures using Bayesian Networks,

and through semantic and ontological resources for the proper representation and pro-

cessing of inferences (Ferreira et al. 2016; 2017b). Based on this, our approach presents

an important advance for the state of the art, allowing the definition of an architecture

based on intelligent tools that explores the capabilities of OSMs.We also explore different

types of visualization tools.

Regarding analysis of students’ online behavior, one can find models that rely on data

mining techniques to classify, predict, or group information (Harris and Kumar 2018;

De Los Reyes et al. 2019). StudentViz, for instance, is a platform for visualizing students’

collaboration patterns (Becheru et al. 2018). An important differential of our approach

refers to its ability to use a data mining mechanism (clustering algorithms) applied to

students enrolled in face-to-face courses in order to establish a behavior-based guide-

line. The proposal analyzes whether students with different online behavior patterns

(i.e., based on the interactions made by students in the virtual learning environment)

also present significant difference in performance. Research available in the literature that

addresses such an analysis is rare.

OSM-V: an open student model for assessment visualization

This article extends the approach proposed in Ferreira et al., (2016; 2017a, 2017b, 2019).

OSM-V allow students and instructors to assess performance-related information in edu-

cational systems. There are several possibilities for interaction. Instructors are able to

supervise the evolution of students, both individually and as a group, during a course.

The tool also allows instructors to view, in a grouped way, the students who have the

best and worst performances. For students, it is possible to observe the content in which

they have more difficulties and compare their performance to that of the class. It is also

allowed to keep abreast of their academic evolution during their studies. It is important
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to note that all forms of visualization can be customized and adapted to the user’s

profile.

Our model aims at Ferreira et al., (2017a; 2019):

• Allowing instructors to monitor students’ abilities, online behavior and limitations

over time;

• Allowing instructors to detect which students are most likely to succeed and fail;

• Allowing students to know their main abilities and limitations in relation to a given

subject;

• Allowing students to adjust their studies to prioritize subjects in which they have

more difficulty;

• Allowing students to track their performance over time.

The proposedmodel is not limited to producing information that guides instructors and

students in order to only maximize success andminimize failure, but it is rather an impor-

tant tool to help to identify the real abilities and limitations of the subjects involved in the

learning process. Its underlying OSM provides sufficient resources capable of abstracting

the generation of different forms of visualization. For the experiments proposed, three

forms of charts were implemented: line, bar and radar. Such views can be made available

to different users of the environment. The use of the open model enables better perfor-

mance for students, since they are always focused on their limitations, thus improving the

effectiveness of the knowledge acquisition process.

OSM-V enables students and instructors to interact directly with the information pro-

cessed and inferred by the model. For students, specific features allow the visualization of

the level of performance at different points in the system. The model also provides sub-

sidies so that the student can compare his/her performance to other students enrolled in

the same course. For instructors, visualization tools assist with themonitoring of students’

learning process. Instructors can supervise individual students and/or the whole class,

checking, for example, subjects where the class is presenting difficulties or the students

with best/worst performances on each subject.

Overall architecture

The OSM-V architecture consists of four modules: Probabilistic Module, Semantic

Module, Activity Management Module and Visualization Module. These modules com-

municate through message exchange using a structured protocol based on JSON (https://

www.json.org/). Figure 2 presents the OSM-V architecture.

The information inference process begins when the ProbabilisticModule receives infor-

mation from the instructor interface (A) and obtains the information about available

evaluative instruments in the question repository. After this step, the information han-

dled by this module is forwarded to the Semantic Module (B). The Semantic Module

is responsible for handling inferences based on SWRL (Semantic Web Rule Language)

rules available in the repository. For these inferences, the Activity Management Module

informs the activities carried out by the students (C) from the information about their

online behavior when using the system (D). After the entire inference process, this infor-

mation is sent to the last module (E), responsible for presenting the information, both for

students (F) and for instructors (G).

https://www.json.org/
https://www.json.org/
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Fig. 2 OSM-V architecture. Overview of OSM-V architecture, consisting of four modules: Probabilistic Module,

Semantic Module, Activity Management Module and Visualization Module (source: (Ferreira et al. 2019))

Integration to classroom eXperience

OSM-V was integrated to the previously presented CX platform in order to improve stu-

dent engagement and provide a more interactive environment, so that both students and

instructors could follow more closely the evolution of the learning process.

Initially, a mechanism was created that would allow instructors to associate a Bayesian

Network (BN) with a subject. The model is not limited to a particular domain of

knowledge, as it is possible to add as many disciplines as needed, and each with a specific

network. For this case study we implemented a mechanism that interprets BN in GeNIe

Network format (.xdsl)1. To work with BNs, we used the library SMILE Engine2, the main

library available in the literature for handling RBs. It provides a platform for inference of

graphical models, influence diagrams and structural equation models.

An evaluation tool based on multiple choice was implemented through quizzes that are

registered by instructors in chosen points of the lecture. Figure 3 shows the screenshot

for registering a quiz in the CX environment. During this process, the instructor defines

the quiz text (a), the associated BN topics (b), and the answer alternatives (c), including

selecting the correct one.

When reviewing the lecture content for study, students can try to answer the quizzes

registered by the instructor. Equation 1 quantify the score of the student in each quiz

1https://www.bayesfusion.com/genie-modeler
2https://www.bayesfusion.com/smile-engine

https://www.bayesfusion.com/genie-modeler
https://www.bayesfusion.com/smile-engine
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Fig. 3 Screenshot for registering a quiz in the CX environment. The instructor defines the quiz text (a), the

associated BN topics (b), and the answer alternatives (c), including selecting the correct one

based on how many attempts he/she has made until the right answer that defines his/her

level of knowledge on the subjects associated in the BN.

K = M/(Q − 1) ∗ (Q − N) (1)

Where:

• K is the probability of knowledge;

• M is the maximum probability of knowledge;

• Q is the number of alternatives to the quiz;

• N is the attempt in which the student succeeded.

It can be noted, in Eq. 1, that the probability of knowledge (K) is related directly with the

number of attempts the student used to succeed answering the question (N). For instance,

the evaluative instrument presented in Figure 4 has four alternatives (Q), and the M value

for K, defined by the model, is 0.9. So, if the student selects the right alternative on the

first try, the K value will be 0.9. On the second try, the K value will be 0.6. On the third,

0.3. And, on the fourth try, K will be 0.1. In this last case, it is noted that the student does

not acquire 0.0 because, as a model determination, the value for K always range from 0.1

to 0.9.

It is noteworthy that the proposed approach does not restrict the type of evaluation

instrument to be used. For this case, quizzes were used, however, other instruments

could be implemented. It is also important to note that the calculation for probability of

knowledge can be defined in the implementation.

With the use of BNs and evaluative instruments, it is already possible to make infer-

ences about the student’s level of knowledge. From the moment students enroll in the

course, an abstract network is created for each student, which will represent his/her over-

all knowledge. This network is updated according to each interaction with the evaluation
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instruments. To know the probability of knowledge of a particular student, one can just

check the value represented in the node of his/her abstract network. Thus, these visu-

alization tools incorporate the OSM characteristics to the system. Figure 4 presents the

visualization interface available for (a) students and (b) instructors.

Since our approach includes low complexity algorithms, these visualizations are

updated every time new interactions are gathered. So, after answering a quiz, for example,

students can go to the visualization component and the graph will be already updated.

In addition to individual visualization, the instructor can verify the performance of a

particular student compared the whole group, to identify those students with a better and

worse performance numbers, subjects that causing greater difficulty in the class, among

other information concerning the educational development of students.

Experiments and results

In order to analyze the impact caused by OSM-V in students’ satisfaction and behavior

when using the system, two experiments were conducted to verify whether the fact that

students were able to follow their development influenced positively or negatively in their

behavior (motivation, competitiveness, interest in studies, among other factors).

Fig. 4 Visualization interface. OSM-V integrated to Classroom eXperience, visualization interface available for

(a) students and (b) instructors (source: (Ferreira et al. 2019))
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Experiment 1

Over two semesters of 2017, we applied questionnaires to students from four classes

of the Information Systems major at Federal University of Uberlândia, Brazil — two

classes of Human-Computer Interaction and two classes of Computer Architecture and

Organization. From those, we collected a total of 139 responses, suitable for the statistical

analysis.

At the beginning of the course, the instructor presented the tool that would be used

to support educational activities, demonstrating their functionalities and explaining how

they would be used. The students, in turn, made use of the platform during the semester

and, in the end, answered the questionnaire, which presented, in most questions, a seven-

point Likert scale (strongly disagree to strongly agree). The questions were classified

into three groups: the first one related to the perception of utility of the OSM-related

functionalities; the second one to assess whether or not there was a change in the way

the student studied; and a third set of questions to verify the satisfaction with the use

of the visualization tool and which graphics allowed a better visualization for different

situations.

It was possible to identify that, in all analyzed questions regarding perception of utility,

there were higher concentrations of responses between the concordance values, as can

be seen in Fig. 5. For Question 1.1, which considers the level of satisfaction on the func-

tionality of performance visualization, it is possible to perceive a higher concentration of

positive responses. The same interpretation can be obtained by analyzing Questions 1.2

and 1.3, which verify the usefulness of the quiz and gamification functions, respectively.

When asked if they would like the platform to be used in other courses (Question 1.4),

students’ responses were very positive (more than 80% agreement).

In the graph of Fig. 6, we find a balance in motivation for study (Question 2.1), a higher

concentration of students who agree that performance charts can influence their behavior

change from the point of view of performance improvement (Question 2.2), and a greater

tendency of disagreement for competitiveness (Question 2.3).

Fig. 5 Perception of utility. Answers to the question about perception of utility when using the tool (source:

(Ferreira et al. 2019))
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Fig. 6 Change in online study behavior. Degree of agreement on the change in online study behavior

(source: (Ferreira et al. 2019))

In general, it is understood that students understand the functionality of performance

visualization more as an aid to identify their strengths and weaknesses in each course,

helping them to significantly change their study behavior, and not necessarily as a

competition tool that explores motivational issues.

Figure 7 displays the results of Question 3, which evaluates user satisfaction when using

the visualization tool: 56% of the respondents replied that they liked the functionality;

only 4% responded that they did not like it; and 40% responded that they did not realize

the existence of the functionality integrated to the educational platform used – which can

be interpreted as a indicator of transparency, once the performance visualization features

were made as a small notification icon.

Another objective of the experiment was to evaluate which forms of visualization were

preferred by the students (Questions 4 and 5). In this case, the preference was for the bar

graphs, both for the individual and comparison views, as can be observed in Fig. 8.

Fig. 7 User satisfaction. Answers to the question about user satisfaction when using the visualization tool.

(source: (Ferreira et al. 2019))
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Fig. 8 Preferred forms of visualization. Answers to the question about preferred forms of visualization,

considering line, bar and radar graphs (source: (Ferreira et al. 2019))

The reliability of the questionnaire responses was verified with the Cronbach’s Alpha

test. This test aims to analyze the internal consistency of the answers based on the cor-

relation between different items for the same scale. For the interpretation of Cronbach’s

Alpha values, the adjectives proposed by Landis and Koch (1977), which define the follow-

ing ranges: α > 0.80 = near-perfect internal consistency; 0.61 < α < 0.80 = substantial

internal consistency; 0.41 < α < 0.60 = moderate internal consistency; 0.21 < α < 0.40

= reasonable internal consistency; α < 0.21 = small internal consistency.

The same three groups of questions previously described were used: CAT1 to influence

the learning functionalities of the subject, CAT2 for change in study behavior, and CAT3

for viewing preferences. Table 1 records the Cronbach’s Alpha values obtained. It can

be seen that, for categories CAT1 and CAT2, almost perfect internal consistencies were

obtained, which indicates that the students’ responses were very consistent and followed

a reliable pattern. For CAT3, moderate internal consistency was obtained, which indicates

that there were some inconsistencies between the responses.

In an individualized analysis of the classes (Table 2), it was possible to verify that

the inconsistency is related only to the T3 class (T1=0.545, T2=0.532, T3=-0.207 and

T4=0.657). We believe that this was due to some dispersion or lack of attention of the

class during the application of the questionnaires and these individualized results do not

invalidate the whole.

Table 1 Internal consistency measured by Cronbach’s Alpha for questionnaire replies (based on

Ferreira et al. (2019))

Category Question Mean Error dev. α

CAT1 Q1.1 4.40 1.93 0.818

Q1.2 5.22 1.78

Q1.3 4.23 1.95

Q1.4 6.02 1.48

Q6 3.87 1.92

CAT2 Q2.1 3.91 2.12 0.895

Q2.2 4.16 2.21

Q2.3 3.37 2.00

CAT3 Q4 1.79 0.71 0.447

Q5 1.89 0.54
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Table 2 Internal consistency measured by Cronbach’s Alpha for individual classes, T1 to T4 (based

on Ferreira et al. (2019))

Category Question α(T1) α(T2) α(T3) α(T4)

CAT1 Q1.1 0.792 0.880 0.881 0.796

Q1.2

Q1.3

Q1.4

Q6

CAT2 Q2.1 0.876 0.778 0.956 0.917

Q2.2

Q2.3

CAT3 Q4 0.545 0.532 -0.207 0.657

Experiment 2

The second experiment was attended by 119 students, divided into six classes of Human-

Computer Interaction andComputer Architecture andOrganization over three semesters

(2016/2, 2017/1 and 2017/2).

All interactions of the students in the system were logged. Thus, it was possible to

know how each student behaved online andwhat activities were performed during his/her

studies. This logging occurred throughout all semesters, with consent of students, and

interactions were captured and stored as access logs. Interactions with the system were

then quantified according to their duration: short interactions (pA), medium interactions

(pB) and long interactions (pC). Each login session was analyzed and the proportion of

short, medium and long interactions of each student was verified.

After quantifying interactions per user, data clustering was performed to group stu-

dents with similar characteristics into the same group. In general, the clustering technique

classifies entities so that each object is similar to the others in the cluster based on a set

of characteristics (in this case, the different levels of interaction). The resulting clusters

should have high internal homogeneity (within clusters) and high external heterogene-

ity (between clusters) (Hair et al. 2009). Clustering was performed using the K-Means

algorithm, one of the most objective and popular clustering algorithms available in the lit-

erature (Jain 2010). Its principle is to find K clusters in the given data. The algorithmworks

iteratively to assign each instance to one of the K clusters based on the resources provided.

Instances are grouped based on similarity of characteristics. The number of clusters to

choose is one of the main questions related to the K-means algorithm. In the literature it

is not difficult to find suggestions on what are the best proposals for the grouping process

to be successful (Fraley and Raftery 1998). In this sense, the quantity (K=2 and K=3) was

chosen mainly due to the nature of the samples and from a study that analyzed the main

works on cluster analysis for performance measurement, always observing the number of

clusters chosen for these works.

Table 3 presents data obtained from the clustering process. Note in this table the dis-

tribution in the amount of instance that appears in each cluster, for example, all instances

classified in cluster0 (CL0), 24.03% refer to pA, 11.23% refer to pC and 64.46% refer to

pC. It can be seen that cluster2 (CL2) has higher values for pA (33.17) and pB (19.73) and,

in turn, lower values for pC (46.67). While cluster1 (CL1) has the highest values of pC
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Table 3 Average distribution of interactions in each cluster

Attribute Clustering

CL0(%) CL1(%) CL2(%)

pA 24.03 15.18 33.17

pB 11.23 5.06 19.73

pC 64.46 79.37 46.67

(79.37) and lowest of pA (15.18) and pB (5.06). Finally, cluster0 (CL0) has median values

for pA (24.03), pB (11.23) and pC (64.46).

After the clustering process, statistical tests were performed to verify whether or not

there are significant differences in student performance in each cluster: (CL0 with 49

students, CL1 with 52 students and CL3 with 18 students). Figure 10 presents the scatter

plots of this strategy in which it is possible to see the distribution of students in each

group. In Fig. 9a, the X axis represents values for pC and the Y axis represents values of

pB. In Fig. 9b, the X axis represents values for pC and the Y axis represents values of pA.

The Levene test was used to verify variance homogeneity. The Shapiro-Wilk statisti-

cal test was applied to check that the scores in the two tasks had a normal distribution.

With these tests, it was concluded that the samples are homogeneous (p-value = 0.118).

However, the Shapiro-Wilk test showed that the samples analyzed did not show residual

normality (W(p) = 0.908 (0.00)). This guided the choice of the next test to verify the dif-

ference between the means: the non-parametric Kruskal-Wallis test, which showed that

student behavior interferes with their performance (H(2) = 7.063; p < 0.05). In this case,

it was possible to identify that there is a statistically significant difference between the

grades of the students that are grouped in the different clusters. In Table 4 you can see

that students of CL1 have the highest rank averages and students of CL2 have the lowest.

Students classified in CL1 had the highest grades. This group is precisely the group that

has longer access sessions (pC) and fewer short access sessions (pA). Students classified

in CL2 are the students with the lowest grades. These students an average profile, those

that exhibit neither too long nor too short behavior (Table 3). Students classified in CL0

show more dynamic behavior, making use of the environment less frequently and with

many fast accesses.

It is also important to identify where the statistically significant difference really is. For

this, the Dunn-Bonferroni approach was used for pairwise comparisons. In Table 5, one

can see the difference among the three clusters. There is a significant difference between

CL2 and cL1 (p = 0.024). In this case, the group with the highest average (students who

Fig. 9 Cluster distribution. Scatter plots for cluster distribution
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Table 4 Performance averages and Kruskal-Wallis test results in each cluster (N is the number of

students in the given cluster

Cluster N Mean rank Chi-square (p) df

Cl0 49 60.74 1103.00 (0.032) 2

Cl1 52 65.90

Cl2 18 40.92

A p-value <0.05 indicates that there is significant difference between the averages of the analyzed clusters)

access the environment primarily for long periods) and the group with the lowest average

(students who usually do not access the system for long periods). The Blox-plot graph in

Fig. 10 presents a clearer view of these differences between means. It can be seen that the

difference between CL0 and CL1 and between CL0 and CL2 was not as significant as the

difference between CL1 and CL2.

By analyzing the behavior of quartiles and medians represented by each cluster, it is

possible to notice a greater influence of the variable that represents the long access (pC)

in the final result of student performance. This is the variable that most influenced the

performance of each cluster, i.e., the higher the occurrence of pC, the higher the average

performance in the cluster; the lower the occurrence of pC, the lower the average per-

formance. There is also an influence of short access variables (pA), not as significant as

pC, but capable of representing a certain influence on clusters. In the case of the variable

pA, the smaller the number of short accesses, the higher the average student perfor-

mance. Thus, it is possible to realize that the variable pC influences positively on student

performance while the variable pA influences somewhat on student performance.

It was possible to prove statistically that there is a relationship between students’ online

behavior during the use of the platform and their performance. The Kruskal-Wallis test

showed a higher performance in the same group of students (those who access for longer

periods) and a lower performance for those who do not access for longer periods. We

can divide the group of students who made use of the platform into three profiles: Profile

A is the students with the longest access and the shortest and shortest access; Profile B

are students who access the system with less long accesses and more short and medium

accesses; and Profile C are the students with the most average behavior, being the average

for short, medium and long accesses. It can be statistically concluded that students of

Profile A have the highest grades, while students of Profile B have the lowest grades. The

students of Profile C fall into a region of more uncertainty, in which it is not possible to

make statements with strong statistical foundations.

Conclusions

The use of technology as a mechanism to aid the teaching-learning process is cur-

rently a trend. Computational techniques can assist in the personalization, integration

Table 5 Pairwise comparison test results among clusters (an Adj. Sig. value <0.05 indicates

significant difference between the analyzed groups)

Cluster Test statistic Std. Error Std. Test Statistic Sig. Adj. Sig.

Cl2 - Cl0 19.82 9.50 2.08 .037 .111

Cl2 - Cl1 24.98 9.42 2.65 .008 .024

Cl0 - Cl1 -5.15 6.86 -.752 .452 1.00
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Fig. 10 Comparison among the 3 clusters. The difference between CL0 and CL1 and between CL0 and CL2

was not as significant as the difference between CL1 and CL2

and visualization of new pedagogical strategies to support educational activities, mak-

ing the teaching-learning process simpler, more dynamic and attractive to students. This

article revisits OSM-V, a model for student assessment visualization in educational sys-

tems. OSM-V explores Open Student Modeling to create an efficient and intelligent

approach, based on probabilistic and semantic fundamentals, that allows students to track

their entire knowledge acquisition process, while instructors are able to supervise their

progress and anticipate proper pedagogical strategies.

Two experiments were carried out to analyze the impact caused by OSM-V in stu-

dents’ satisfaction and online behavior when using our model. The first experiment was

carried out with responses from 139 undergrad students. Results showed that the tool

positively influenced their perception of utility, indicating that, in several situations, stu-

dents believed that the proposal can positively impact learning. It was also noticed that,

for a large number of students, the tool also influenced their study behavior in the virtual

environment. In the second experiment, a clustering algorithm was used to help define

different groups from the perspective of how they use the environment, that is, their inter-

action profile. Clustering algorithms are interesting for this type of research because they

aim to group instances (students) with similar characteristics into the same group, thus

allowing the identification of strategic profiles for a more consistent and reliable analysis

(Hair et al. 2009). From a statistical perspective, the Kruskal-Wallis test was used to verify

if there are significant differences among the analyzed groups.

The results of this study can help both instructors and students. The former, when

deciding on the use of a ubiquitous platform to assist in the classroom teaching process,

as well as having a sense of the which students’ online behavior are most likely to have

positive results in their performance when using the platform. The latter figuring out how

best to behave by seeking a better performance during their studies.

Limitations

Some limitations were noted throughout the development of our approach, either because

of proposal scope issues or more related to implementation of the approaches.

First, our model was designed to work best when applied to facts, concepts and simple

procedures rather than to complex, dynamic and ill-structured problems.
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A second limitation is related to the groups participating in the experiments, since all

of them came from technological courses (Computer Science or Information Systems)

taught by Computer teachers. Even though it is a limitation, the fact that students have

a knowledge in computational subjects does not invalidate the proposal, in contrast, in

the case of Experiment 1, they even contributed positively in identifying some interface

design problems.

It is important to highlight that these limitations are intrinsic to the process of devel-

opment of the proposed approach. It is noteworthy that such limitations do not influence

the real quality of the work, as most of them are related to implementation issues and

availability of experiments, and not to a structural issue of the proposed model.

Future work

Potential future work includes: a study on the feasibility and effectiveness of new forms of

data visualization, such as skillmeters, knowledge maps, area charts and scatter plots; the

creation of mechanisms for automatic recommendation of content, for students, and of

pedagogical approaches, for instructors; the extension of the use of the proposed model

to other virtual learning environments and, consequently, to other classes and courses;

and, finally, the exploration of OSM-V for self-regulated learning.
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